N-acetyl-aspartate and Myo-inositol as Markers of White Matter Microstructural Organization in Mild Cognitive Impairment: Evidence from a DTI-1H-MRS Pilot Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Brain Imaging and 1H-MRS
2.3. Diffusion Tensor Images (DTI) and Tractography
2.4. Statistical Analysis
3. Results
3.1. Group Differences in WM Structural Properties
3.2. Associations between WM Structural Properties and Global Cognition (MoCA) Scores
3.3. Associations between WM Structural Properties and Neurometabolite Ratios
4. Discussion
4.1. Neurochemical Characteristics of Hippocampus and Cortex in Healthy Aging and MCI
4.2. Neurochemical Predictors of WM Microstructural Integrity
4.3. Associations between WM Structural Properties and MoCA Scores in Healthy Aging and MCI
4.4. Study Limitations
4.5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Eshkoor, S.A.; Mun, C.Y.; Ng, C.K.; Hamid, T.A. Mild cognitive impairment and its management in older people. Clin. Interv. Aging 2015, 10, 687–693. [Google Scholar] [CrossRef]
- Petersen, R.C.; Parisi, J.E.; Dickson, D.W.; Johnson, K.A.; Knopman, D.S.; Boeve, B.F.; Jicha, G.A.; Ivnik, R.J.; Smith, G.E.; Tangalos, E.G.; et al. Neuropathologic Features of Amnestic Mild Cognitive Impairment. Arch. Neurol. 2006, 63, 665–672. [Google Scholar] [CrossRef]
- Davatzikos, C.; Xu, F.; An, Y.; Fan, Y.; Resnick, S.M. Longitudinal progression of Alzheimer’s-like patterns of atrophy in normal older adults: The SPARE-AD index. Brain 2009, 132, 2026–2035. [Google Scholar] [CrossRef]
- Driscoll, I.; Davatzikos, C.; An, Y.; Wu, X.; Shen, D.; Kraut, M.; Resnick, S.M. Longitudinal pattern of regional brain volume change differentiates normal aging from MCI. Neurology 2009, 72, 1906–1913. [Google Scholar] [CrossRef]
- van de Pol, L.A.; van der Flier, W.M.; Korf, E.S.C.; Fox, N.C.; Barkhof, F.; Scheltens, P. Baseline predictors of rates of hippo-campal atrophy in mild cognitive impairment. Neurology 2007, 69, 1491–1497. [Google Scholar] [CrossRef]
- Caballero, M.A.; Brendel, M.; Delker, A.; Ren, J.; Rominger, A.; Bartenstein, P.; Dichgans, M.; Weiner, M.W.; Ewers, M. Mapping 3-year changes in gray matter and metabolism in Aβ-positive nondemented subjects. Neurobiol. Aging 2015, 36, 2913–2924. [Google Scholar] [CrossRef]
- Régy, M.; Dugravot, A.; Sabia, S.; Fayosse, A.; Mangin, J.; Chupin, M.; Fischer, C.; Bouteloup, V.; Dufouil, C.; Chêne, G.; et al. Association of APOE ε4 with cerebral gray mat-ter volumes in non-demented older adults: The MEMENTO cohort study. Neuroimage 2022, 250, 118966. [Google Scholar] [CrossRef]
- Vonk, J.M.J.; Bouteloup, V.; Mangin, J.; Dubois, B.; Blanc, F.; Gabelle, A.; Ceccaldi, M.; Annweiler, C.; Krolak-Salmon, P.; Belin, C.; et al. Semantic loss marks early Alzheimer’s dis-ease-related neurodegeneration in older adults without dementia. Alzheimers Dement. 2020, 12, e12066. [Google Scholar]
- Moore, E.E.; Liu, D.; Pechman, K.R.; Acosta, L.M.Y.; Bell, S.P.; Davis, L.T.; Blennow, K.; Zetterberg, H.; Landman, B.A.; Schrag, M.S.; et al. Mild Cognitive Impairment Staging Yields Genetic Susceptibility, Biomarker, and Neuroimaging Differences. Front. Aging Neurosci. 2020, 12, 139. [Google Scholar] [CrossRef]
- Atiya, M.; Hyman, B.T.; Albert, M.S.; Killiany, R. Structural Magnetic Resonance Imaging in Established and Prodromal Alzheimer Disease: A Review. Alzheimer Dis. Assoc. Disord. 2003, 17, 177–195. [Google Scholar] [CrossRef]
- Anderson, V.C.; Litvack, Z.N.; Kaye, J.A. Magnetic Resonance Approaches to Brain Aging and Alzheimer Disease-associated Neuropathology. Top. Magn. Reson. Imaging 2005, 16, 439–452. [Google Scholar] [CrossRef]
- Apostolova, L.G.; Thompson, P.M. Mapping progressive brain structural changes in early Alzheimer’s disease and mild cognitive impairment. Neuropsychologia 2008, 46, 1597–1612. [Google Scholar] [CrossRef]
- Chiang, G.C.; Insel, P.S.; Tosun, D.; Schuff, N.; Truran-Sacrey, D.; Raptentsetsang, S.; Jack, C.R.; Weiner, M.W.; Alzheimer's Disease Neuroimaging Initiative. Identifying Cognitively Healthy Elderly Individuals with Subsequent Memory Decline by Using Automated MR Temporoparietal Volumes. Radiology 2011, 259, 844–851. [Google Scholar] [CrossRef]
- Leung, K.K.; Bartlett, J.W.; Barnes, J.; Manning, E.N.; Ourselin, S.; Fox, N.C.; Alzheimer's Disease Neuroimaging Initiative. Cerebral atrophy in mild cognitive impairment and Alzheimer disease: Rates and acceleration. Neurology 2013, 80, 648–654. [Google Scholar] [CrossRef]
- Thillainadesan, S.; Wen, W.; Zhuang, L.; Crawford, J.; Kochan, N.; Reppermund, S.; Slavin, M.; Trollor, J.; Brodaty, H.; Sachdev, P. Changes in mild cognitive im-pairment and its subtypes as seen on diffusion tensor imaging. Int. Psychogeriatr. 2012, 24, 1483–1493. [Google Scholar]
- Levin, O.; Vints, W.A.J.; Ziv, G.; Katkutė, G.; Kušleikienė, S.; Valatkevičienė, K.; Sheoran, S.; Drozdova-Statkevičienė, M.; Gleiznienė, R.; Pääsuke, M.; et al. Neurometabolic correlates of postur-ography in normal aging and older adults with mild cognitive impairment: Evidence from a 1H-MRS study. Neuroimage Clin. 2022, 37, 103304. [Google Scholar] [CrossRef]
- Maudsley, A.A.; Govind, V.; Levin, B.; Saigal, G.; Harris, L.T.; Sheriff, S. Distributions of Magnetic Resonance Diffusion and Spectroscopy Measures with Traumatic Brain Injury. J. Neurotrauma 2015, 32, 1056–1063. [Google Scholar] [CrossRef]
- Cleeland, C.; Pipingas, A.; Scholey, A.; White, D. Neurochemical changes in the aging brain: A systematic review. Neurosci. Biobehav. Rev. 2019, 98, 306–319. [Google Scholar] [CrossRef]
- Ding, X.; Maudsley, A.A.; Sabati, M.; Sheriff, S.; Schmitz, B.; Schütze, M.; Bronzlik, P.; Kahl, K.G.; Lanfermann, H. Physiological neuronal decline in healthy ag-ing human brain—An in vivo study with MRI and short echo-time whole-brain 1H MR spectroscopic imaging. Neuroimage 2016, 137, 45–51. [Google Scholar] [CrossRef]
- Gao, F.; Edden, R.A.; Li, M.; Puts, N.A.; Wang, G.; Liu, C.; Zhao, B.; Wang, H.; Bai, X.; Zhao, C.; et al. Edited magnetic resonance spectroscopy detects an age-related decline in brain GABA levels. NeuroImage 2013, 78, 75–82. [Google Scholar] [CrossRef]
- Porges, E.C.; Woods, A.J.; Edden, R.A.E.; Puts, N.A.J.; Harris, A.D.; Chen, H.; Garcia, A.G.; Seider, T.R.; Lamb, D.G.; Williamson, J.B.; et al. Frontal Gamma-Aminobutyric Acid Con-centrations Are Associated with Cognitive Performance in Older Adults. Biol. Psychiatry Cogn. Neurosci. Neuroimaging 2017, 2, 38–44. [Google Scholar]
- Reyngoudt, H.; Claeys, T.; Vlerick, L.; Verleden, S.; Acou, M.; Deblaere, K.; De Deene, Y.; Audenaert, K.; Goethals, I.; Achten, E. Age-related differences in metabolites in the posterior cingulate cortex and hippocampus of normal ageing brain: A 1H-MRS study. Eur. J. Radiol. 2012, 81, e223–e231. [Google Scholar] [CrossRef]
- Wijtenburg, S.A.; McGuire, S.A.; Rowland, L.M.; Sherman, P.M.; Lancaster, J.L.; Tate, D.F.; Hardies, L.J.; Patel, B.; Glahn, D.C.; Hong, L.E.; et al. Relationship between frac-tional anisotropy of cerebral white matter and metabolite concentrations measured using 1H magnetic resonance spec-troscopy in healthy adults. Neuroimage 2013, 66, 161–168. [Google Scholar]
- Zahr, N.M.; Mayer, D.; Rohlfing, T.; Chanraud, S.; Gu, M.; Sullivan, E.V.; Pfefferbaum, A. In vivo glutamate measured with magnetic resonance spectroscopy: Behavioral correlates in aging. Neurobiol. Aging 2013, 34, 1265–1276. [Google Scholar] [CrossRef] [Green Version]
- Ben Salem, D.; Walker, P.M.; Aho, S.; Tavernier, B.; Giroud, M.; Tzourio, C.; Ricolfi, F.; Brunotte, F. Brain flexibility and balance and gait per-formances mark morphological and metabolic abnormalities in the elderly. J. Clin. Neurosci. 2008, 15, 1360–1365. [Google Scholar]
- Kantarci, K.; Smith, G.E.; Ivnik, R.J.; Petersen, R.C.; Boeve, B.F.; Knopman, D.S.; Tangalos, E.G.; Jack, C.R., Jr. 1H magnetic resonance spectroscopy, cognitive function, and apolipoprotein E genotype in normal aging, mild cognitive impairment and Alzheimer’s disease. J. Int. Neuropsychol. Soc. 2002, 8, 934–942. [Google Scholar] [CrossRef]
- Kantarci, K.; Weigand, S.D.; Petersen, R.C.; Boeve, B.F.; Knopman, D.S.; Gunter, J.; Reyes, D.; Shiung, M.; O’Brien, P.C.; Smith, G.E.; et al. Longitudinal 1H MRS changes in mild cognitive impairment and Alzheimer’s disease. Neurobiol. Aging 2007, 28, 1330–1339. [Google Scholar] [CrossRef]
- Lyros, E.; Ragoschke-Schumm, A.; Kostopoulos, P.; Sehr, A.; Backens, M.; Kalampokini, S.; Decker, Y.; Lesmeister, M.; Liu, Y.; Reith, W.; et al. Normal brain aging and Alzheimer’s disease are associated with lower cerebral pH: An in vivo histidine 1H-MR spectroscopy study. Neurobiol. Aging 2019, 87, 60–69. [Google Scholar] [CrossRef]
- Mitolo, M.; Stanzani-Maserati, M.; Capellari, S.; Testa, C.; Rucci, P.; Poda, R.; Oppi, F.; Gallassi, R.; Luisa Sambati, L.; Rizzo, G.; et al. Predicting conversion from mild cogni-tive impairment to Alzheimer’s disease using brain 1H-MRS and volumetric changes: A two- year retrospective follow-up study. Neuroimage Clin. 2019, 23, 101843. [Google Scholar]
- Oeltzschner, G.; Wijtenburg, S.A.; Mikkelsen, M.; Edden, R.A.E.; Barker, P.B.; Joo, J.H.; Leoutsakos, J.M.S.; Rowland, L.M.; Workman, C.I.; Smith, G.S. Neurometabolites and associa-tions with cognitive deficits in mild cognitive impairment: A magnetic resonance spectroscopy study at 7 Tesla. Neurobiol. Aging 2019, 73, 211–218. [Google Scholar]
- Olson, B.L.B.; Holshouser, B.A.; Britt, W.; Mueller, C.; Baqai, W.; Patra, S.; Petersen, F.; Kirsch, W.M. Longitudinal Metabolic and Cognitive Changes in Mild Cognitive Impairment Patients. Alzheimer Dis. Assoc. Disord. 2008, 22, 269–277. [Google Scholar] [CrossRef]
- Zanigni, S.; Testa, C.; Calandra-Buonaura, G.; Sambati, L.; Guarino, M.; Gabellini, A.; Evangelisti, S.; Cortelli, P.; Lodi, R.; Tonon, C. The contribution of cerebellar proton magnetic resonance spectroscopy in the differential diagnosis among parkinsonian syndromes. Park. Relat. Disord. 2015, 21, 929–937. [Google Scholar] [CrossRef]
- Zhao, L.; Teng, J.; Mai, W.; Su, J.; Yu, B.; Nong, X.; Li, C.; Wei, Y.; Duan, G.; Deng, X.; et al. A Pilot Study on the Cutoff Value of Related Brain Metabolite in Chinese Elderly Patients With Mild Cognitive Impairment Using MRS. Front. Aging Neurosci. 2021, 13, 617611. [Google Scholar] [CrossRef]
- Liu, H.; Zhang, D.; Lin, H.; Zhang, Q.; Zheng, L.; Zheng, Y.; Yin, X.; Li, Z.; Liang, S.; Huang, S. Meta-Analysis of Neurochemical Changes Estimated via Magnetic Resonance Spectroscopy in Mild Cognitive Impairment and Alzheimer’s Disease. Front. Aging Neurosci. 2021, 13. [Google Scholar] [CrossRef]
- Kantarci, K. Proton MRS in mild cognitive impairment. J. Magn. Reason. Imaging 2013, 37, 770–777. [Google Scholar]
- Waragai, M.; Moriya, M.; Nojo, T. Decreased N-Acetyl Aspartate/Myo-Inositol Ratio in the Posterior Cingulate Cortex Shown by Magnetic Resonance Spectroscopy May Be One of the Risk Markers of Preclinical Alzheimer’s Disease: A 7-Year Follow-Up Study. J. Alzheimer’s Dis. 2017, 60, 1411–1427. [Google Scholar] [CrossRef]
- Wang, H.; Tan, L.; Wang, H.; Liu, Y.; Yin, R.; Wang, W.; Chang, X.-L.; Jiang, T.; Yu, J.-T. Magnetic Resonance Spectroscopy in Alzheimer’s Disease: Sys-tematic Review and Meta-Analysis. J. Alzheimers Dis. 2015, 46, 1049–1070. [Google Scholar] [CrossRef]
- Grossman, E.J.; Kirov, I.I.; Gonen, O.; Novikov, D.S.; Davitz, M.S.; Lui, Y.W.; Grossman, R.I.; Inglese, M.; Fieremans, E. N-acetyl-aspartate levels correlate with intra-axonal compartment parameters from diffusion MRI. Neuroimage 2015, 118, 334–343. [Google Scholar] [CrossRef] [Green Version]
- Jones, R.S.; Waldman, A.D. 1H-MRS evaluation of metabolism in Alzheimer’s disease and vascular dementia. Neurol. Res. 2004, 26, 488–495. [Google Scholar] [CrossRef]
- Levin, O.; Weerasekera, A.; King, B.R.; Heise, K.F.; Sima, D.M.; Chalavi, S.; Maes, C.; Peeters, R.; Sunaert, S.; Cuypers, K.; et al. Sensorimotor cortex neurometabolite lev-els as correlate of motor performance in normal aging: Evidence from a 1H-MRS study. Neuroimage 2019, 202, 116050. [Google Scholar] [CrossRef]
- Lind, A.; Boraxbekk, C.; Petersen, E.T.; Paulson, O.B.; Siebner, H.R.; Marsman, A. Regional Myo-Inositol, Creatine, and Cho-line Levels Are Higher at Older Age and Scale Negatively with Visuospatial Working Memory: A Cross-Sectional Proton MR Spectroscopy Study at 7 Tesla on Normal Cognitive Ageing. J. Neurosci. 2020, 40, 8149–8159. [Google Scholar] [CrossRef]
- Watson, N.L.; Rosano, C.; Boudreau, R.; Simonsick, E.M.; Ferrucci, L.; Sutton-Tyrrell, K.; Hardy, S.E.; Atkinson, H.H.; Yaffe, K.; Satterfield, S.; et al. Executive Function, Memory, and Gait Speed Decline in Well-Functioning Older Adults. J. Gerontol. Ser. A 2010, 65, 1093–1100. [Google Scholar] [CrossRef]
- Vints, W.A.J.; Kušleikiene, S.; Sheoran, S.; Šarkinaite, M.; Valatkevičiene, K.; Gleizniene, R.; Kvedaras, M.; Pukenas, K.; Himmelreich, U.; Cesnaitiene, V.J.; et al. Inflammatory Blood Bi-omarker Kynurenine Is Linked with Elevated Neuroinflammation and Neurodegeneration in Older Adults: Evidence From Two 1H-MRS Post-Processing Analysis Methods. Front. Psychiatry 2022, 13, 859772. [Google Scholar] [CrossRef]
- Lin, A.; Andronesi, O.; Bogner, W.; Choi, I.; Coello, E.; Cudalbu, C.; Juchem, C.; Kemp, G.J.; Kreis, R.; Krššák, M.; et al. Minimum Reporting Standards for in vivo Mag-netic Resonance Spectroscopy (MRSinMRS): Experts’ consensus recommendations. NMR Biomed. 2021, 34, e4484. [Google Scholar] [CrossRef]
- Mori, S.; Kaufmann, W.E.; Davatzikos, C.; Stieltjes, B.; Amodei, L.; Fredericksen, K.; Pearlson, G.D.; Melhem, E.R.; Solaiyappan, M.; Raymond, G.V.; et al. Imaging cortical association tracts in the human brain using diffusion-tensor-based axonal tracking. Magn. Reson. Med. 2002, 47, 215–223. [Google Scholar] [CrossRef]
- Lazar, M.; Weinstein, D.M.; Tsuruda, J.S.; Hasan, K.M.; Arfanakis, K.; Meyerand, M.E.; Badie, B.; Rowley, H.A.; Haughton, V.; Field, A.; et al. White matter tractography using diffusion tensor deflection. Hum. Brain Mapp. 2003, 18, 306–321. [Google Scholar] [CrossRef]
- Hong, Y.J.; Yoon, B.; Shim, Y.S.; Cho, A.H.; Lim, S.C.; Ahn, K.J.; Yang, D.W. Differences in microstructural alterations of the hip-pocampus in Alzheimer disease and idiopathic normal pressure hydrocephalus: A diffusion tensor imaging study. AJNR Am. J. Neuroradiol. 2010, 31, 1867–1872. [Google Scholar]
- Benjamini, Y.; Hochberg, Y. Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing. J. R. Stat. Soc. Ser. B 1995, 57, 289–300. [Google Scholar] [CrossRef]
- Targosz-Gajniak, M.G.; Siuda, J.S.; Wicher, M.M.; Banasik, T.J.; Bujak, M.A.; Augusciak-Duma, A.M.; Opala, G. Magnetic reso-nance spectroscopy as a predictor of conversion of mild cognitive impairment to dementia. J. Neurol. Sci. 2013, 335, 58–63. [Google Scholar] [CrossRef]
- Lind, A.; Boraxbekk, C.; Petersen, E.T.; Paulson, O.B.; Andersen, O.; Siebner, H.R.; Marsman, A. Do glia provide the link between low-grade systemic inflammation and normal cognitive ageing? A 1H magnetic resonance spectroscopy study at 7 tesla. J. Neurochem. 2021, 159, 185–196. [Google Scholar] [CrossRef]
- Chiappelli, J.; Hong, L.E.; Wijtenburg, S.A.; Du, X.; Gaston, F.; Kochunov, P.; Rowland, L.M. Alterations in frontal white matter neu-rochemistry and microstructure in schizophrenia: Implications for neuroinflammation. Transl. Psychiatry 2015, 5, e548. [Google Scholar] [CrossRef]
- Angelova, D.M.; Brown, D.R. Microglia and the aging brain: Are senescent microglia the key to neurodegeneration? J. Neu-rochem. 2019, 151, 676–688. [Google Scholar] [CrossRef]
- Triviño, J.J.; von Bernhardi, R. The effect of aged microglia on synaptic impairment and its relevance in neurodegenerative diseases. Neurochem. Int. 2021, 144, 104982. [Google Scholar]
- Medina, D.; Detoledo-Morrell, L.; Urresta, F.; Gabrieli, J.D.; Moseley, M.; Fleischman, D.; Bennett, D.A.; Leurgans, S.; Turner, D.A.; Stebbins, G.T. White matter changes in mild cognitive impairment and AD: A diffusion tensor imaging study. Neurobiol. Aging 2006, 27, 663–672. [Google Scholar] [CrossRef]
- Zavaliangos-Petropulu, A.; Nir, T.M.; Thomopoulos, S.I.; Reid, R.I.; Bernstein, M.A.; Borowski, B.; Jack, C.R., Jr.; Weiner, M.W.; Jahanshad, N.; Thompson, P.M. Diffusion MRI Indi-ces and Their Relation to Cognitive Impairment in Brain Aging: The Updated Multi-protocol Approach in ADNI3. Front. Neuroinform. 2019, 13, 2. [Google Scholar] [CrossRef]
- Ohlhauser, L.; Parker, A.F.; Smart, C.M.; Gawryluk, J.R. White matter and its relationship with cognition in subjective cog-nitive decline. Alzheimers Dement. 2018, 11, 28–35. [Google Scholar] [CrossRef]
- Raghavan, S.; Przybelski, S.A.; Reid, R.I.; Graff-Radford, J.; Lesnick, T.G.; Zuk, S.M.; Knopman, D.S.; Machulda, M.M.; Mielke, M.M.; Petersen, R.C.; et al. Reduced fractional anisotropy of genu of corpus callosum as a predictor of longitudinal cognition in MCI. Neurobiol. Aging 2020, 96, 176–183. [Google Scholar]
- Kantarci, K. Fractional anisotropy of the fornix and hippocampal atrophy in Alzheimer’s disease. Front. Aging Neurosci. 2014, 6, 316. [Google Scholar] [CrossRef]
- Fritz, M.S.; MacKinnon, D.P. Required Sample Size to Detect the Mediated Effect. Psychol. Sci. 2007, 18, 233–239. [Google Scholar] [CrossRef]
- Sacco, S.; Caverzasi, E.; Papinutto, N.; Cordano, C.; Bischof, A.; Gundel, T.; Cheng, S.; Asteggiano, C.; Kirkish, G.; Mallott, J.; et al. Neurite Orientation Dispersion and Density Imaging for Assessing Acute Inflammation and Lesion Evolution in MS. Am. J. Neuroradiol. 2020, 41, 2219–2226. [Google Scholar] [CrossRef]
- Zhylka, A.; Sollmann, N.; Kofler, F.; Radwan, A.; De Luca, A.; Gempt, J.; Wiestler, B.; Menze, B.; Krieg, S.M.; Zimmer, C.; et al. Tracking the Corticospinal Tract in Patients With High-Grade Glioma: Clinical Evaluation of Multi-Level Fiber Tracking and Comparison to Conventional Determinis-tic Approaches. Front. Oncol. 2021, 11, 761169. [Google Scholar]
Gender | nHC | nMCI | HC | MCI | p-Value (t-Test) 1 | |
---|---|---|---|---|---|---|
Age (years) | Male | 15 | 10 | 68.5 (4.7) | 76.9 (3.2) | <0.001 |
Female | 22 | 12 | 66.6 (5.2) | 70.0 (7.5) | 0.082 | |
MoCA | Male | 27.0 (1.9) | 22.6 (1.8) | <0.001 | ||
Female | 27.0 (1.7) | 22.5 (2.2) | <0.001 |
ROI | Anatomical Region | FA in ROI | Mean HC | Mean MCI | Test | Test Statistic Value | p-Value |
---|---|---|---|---|---|---|---|
ROI 1 | All diffusion tracts | FA 1 | 0.476 | 0.467 | t-test | 2.789 | 0.007 * |
ROI 2 | Splenium of corpus callosum | FA 2 | 0.554 | 0.549 | M-W | 356.0 | 0.846 |
ROI 3 | Right internal capsule | FA 3 | 0.438 | 0.432 | M-W | 302.5 | 0.271 |
ROI 4 | Right external capsule | FA 4 | 0.414 | 0.408 | t-test | 0.834 | 0.408 |
ROI 5 | Left internal capsule | FA 5 | 0.433 | 0.438 | M-W | 304.5 | 0.286 |
ROI 6 | Left external capsule | FA 6 | 0.436 | 0.414 | t-test | 3.058 | 0.003 * |
ROI 7 | Right corona radiata anterior | FA 7 | 0.474 | 0.461 | t-test | 1.542 | 0.129 |
ROI 8 | Left corona radiata anterior | FA 8 | 0.471 | 0.456 | t-test | 2.024 | 0.048 * |
ROI 9 | Right corona radiata posterior | FA 9 | 0.480 | 0.469 | t-test | 1.229 | 0.224 |
ROI 10 | Left corona radiata posterior | FA 10 | 0.479 | 0.468 | t-test | 0.983 | 0.330 |
ROI 11 | Right corona radiata superior | FA 11 | 0.477 | 0.466 | M-W | 273.000 | 0.110 |
ROI 12 | Left corona radiata superior | FA 12 | 0.487 | 0.461 | t-test | 2.207 | 0.032 * |
ROI 13 | Right cingulate gyri post | FA 13 | 0.446 | 0.432 | t-test | 1.55 | 0.131 |
ROI 14 | Left cingulate gyri post | FA 14 | 0.454 | 0.441 | t-test | 1.393 | 0.169 |
ROI 15 | Right hippocampal cingulate | FA 15 | 0.428 | 0.417 | t-test | 1.321 | 0.192 |
ROI 16 | Left hippocampal cingulate | FA 16 | 0.425 | 0.419 | t-test | 0.637 | 0.527 |
ROI 17 | Right sensorimotor cortex | FA 17 | 0.448 | 0.440 | t-test | 0.925 | 0.359 |
ROI 18 | Left sensorimotor cortex | FA 18 | 0.430 | 0.429 | t-test | 0.086 | 0.931 |
ROI 19 | Right dorsolateral prefrontal cortex | FA 19 | 0.408 | 0.367 | t-test | 2.455 | 0.017 * |
ROI 20 | Left dorsolateral prefrontal cortex | FA 20 | 0.398 | 0.377 | t-test | 2.103 | 0.040 * |
ROI 21 | Right temporal tapetum | FA 21 | 0.442 | 0.429 | t-test | 1.644 | 0.106 |
ROI 22 | Right temporal tapetum | FA 22 | 0.450 | 0.433 | t-test | 2.151 | 0.036 * |
ROI | Anatomical Region | NOT in ROI | Mean HC | Mean MCI | Test | Test Statistic Value | p-Value |
---|---|---|---|---|---|---|---|
ROI 1 | All diffusion tracts | NOT 1 | 34943.8 | 31903.8 | t-test | 1.963 | 0.055 |
ROI 2 | Splenium of corpus callosum | NOT 2 | 777.343 | 435.952 | M-W | 294.000 | 0.214 |
ROI 3 | Right internal capsule | NOT 3 | 254.571 | 216.143 | M-W | 303.000 | 0.275 |
ROI 4 | Right external capsule | NOT 4 | 332.886 | 194.952 | M-W | 354.000 | 0.819 |
ROI 5 | Left internal capsule | NOT 5 | 363.171 | 238.238 | M-W | 284.500 | 0.160 |
ROI 6 | Left external capsule | NOT 6 | 175.371 | 165.667 | t-test | 0.437 | 0.664 |
ROI 7 | Right corona radiata anterior | NOT 7 | 319.400 | 278.619 | M-W | 326.000 | 0.482 |
ROI 8 | Left corona radiata anterior | NOT 8 | 342.114 | 248.762 | t-test | 2.481 | 0.016 * |
ROI 9 | Right corona radiata posterior | NOT 9 | 397.314 | 430.762 | M-W | 358.500 | 0.879 |
ROI 10 | Left corona radiata posterior | NOT 10 | 407.286 | 425.381 | t-test | −0.381 | 0.705 |
ROI 11 | Right corona radiata superior | NOT 11 | 266.857 | 219.667 | M-W | 299.000 | 0.246 |
ROI 12 | Left corona radiata superior | NOT 12 | 265.857 | 193.190 | t-test | 2.576 | 0.013 * |
ROI 13 | Right cingulate gyri post | NOT 13 | 78.171 | 57.190 | M-W | 267.000 | 0.089 |
ROI 14 | Left cingulate gyri post | NOT 14 | 118.257 | 79.667 | M-W | 274.000 | 0.113 |
ROI 15 | Right hippocampal cingulate | NOT 15 | 94.914 | 120.952 | M-W | 316.000 | 0.383 |
ROI 16 | Left hippocampal cingulate | NOT 16 | 73.714 | 61.600 | M-W | 295.500 | 0.340 |
ROI 17 | Right sensorimotor cortex | NOT 17 | 119.371 | 129.143 | M-V | 311.000 | 0.339 |
ROI 18 | Left sensorimotor cortex | NOT 18 | 103.429 | 116.286 | M-W | 318.000 | 0.402 |
ROI 19 | Right dorsolateral prefrontal cortex | NOT 19 | 62.971 | 65.714 | M-W | 357.000 | 0.859 |
ROI 20 | Left dorsolateral prefrontal cortex | NOT 20 | 72.200 | 54.238 | M-W | 317.500 | 0.397 |
ROI 21 | Right temporal tapetum | NOT 21 | 379.057 | 298.810 | t-test | 1.859 | 0.068 |
ROI 22 | Right temporal tapetum | NOT 22 | 600.600 | 247.667 | t-test | 1.136 | 0.152 |
Population | |||
---|---|---|---|
MoCA | FA and NOT in ROI | r-Values | p-Values |
FA | |||
Left external capsule fiber tracts (FA 6) | 0.361 | 0.007 | |
Left temporal tapetum (FA 22) | 0.342 | 0.011 | |
NOT | |||
Whole-brain number of fiber tracts (NOT 1) | 0.375 | 0.005 | |
Left temporal tapetum (NOT 21) | 0.432 | <0.001 | |
Right temporal tapetum (NOT 22) | 0.448 | <0.001 |
FA in ROI | nHC | nMCI | rSHC | rSMCI | |z| | p-Value | |
---|---|---|---|---|---|---|---|
FA 16 | Left hippocampal cingulate | 34 | 20 | 0.373 * | −0.280 | 2.252 | 0.012 |
FA 17 | Right sensorimotor cortex | 34 | 21 | −0.044 | −0.522 * | 1.806 | 0.035 |
FA 22 | Left temporal tapetum | 34 | 21 | 0.056 | 0.414 † | 1.297 | 0.097 |
NOT in ROI | nHC | nMCI | rSHC | rSMCI | |z| | p-Value | |
---|---|---|---|---|---|---|---|
NOT 1 | All diffusion tracts | 34 | 21 | 0.479 ** | −0.181 | 2.37 | 0.018 |
NOT 16 | Left hippocampal cingulate | 34 | 20 | −0.121 | 0.464 * | 2.07 | 0.038 |
NOT 21 | Right temporal tapetum | 34 | 21 | 0.491 ** | 0.408 † | <1 |
VOI MRS | FA and NOT in ROI | rStotal | p-Values |
---|---|---|---|
FA | |||
left HPC tCho/tCr | right SM1 (FA 17) | 0.402 | 0.004 |
left HPC mIns/tCr | left temporal tapetum (FA 22) | −0.427 | 0.002 |
left HPC tNAA/mIns | right posterior corona radiata (FA 9) | 0.372 | 0.008 |
right DLPFC tNAA/tCr | left external capsule (FA 6) | 0.385 | 0.009 |
NOT | |||
left HPC Glx/tCr | left anterior corona radiata (NOT 8) | −0.500 | <0.001 |
dPCC Glx/tCr | DLPFC (NOT 20) | 0.410 | 0.002 |
left HPC mIns/tCr | superior right corona radiata (NOT 11) | −0.391 | 0.005 |
left MTC tNAA/tCr | left temporal tapetum (NOT 22) | 0.385 | 0.009 |
VOI MRS | FA and NOT in ROI | nHC | nMCI | rSHC | rSMCI | z | p |
---|---|---|---|---|---|---|---|
FA | |||||||
dPCC tNAA/tCr | Right temporal tapetum (FA 21) | 34 | 20 | −0.427 | 0.471 | −3.204 | 0.0014 |
dPCC mIns/tCr | Right cingulate gyri post (FA 13) | 34 | 20 | −0.154 | 0.594 | −2.780 | 0.0054 |
left HPC tNAA/mIns | Right corona radiata posterior (FA 9) | 32 | 18 | 0.024 | 0.705 | −2.682 | 0.0073 |
NOT | |||||||
dPCC tNAA/tCr | Right corona radiata posterior (NOT 9) | 34 | 20 | −0.404 | 0.465 | −3.087 | 0.0020 |
dPCC Glx/tCr | Right internal capsule (NOT 3) | 34 | 20 | −0.152 | 0.577 | −2.686 | 0.0072 |
left HPC tNAA/tCr | Left external capsule (NOT 6) | 32 | 18 | −0.327 | 0.518 | −2.869 | 0.0041 |
left HPC tNAA/tCr | Right dlPFC (NOT 19) | 32 | 18 | −0.227 | 0.746 | −3.755 | 0.0002 |
left HPC mIns/tCr | Left corona radiata posterior (NOT 10) | 32 | 18 | 0.005 | 0.785 | −3.314 | 0.0009 |
left SM1 tNAA/mIns | Right external capsule (NOT 4) | 35 | 21 | −0.226 | 0.623 | −3.261 | 0.0011 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Valatkevičienė, K.; Levin, O.; Šarkinaitė, M.; Vints, W.A.J.; Kunickaitė, R.; Danylė, G.; Kušleikienė, S.; Sheoran, S.; Česnaitienė, V.J.; Masiulis, N.; et al. N-acetyl-aspartate and Myo-inositol as Markers of White Matter Microstructural Organization in Mild Cognitive Impairment: Evidence from a DTI-1H-MRS Pilot Study. Diagnostics 2023, 13, 654. https://doi.org/10.3390/diagnostics13040654
Valatkevičienė K, Levin O, Šarkinaitė M, Vints WAJ, Kunickaitė R, Danylė G, Kušleikienė S, Sheoran S, Česnaitienė VJ, Masiulis N, et al. N-acetyl-aspartate and Myo-inositol as Markers of White Matter Microstructural Organization in Mild Cognitive Impairment: Evidence from a DTI-1H-MRS Pilot Study. Diagnostics. 2023; 13(4):654. https://doi.org/10.3390/diagnostics13040654
Chicago/Turabian StyleValatkevičienė, Kristina, Oron Levin, Milda Šarkinaitė, Wouter A. J. Vints, Rimantė Kunickaitė, Greta Danylė, Simona Kušleikienė, Samrat Sheoran, Vida J. Česnaitienė, Nerijus Masiulis, and et al. 2023. "N-acetyl-aspartate and Myo-inositol as Markers of White Matter Microstructural Organization in Mild Cognitive Impairment: Evidence from a DTI-1H-MRS Pilot Study" Diagnostics 13, no. 4: 654. https://doi.org/10.3390/diagnostics13040654
APA StyleValatkevičienė, K., Levin, O., Šarkinaitė, M., Vints, W. A. J., Kunickaitė, R., Danylė, G., Kušleikienė, S., Sheoran, S., Česnaitienė, V. J., Masiulis, N., Himmelreich, U., & Gleiznienė, R. (2023). N-acetyl-aspartate and Myo-inositol as Markers of White Matter Microstructural Organization in Mild Cognitive Impairment: Evidence from a DTI-1H-MRS Pilot Study. Diagnostics, 13(4), 654. https://doi.org/10.3390/diagnostics13040654