“Redo” 2D–3D Fusion Technique during Endovascular Redo Aortic Repair
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Hertault, A.; Maurel, B.; Sobocinski, J.; Gonzalez, T.; Azzaoui, R.; Midulla, M.; Haulon, S. Impact of Hybrid Rooms with Image Fusion on Radiation Exposure during Endovascular Aortic Repair. Eur. J. Vasc. Endovasc. Surg. 2014, 48, 382–390. [Google Scholar] [CrossRef] [PubMed]
- Tinelli, G.; Bonnet, M.; Hertault, A.; Sica, S.; Di Tanna, G.L.; Bianchini, A.; Fabre, D.; Sobocinski, J.; Haulon, S. Impact of Hybrid Operating Rooms on Long-Term Clinical Outcomes Following Fenestrated and Branched Endovascular Aortic Repair. J. Endovasc. Ther. 2021, 28, 415–424. [Google Scholar] [CrossRef] [PubMed]
- Van Schaik, T.G.; Blankensteijn, J.D.; Wisselink, W.; Nederhoed, J.H.; Lely, R.J.; Hoksbergen, A.W.J.; Yeung, K.K. Image Fusion During Standard and Complex Endovascular Aortic Repair, to Fuse or Not to Fuse? A Meta-analysis and Additional Data From a Single-Center Retrospective Cohort. J. Endovasc. Ther. 2021, 28, 78–92. [Google Scholar]
- National Council on Radiation Protection and Measurements. Implementation of the Principle of as Low as Reasonably Achievable (ALARA) for Medical and Dental Personnel. NCRP Report no. 107. Available online: http://www.ncrponline.org/Publications/Reports_100-119.html (accessed on 23 December 2022).
- Schulz, C.J.; Schmitt, M.; Böckler, D.; Geisbüsch, P. Feasibility and accuracy of fusion imaging during thoracic endovascular aortic repair. J. Vasc. Surg. 2016, 63, 314–322. [Google Scholar] [CrossRef] [PubMed]
- Edsfeldt, A.; Sonesson, B.; Rosén, H.; Petri, M.H.; Hongku, K.; Resch, T.; Dias, N.V. Validation of a New Method for 2D Fusion Imaging Registration in a System Prepared Only for 3D. J. Endovasc. Ther. 2020, 27, 468–472. [Google Scholar] [CrossRef]
- Wanken, Z.J.; Barnes, J.A.; Trooboff, S.W.; Columbo, J.A.; Jella, T.K.; Kim, D.J.; Khoshgowari, A.; Riblet, N.B.V.; Goodney, P.P. A systematic review and meta-analysis of long-term reintervention after endovascular abdominal aortic aneurysm repair. J. Vasc. Surg. 2020, 72, 1122–1131. [Google Scholar] [CrossRef] [PubMed]
- Budtz-Lilly, J.; Hongku, K.; Sonesson, B.; Dias, N.; Resch, T. Endovascular redo aortic surgery. J. Cardiovasc. Surg. 2017, 58, 854–860. [Google Scholar] [CrossRef]
- Tenorio, E.R.; Dias-Neto, M.F.; Lima, G.B.B.; Estrera, A.L.; Oderich, G.S. Endovascular repair for thoracoabdominal aortic aneurysms: Current status and future challenges. Ann. Cardio-Thorac. Surg. 2021, 10, 744–767. [Google Scholar]
- Schermerhorn, M.L.; Buck, D.B.; O’Malley, A.J.; Curran, T.; McCallum, J.C.; Darling, J.; Landon, B.E. Long-term outcomes of abdominal aortic aneurysm in the medicare population. N. Engl. J. Med. 2015, 373, 328–338. [Google Scholar] [CrossRef]
- Columbo, J.A.; Martinez-Camblor, P.; O’Malley, A.J.; Suckow, B.D.; Hoel, A.W.; Stone, D.H.; Schanzer, A.; Schermerhorn, M.L.; Sedrakyan, A.; Goodney, P.P. Society for Vascular Surgery’s Vascular Quality Initiative. Long-term Reintervention After Endovascular Abdominal Aortic Aneurysm Repair. Ann. Surg. 2021, 274, 179–185. [Google Scholar] [CrossRef]
- Duebener, L.; Hartmann, F.; Kurowski, V.; Richardt, G.; Geist, V.; Erasmi, A.; Sievers, H.-H.; Misfeld, M. Surgical interventions after emergency endovascular stent-grafting for acute type B aortic dissections. Interact. Cardiovasc. Thorac. Surg. 2007, 6, 288–292. [Google Scholar] [CrossRef]
- Lee, C.J.; Rodriguez, H.E.; Kibbe, M.R.; Malaisrie, S.C.; Eskandari, M.K. Secondary interventions after elective thoracic endovascular aortic repair for degenerative aneurysms. J. Vasc. Surg. 2013, 57, 1269–1274. [Google Scholar] [CrossRef]
- Hallett, J.W.; Marshall, D.M.; Petterson, T.M.; Gray, D.T.; Bower, T.C.; Cherry, K.J.; Gloviczki, P.; Pairolero, P.C. Graft-related complications after abdominal aortic aneurysm repair: Reassurance from a 36-year population-based experience. J. Vasc. Surg. 1997, 25, 277–286. [Google Scholar] [CrossRef]
- Pitoulias, G.A.; Schulte, S.; Donas, K.P.; Horsch, S. Secondary Endovascular and Conversion Procedures for Failed Endovascular Abdominal Aortic Aneurysm Repair: Can We Still Be Optimistic? Vascular 2009, 17, 15–22. [Google Scholar] [CrossRef]
- Resch, T.; Koul, B.; Dias, N.V.; Lindblad, B.; Ivancev, K. Changes in aneurysm morphology and stent-graft configuration after endovascular repair of aneurysms of the descending thoracic aorta. J. Thorac. Cardiovasc. Surg. 2001, 122, 47–52. [Google Scholar] [CrossRef]
- Matsumura, J.S.; Chaikof, E.L. Continued expansion of aortic necks after endovascular repair of abdominal aortic aneurysms. J. Vasc. Surg. 1998, 28, 422–431. [Google Scholar] [CrossRef]
- Hassoun, H.T.; Mitchell, R.S.; Makaroun, M.S.; Whiting, A.J.; Cardeira, K.R.; Matsumura, J.S. Aortic neck morphology after endovascular repair of descending thoracic aortic aneurysms. J. Vasc. Surg. 2006, 43, 26–31. [Google Scholar] [CrossRef]
- Schanzer, A.; Greenberg, R.K.; Hevelone, N.; Robinson, I.W.P.; Eslami, M.; Goldberg, R.J.; Messina, L.M. Predictors of Abdominal Aortic Aneurysm Sac Enlargement After Endovascular Repair. Circulation 2011, 123, 2848–2855. [Google Scholar] [CrossRef]
- Fulton, J.J.; Farber, M.A.; Sanchez, L.A.; Godshall, C.J.; Marston, W.A.; Mendes, R.; Rubin, B.G.; Sicard, G.A.; Keagy, B.A. Effect of challenging neck anatomy on mid-term migration rates in AneuRx endografts. J. Vasc. Surg. 2006, 44, 932–937. [Google Scholar] [CrossRef]
- Abbruzzese, T.A.; Kwolek, C.J.; Brewster, D.C.; Chung, T.K.; Kang, J.; Conrad, M.F.; LaMuraglia, G.M.; Cambria, R.P. Outcomes following endovascular abdominal aortic aneurysm repair (EVAR): An anatomic and device-specific analysis. J. Vasc. Surg. 2008, 48, 19–28. [Google Scholar] [CrossRef]
- Suckow, B.D.; Goodney, P.P.; Columbo, J.A.; Kang, R.; Stone, D.H.; Sedrakyan, A.; Cronenwett, J.L.; Fillinger, M.F. National trends in open surgical, endovascular, and branched-fenestrated endovascular aortic aneurysm repair in Medicare patients. J. Vasc. Surg. 2018, 67, 1690–1697. [Google Scholar] [CrossRef] [PubMed]
- McNally, M.M.; Scali, S.T.; Feezor, R.J.; Neal, D.; Huber, T.S.; Beck, A.W. Three-dimensional fusion computed tomography decreases radiation expo- sure, procedure time, and contrast use during fenestrated endovascular aortic repair. J. Vasc. Surg. 2015, 61, 309–316. [Google Scholar] [CrossRef] [PubMed]
- Tacher, V.; Lin, M.; Desgranges, P.; Deux, J.F.; Grünhagen, T.; Becquemin, J.P. Image guidance for endovascular repair of complex aortic aneurysms: Compari- son of two-dimensional and three-dimensional angiography and image fusion. J. Vasc. Interv. Radiol. 2013, 24, 1698–1706. [Google Scholar] [CrossRef] [PubMed]
- Dias, N.V.; Billberg, H.; Sonesson, B.; Törnqvist, P.; Resch, T.; Kristmundsson, T. The effects of combining fusion imaging, low-frequency pulsed fluoroscopy, and low-con- centration contrast agent during endovascular aneurysm repair. J. Vasc. Surg. 2016, 63, 1147–1155. [Google Scholar] [CrossRef]
- Dijkstra, M.L.; Eagleton, M.J.; Greenberg, R.K.; Mastracci, T.; Hernandez, A. Intraoperative C-arm cone-beam computed tomography in fenestrated/branched aortic endografting. J. Vasc. Surg. 2011, 53, 583–590. [Google Scholar] [CrossRef]
- Törnqvist, P.; Dias, N.; Sonesson, B.; Kristmundsson, T.; Resch, T. Intra-operative Cone Beam Computed Tomography can Help Avoid Reinterventions and Reduce CT Follow up after Infrarenal EVAR. Eur. J. Vasc. Endovasc. Surg. 2015, 49, 390–395. [Google Scholar] [CrossRef]
- Chinnadurai, P.; Chintalapani, G.; Bechara, C.F.; Bismuth, J.; Lumsden, A.B. 3D-3D Image Fusion for EVAR Guidance: Comparison of Spine-Based vs. Aortic Wall Calcification-Based Alignment. J. Vasc. Surg. 2015, 61, 139S–140S. [Google Scholar] [CrossRef]
- Sobocinski, J.; Chenorhokian, H.; Maurel, B.; Midulla, M.; Hertault, A.; Le Roux, M.; Azzaoui, R.; Haulon, S. The Benefits of EVAR Planning Using a 3D Workstation. Eur. J. Vasc. Endovasc. Surg. 2013, 46, 418–423. [Google Scholar] [CrossRef]
- Tenorio, E.R.; Oderich, G.S.; Sandri, G.A.; Ozbek, P.; Kärkkäinen, J.M.; Macedo, T.A.; Vrtiska, T.; Cha, S. Impact of onlay fusion and cone beam computed tomography on radiation exposure and technical assessment of fenestrated-branched endovascular aortic repair. J. Vasc. Surg. 2019, 69, 1045–1058.e3. [Google Scholar] [CrossRef]
- Tinelli, G.; De Nigris, F.; Flore, R.; Santoliquido, A.; Tshomba, Y. Endoanchors under 3D image fusion for a type IA endoleak after EVAR. Clin. Case Rep. 2019, 7, 529–532. [Google Scholar] [CrossRef]
Variables | Definition |
---|---|
P1 | Inferior margin of the target vessel ostium in digital subtraction angiography (DSA) |
P2 | Inferior margin of the target vessel ostium in bone fusion |
P3 | Inferior margin of the target vessel ostium in redo fusion |
L1 | P1–P2 distance |
L2 | P1–P3 distance |
Working area | The new endovascular redo area containing the target vessel |
Aortic angulation | Aortic angulation in the working area |
Target vessel | The target vessel nearest the previous endovascular stent-graft |
Previous Endovascular Treatment | Endovascular Redo Treatment | Target Vessel | Distance between Fusion Redo Marker and Target Vessel | Aortic Angulation in the Working Area | L1 Bone Fusion | L2 “Redo” Fusion | Δ | |
---|---|---|---|---|---|---|---|---|
Patient 1 | BEVAR | BEVAR | Aortic bifurcation | 150 mm | 70° | 7 mm | 1.5 mm | 5.5 |
Patient 2 | TEVAR | BEVAR | Celiac artery | 50 mm | 60° | 4 mm | 1 mm | 3 |
Patient 3 | TEVAR | BEVAR | Celiac artery | 25 mm | 55° | 6 mm | 2.5 mm | 3.5 |
Patient 4 | FEVAR | EVAR | Right renal artery | 5 mm | 40° | 6 mm | 1.5 mm | 4.5 |
Patient 5 | BEVAR | BEVAR | Celiac artery | 10 mm | 20° | 5 mm | 1.5 mm | 3.5 |
Patient 6 | FEVAR | RELINING FEVAR | Left renal artery | 5 mm | 50° | 3 mm | 0.3 mm | 2.7 |
Patient 7 | EVAR | TEVAR | Celiac artery | 50 mm | 30° | 5 mm | 1 mm | 4 |
Patient 8 | TEVAR | TEVAR | Left common carotid artery | 25 mm | 60° | 8 mm | 1 mm | 7 |
Patient 9 | TEVAR | RELINING TEVAR | Celiac artery | 50 mm | 50° | 8 mm | 2.5 mm | 5.5 |
Patient 10 | TEVAR | FEVAR | Celiac artery | 200 mm | 65° | 6 mm | 2.2 mm | 3.8 |
Patient 11 | TEVAR | FEVAR | Left common carotid artery | 15 mm | 70° | 7 mm | 1 mm | 6 |
Patient 12 | TEVAR | FEVAR | Celiac artery | 30 mm | 60° | 6 mm | 1 mm | 5 |
Patient 13 | TEVAR | TEVAR | Left subclavian artery | 15 mm | 70° | 7 mm | 1 mm | 6 |
Patient 14 | TEVAR | BEVAR | Celiac artery | 60 mm | 50° | 4 mm | 1 mm | 3 |
Patient 15 | TEVAR | RELINING TEVAR | Celiac artery | 70 mm | 10° | 3 mm | 2 mm | 1 |
Patient 16 | FEVAR | RELINING FEVAR | Right renal artery | 5 mm | 60° | 4 mm | 0.5 mm | 3.5 |
Patient 17 | EVAR | RELINING EVAR | Right renal artery | 4 mm | 65° | 5 mm | 1 mm | 4 |
Patient 18 | FEVAR | TEVAR | Left renal artery | 7 mm | 40° | 3 mm | 1 mm | 2 |
Patient 19 | EVAR | RELINING EVAR | Left renal artery | 5 mm | 70° | 7 mm | 2.5 mm | 4.5 |
Patient 20 | FEVAR | FEVAR | Right renal artery | 10 mm | 55° | 3 mm | 1 mm | 2 |
Bone Fusion | Redo Fusion | ||
---|---|---|---|
Intra-observer measurements | Median distance | 0.85 mm | 0.81 mm |
Standard error | 0.15 | 0.1 | |
p-value | 0.2048 | ||
Interobserver measurement | Median distance | 0.71 mm | 0.65 mm |
Standard error | 0.2 | 0.05 | |
p-value | 0.7952 |
L1 | L2 | p-Value | IC | |
---|---|---|---|---|
Median distance | 5.350 mm | 1.350 mm | <0.0001 | 3.284–4.716 |
SD | 1.694 | 0.658 | ||
SEM standard error | 0.379 | 0.147 | ||
Number of patients | 20 | 20 |
Distance between Fusion Redo Marker and Target Vessel | L1 | L2 | p-Value | IC | |
---|---|---|---|---|---|
>3 cm | Median distance | 5.286 mm | 1.600 mm | 0.0008 | 2.231–5.141 |
SD | 1.799 | 0.635 | |||
SEM | 0.680 | 0.240 | |||
N. of patients | 7 | 7 | |||
≤3 cm | Median distance | 5.385 mm | 1.215 mm | <0.0001 | 3.237–5 |
SD | 1.710 | 0.654 | |||
SEM | 0.474 | 0.181 | |||
N. of patients | 13 | 13 |
Angle | L1 | L2 | p-Value | IC | |
---|---|---|---|---|---|
<45° | Median distance | 4.400 mm | 1.400 mm | 0.0100 | 1.190–4.810 |
SD | 1.342 | 0.418 | |||
SEM | 0.600 | 0.187 | |||
N. of patients | 5 | 5 | |||
≥45° | Median distance | 5.800 mm | 1.333 mm | <0.0001 | 3.705–5.229 |
SD | 1.568 | 0.733 | |||
SEM | 0.405 | 0.189 | |||
N. of patients | 15 | 15 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Minelli, F.; Sica, S.; Salman, F.; Donato, F.; Dvir, M.; Tshomba, Y.; Tinelli, G. “Redo” 2D–3D Fusion Technique during Endovascular Redo Aortic Repair. Diagnostics 2023, 13, 635. https://doi.org/10.3390/diagnostics13040635
Minelli F, Sica S, Salman F, Donato F, Dvir M, Tshomba Y, Tinelli G. “Redo” 2D–3D Fusion Technique during Endovascular Redo Aortic Repair. Diagnostics. 2023; 13(4):635. https://doi.org/10.3390/diagnostics13040635
Chicago/Turabian StyleMinelli, Fabrizio, Simona Sica, Fadia Salman, Federica Donato, May Dvir, Yamume Tshomba, and Giovanni Tinelli. 2023. "“Redo” 2D–3D Fusion Technique during Endovascular Redo Aortic Repair" Diagnostics 13, no. 4: 635. https://doi.org/10.3390/diagnostics13040635
APA StyleMinelli, F., Sica, S., Salman, F., Donato, F., Dvir, M., Tshomba, Y., & Tinelli, G. (2023). “Redo” 2D–3D Fusion Technique during Endovascular Redo Aortic Repair. Diagnostics, 13(4), 635. https://doi.org/10.3390/diagnostics13040635