The Association between Admission Serum Phosphorus and Preoperative Deep Venous Thrombosis in Geriatric Hip Fracture: A Retrospective Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Setting
2.3. Participants
2.4. Variables
2.5. Data Sources/Measurement
2.6. Bias
2.7. Statistics Analysis
3. Results
3.1. Patient Characteristics
3.2. Univariate Analysis of the Association between Variates and DVT
3.3. Multivariate Analysis between Preoperative Serum Phosphorus and DVT
3.4. Curve Fitting and Analysis of Threshold Effect
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Pan, L.; Ning, T.; Wu, H.; Liu, H.; Wang, H.; Li, X.; Cao, Y. Prognostic nomogram for risk of mortality after hip fracture surgery in geriatrics. Injury 2022, 53, 1484–1489. [Google Scholar] [CrossRef] [PubMed]
- Inoue, T.; Maeda, K.; Nagano, A.; Shimizu, A.; Ueshima, J.; Murotani, K.; Sato, K.; Tsubaki, A. Undernutrition, Sarcopenia, and Frailty in Fragility Hip Fracture: Advanced Strategies for Improving Clinical Outcomes. Nutrients 2020, 12, 3743. [Google Scholar] [CrossRef] [PubMed]
- Lagoutte-Renosi, J.; Allemand, F.; Ramseyer, C.; Rabani, V.; Davani, S. Influence of Antiplatelet Agents on the Lipid Composition of Platelet Plasma Membrane: A Lipidomics Approach with Ticagrelor and Its Active Metabolite. Int. J. Mol. Sci. 2021, 22, 1432. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.L.; Huang, C.-C.; Chang, C.-C.; Chou, C.-Y.; Lin, S.-Y.; Wang, I.-K.; Hsieh, D.J.-Y.; Jong, G.-P.; Huang, C.-Y.; Wang, C.-M. Hyperphosphate-induced myocardial hypertrophy through the GATA-4/NFAT-3 signaling pathway is at-tenuated by ERK inhibitor treatment. Cardiorenal Med. 2015, 5, 79–88. [Google Scholar] [CrossRef] [PubMed]
- Ciccone, M.M.; Cortese, F.; Corbo, F.; Corrales, N.E.; Al-Momen, A.K.; Silva, A.; Zito, A.; Pinto, M.; Gesualdo, M.; Scicchitano, P. Bemiparin, an effective and safe low molecular weight heparin: A review. Vasc. Pharmacol. 2014, 62, 32–37. [Google Scholar] [CrossRef] [PubMed]
- Penido, M.G.M.G.; Alon, U.S. Phosphate homeostasis and its role in bone health. Pediatr. Nephrol. 2012, 27, 2039–2048, Corrigendum in 2017, 32, 1999. [Google Scholar] [CrossRef] [PubMed]
- Scicchitano, P.; Iacoviello, M.; Passantino, A.; Gesualdo, M.; Trotta, F.; Basile, M.; De Palo, M.; Guida, P.; Paolillo, C.; Riccioni, G.; et al. Plasma Levels of Intact Parathyroid Hormone and Congestion Burden in Heart Failure: Clinical Corre-lations and Prognostic Role. J. Cardiovasc. Dev. Dis. 2022, 9, 334. [Google Scholar] [CrossRef] [PubMed]
- Gruson, D.; Buglioni, A.; Burnett, J. PTH: Potential role in management of heart failure. Clin. Chim. Acta 2014, 433, 290–296. [Google Scholar] [CrossRef] [PubMed]
- Tomaschitz, A.; Ritz, E.; Pieske, B.; Rus-Machan, J.; Kienreich, K.; Verheyen, N.; Gaksch, M.; Grübler, M.R.; Fahrleitner-Pammer, A.; Mrak, P.; et al. Aldosterone and parathyroid hormone interactions as mediators of metabolic and cardiovascular disease. Metabolism 2014, 63, 20–31. [Google Scholar] [CrossRef] [PubMed]
- Amanzadeh, J.; Reilly, R.F. Hypophosphatemia: An evidence-based approach to its clinical consequences and management. Nat. Clin. Pract. Nephrol. 2006, 2, 136–148. [Google Scholar] [CrossRef]
- Huang, X.; Jiang, Y.; Xia, W. FGF23 and Phosphate Wasting Disorders. Bone Res. 2013, 1, 120–132. [Google Scholar] [CrossRef] [PubMed]
- Florenzano, P.; Econs, M.J. Approach to patients with hypophosphatemia. Lancet. Diabetes Endocrinol. 2020, 8, 163–174. [Google Scholar] [CrossRef] [PubMed]
- Olmos, G.; Martínez-Miguel, P.; Alcalde-Estevez, E.; Medrano, D.; Sosa, P.; Rodríguez-Mañas, L.; Naves-Diaz, M.; Rodríguez-Puyol, D.; Ruiz-Torres, M.P.; López-Ongil, S. Hyperphosphatemia induces senescence in human endothelial cells by increasing endothelin-1 production. Aging Cell 2017, 16, 1300–1312. [Google Scholar] [CrossRef] [PubMed]
- Sciacca, A.; Perticone, M.; Cimellaro, A.; Tassone, E.J.; Tripepi, G.; Andreucci, M.; Sesti, G.; Perticone, F. Multiplicative effect of serum phosphorus levels and insulin resistance on hypertensive vascular stiffness. Thromb. Haemost. 2016, 115, 227–229. [Google Scholar] [CrossRef]
- Zhang, J.; You, H.; Wang, M.; Zhang, Q.; Dong, X.; Liu, J.; Chen, J. High-phosphorus diet controlled for sodium elevates blood pressure in healthy adults via volume expansion. J. Clin. Hypertens. 2021, 23, 849–859. [Google Scholar] [CrossRef] [PubMed]
- Lorenzo, C.; Hanley, A.J.; Rewers, M.J.; Haffner, S.M. Calcium and phosphate concentrations and future development of type 2 diabetes: The Insulin Resistance Atherosclerosis Study. Diabetologia 2014, 57, 1366–1374. [Google Scholar] [CrossRef]
- Listed, G.; Brodin, E.E.; Svartberg, J.; Jorde, R.; Brox, J.; Brækkan, S.K.; Hansen, J.-B. Associations between serum levels of Calcium, parathyroid hormone and future risk of venous thromboem-bolism: The Tromso study. Eur. J. Endocrinol. 2017, 176, 625–634. [Google Scholar] [CrossRef]
- Ji, Y.; Cai, L.; Zheng, T.; Ye, H.; Rong, X.; Rao, J.; Lu, Y. The mechanism of UVB irradiation induced-apoptosis in cataract. Mol. Cell. Biochem. 2014, 401, 87–95. [Google Scholar] [CrossRef] [PubMed]
- King, A.J.; Siegel, M.; He, Y.; Nie, B.; Wang, J.; Koo-McCoy, S.; Minassian, N.A.; Jafri, Q.; Pan, D.; Kohler, J.; et al. Inhibition of sodium/hydrogen exchanger 3 in the gastrointestinal tract by tenapanor reduces paracellular phosphate permeability. Sci. Transl. Med. 2018, 10, eaam6474. [Google Scholar] [CrossRef]
- Peacock, M. Hypoparathyroidism and the kidney. Endocrinol. Metab. Clin. North Am. 2018, 47, 839–853. [Google Scholar] [CrossRef] [PubMed]
Phosphorus Tertiles | Low | Middle | High | p-Value | p-Value * |
---|---|---|---|---|---|
N | 611 | 632 | 575 | ||
Phosphorus (mmol/L) | 0.78 ± 0.11 | 1.00 ± 0.05 | 1.25 ± 0.17 | <0.001 | <0.001 |
Age (year) | 79.42 ± 6.68 | 79.58 ± 7.07 | 79.14 ± 6.86 | 0.541 | 0.598 |
Sex | <0.001 | - | |||
Male | 273 (44.68%) | 167 (26.42%) | 110 (19.13%) | ||
Female | 338 (55.32%) | 465 (73.58%) | 465 (80.87%) | ||
Injury mechanism | 0.111 | - | |||
Falling | 587 (96.07%) | 613 (96.99%) | 555 (96.52%) | ||
Accident | 21 (3.44%) | 17 (2.69%) | 12 (2.09%) | ||
Other | 3 (0.49%) | 2 (0.32%) | 8 (1.39%) | ||
Fracture classification | 0.038 | - | |||
Intertrochanteric fracture | 348 (56.96%) | 373 (59.02%) | 367 (63.83%) | ||
Femoral neck fracture | 256 (41.90%) | 243 (38.45%) | 199 (34.61%) | ||
Subtrochanteric fracture | 7 (1.15%) | 16 (2.53%) | 9 (1.57%) | ||
Hypertension | 309 (50.57%) | 316 (50.00%) | 292 (50.78%) | 0.961 | - |
Diabetes | 112 (18.33%) | 123 (19.46%) | 129 (22.43%) | 0.192 | - |
CHD | 316 (51.72%) | 326 (51.58%) | 294 (51.13%) | 0.978 | - |
Arrhythmia | 195 (31.91%) | 201 (31.80%) | 178 (30.96%) | 0.928 | - |
Hemorrhagic stroke | 6 (0.98%) | 15 (2.37%) | 10 (1.74%) | 0.166 | - |
Ischemic stroke | 204 (33.39%) | 211 (33.39%) | 159 (27.65%) | 0.05 | - |
Cancer | 15 (2.45%) | 20 (3.16%) | 14 (2.43%) | 0.666 | - |
Multiple injuries | 49 (8.02%) | 39 (6.17%) | 43 (7.48%) | 0.431 | - |
Dementia | 21 (3.44%) | 29 (4.59%) | 22 (3.83%) | 0.57 | - |
COPD | 49 (8.02%) | 28 (4.43%) | 27 (4.70%) | 0.011 | - |
Hepatitis | 12 (1.96%) | 21 (3.32%) | 20 (3.48%) | 0.227 | - |
Gastritis | 5 (0.82%) | 13 (2.06%) | 8 (1.39%) | 0.184 | - |
DVT | 173 (28.31%) | 205 (32.44%) | 202 (35.13%) | 0.04 | - |
aCCI | 4.25 ± 1.12 | 4.23 ± 1.10 | 4.16 ± 1.10 | 0.308 | 0.361 |
Time to operation (d) | 4.09 ± 2.30 | 4.23 ± 2.57 | 4.26 ± 2.44 | 0.466 | 0.5 |
Time to admission (h) | 53.79 ± 140.18 | 85.71 ± 316.13 | 111.62 ± 274.87 | <0.001 | <0.001 |
Statistics | OR (95% CI) | p Value | |
---|---|---|---|
Age (year) | 79.39 ± 6.87 | 1.00 (0.99, 1.02) | 0.5892 |
Sex | |||
Male | 550 (30.25%) | 1 | |
Female | 1268 (69.75%) | 1.25 (1.01, 1.56) | 0.0433 |
Injury mechanism | |||
Falling | 1755 (96.53%) | 1 | |
Accident | 50 (2.75%) | 1.11 (0.61, 2.01) | 0.7284 |
Other | 13 (0.72%) | 2.52 (0.84, 7.52) | 0.0987 |
Fracture classification | |||
Intertrochanteric fracture | 1088 (59.85%) | 1 | |
Femoral neck fracture | 698 (38.39%) | 0.67 (0.55, 0.83) | 0.0002 |
Subtrochanteric fracture | 32 (1.76%) | 1.87 (0.93, 3.78) | 0.0812 |
Hypertension | 917 (50.44%) | 1.12 (0.92, 1.37) | 0.2494 |
Diabetes | 364 (20.02%) | 0.92 (0.72, 1.18) | 0.5192 |
CHD | 936 (51.49%) | 1.08 (0.88, 1.31) | 0.4571 |
Arrhythmia | 574 (31.57%) | 1.06 (0.86, 1.31) | 0.5976 |
Hemorrhagic stroke | 31 (1.71%) | 1.55 (0.76, 3.19) | 0.2303 |
Ischemic stroke | 574 (31.57%) | 0.86 (0.69, 1.06) | 0.1556 |
Cancer | 49 (2.70%) | 1.14 (0.63, 2.07) | 0.6711 |
Multiple injuries | 131 (7.21%) | 1.55 (1.08, 2.22) | 0.0183 |
Dementia | 72 (3.96%) | 1.65 (1.02, 2.66) | 0.0401 |
COPD | 104 (5.72%) | 0.90 (0.58, 1.39) | 0.6369 |
Hepatitis | 53 (2.92%) | 0.69 (0.36, 1.29) | 0.245 |
Gastritis | 26 (1.43%) | 0.50 (0.19, 1.34) | 0.1706 |
aCCI | 4.22 ± 1.11 | 1.00 (0.91, 1.09) | 0.9615 |
Time to operation (d) | 4.19 ± 2.44 | 1.05 (1.01, 1.10) | 0.0113 |
Time to admission (h) | 83.18 ± 256.36 | 1.00 (1.00, 1.00) | 0.3094 |
Phosphorus (×0.1 mmol/L) | 10.08 ± 2.23 | 1.06 (1.02, 1.11) | 0.0059 |
Exposure | Non-Adjusted Model | Minimally-Adjusted Model | Fully-Adjusted Model |
---|---|---|---|
Phosphorus (×0.1 mmol/L) | 1.06 (1.02, 1.11) 0.0059 | 1.06 (1.01, 1.10) 0.0170 | 1.06 (1.01, 1.11) 0.0221 |
Phosphorus tertiles | |||
Low | 1 | 1 | 1 |
Middle | 1.22 (0.95, 1.55) 0.1144 | 1.18 (0.92, 1.51) 0.1891 | 1.14 (0.88, 1.48) 0.3115 |
High | 1.37 (1.07, 1.75) 0.0118 | 1.31 (1.02, 1.69) 0.0336 | 1.30 (1.00, 1.69) 0.0542 |
p for trend | 0.0117 | 0.0339 | 0.0542 |
Outcome | OR (95% CI) p-Value |
---|---|
Fitting model by stand linear regression | 1.06 (1.01, 1.11) 0.0221 |
Fitting model by two-piecewise linear regression | |
Inflection point | 0.71 mmol/L |
<0.71 mmol/L | 1.64 (1.04, 2.59) 0.0333 |
>0.71 mmol/L | 1.03 (0.98, 1.09) 0.1860 |
p for log-likelihood ratio test | 0.036 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lu, D.-X.; Zhang, K.; Ma, T.; Li, M.; Li, Z.; Xu, Y.-B.; Wang, C.-F.; Ren, C.; Zhang, B.-F. The Association between Admission Serum Phosphorus and Preoperative Deep Venous Thrombosis in Geriatric Hip Fracture: A Retrospective Study. Diagnostics 2023, 13, 545. https://doi.org/10.3390/diagnostics13030545
Lu D-X, Zhang K, Ma T, Li M, Li Z, Xu Y-B, Wang C-F, Ren C, Zhang B-F. The Association between Admission Serum Phosphorus and Preoperative Deep Venous Thrombosis in Geriatric Hip Fracture: A Retrospective Study. Diagnostics. 2023; 13(3):545. https://doi.org/10.3390/diagnostics13030545
Chicago/Turabian StyleLu, Dong-Xing, Kun Zhang, Teng Ma, Ming Li, Zhong Li, Yi-Bo Xu, Chao-Feng Wang, Cheng Ren, and Bin-Fei Zhang. 2023. "The Association between Admission Serum Phosphorus and Preoperative Deep Venous Thrombosis in Geriatric Hip Fracture: A Retrospective Study" Diagnostics 13, no. 3: 545. https://doi.org/10.3390/diagnostics13030545
APA StyleLu, D.-X., Zhang, K., Ma, T., Li, M., Li, Z., Xu, Y.-B., Wang, C.-F., Ren, C., & Zhang, B.-F. (2023). The Association between Admission Serum Phosphorus and Preoperative Deep Venous Thrombosis in Geriatric Hip Fracture: A Retrospective Study. Diagnostics, 13(3), 545. https://doi.org/10.3390/diagnostics13030545