Molecular Re-Diagnosis with Whole-Exome Sequencing Increases the Diagnostic Yield in Patients with Non-Syndromic Retinitis Pigmentosa
Abstract
:1. Introduction
2. Materials and Methods
2.1. Clinical Examination
2.2. Molecular Analysis
2.2.1. Targeted Next-Generation Sequencing
2.2.2. Whole-Exome Sequencing
2.2.3. Sanger Sequencing
2.2.4. Quantitative Real-Time Polymerase Chain Reaction (qPCR)
2.2.5. Breakpoint Sequencing
3. Results
3.1. Clinical Features
3.2. Molecular Results
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hartong, D.T.; Berson, E.L.; Dryja, T.P. Retinitis pigmentosa. Lancet 2006, 368, 1795–1809. [Google Scholar] [CrossRef] [PubMed]
- Verbakel, S.K.; van Huet, R.A.C.; Boon, C.J.F.; den Hollander, A.I.; Collin, R.W.J.; Klaver, C.C.W.; Hoyng, C.B.; Roepman, R.; Klevering, B.J. Non-syndromic retinitis pigmentosa. Prog. Retin. Eye Res. 2018, 66, 157–186. [Google Scholar] [CrossRef] [PubMed]
- Hubshman, M.W.; Broekman, S.; Van Wijk, E.; Cremers, F.; Abu-Diab, A.; Khateb, S.; Tzur, S.; Lagovsky, I.; Smirin-Yosef, P.; Sharon, D.; et al. Whole-exome sequencing reveals POC5 as a novel gene associated with autosomal recessive retinitis pigmentosa. Hum. Mol. Genet. 2018, 27, 614–624. [Google Scholar] [CrossRef] [PubMed]
- Richards, S.; Aziz, N.; Bale, S.; Bick, D.; Das, S.; Gastier-Foster, J.; Grody, W.W.; Hegde, M.; Lyon, E.; Spector, E.; et al. Standards and guidelines for the interpretation of sequence variants: A joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet. Med. 2015, 17, 405–424. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.; Wang, K. Genomic variant annotation and prioritization with ANNOVAR and wANNOVAR. Nat. Protoc. 2015, 10, 1556–1566. [Google Scholar] [CrossRef]
- McLaren, W.; Gil, L.; Hunt, S.E.; Riat, H.S.; Ritchie, G.R.S.; Thormann, A.; Flicek, P.; Cunningham, F. The Ensembl Variant Effect Predictor. Genome Biol. 2016, 17, 122. [Google Scholar] [CrossRef]
- Rentzsch, P.; Schubach, M.; Shendure, J.; Kircher, M. CADD-Splice-improving genome-wide variant effect prediction using deep learning-derived splice scores. Genome Med. 2021, 13, 31. [Google Scholar] [CrossRef]
- Smedley, D.; Jacobsen, J.O.B.; Jäger, M.; Köhler, S.; Holtgrewe, M.; Schubach, M.; Siragusa, E.; Zemojtel, T.; Buske, O.J.; Washington, N.L.; et al. Next-generation diagnostics and disease-gene discovery with the Exomiser. Nat. Protoc. 2015, 10, 2004–2015. [Google Scholar] [CrossRef]
- Zhao, M.; Havrilla, J.M.; Fang, L.; Chen, Y.; Peng, J.; Liu, C.; Wu, C.; Sarmady, M.; Botas, P.; Isla, J.; et al. Phen2Gene: Rapid phenotype-driven gene prioritization for rare diseases. NAR Genom. Bioinform. 2020, 2, lqaa032. [Google Scholar] [CrossRef]
- Köhler, S.; Gargano, M.; Matentzoglu, N.; Carmody, L.C.; Lewis-Smith, D.; Vasilevsky, N.A.; Danis, D.; Balagura, G.; Baynam, G.; Brower, A.M.; et al. The Human Phenotype Ontology in 2021. Nucleic Acids Res. 2021, 49, D1207–D1217. [Google Scholar] [CrossRef]
- Sowińska-Seidler, A.; Piwecka, M.; Olech, E.; Socha, M.; Latos-Bielenska, A.; Jamsheer, A. Hyperosmia, ectrodactyly, mild intellectual disability, and other defects in a male patient with an X-linked partial microduplication and overexpression of the KAL1 gene. J. Appl. Genet. 2015, 56, 177–184. [Google Scholar] [CrossRef] [PubMed]
- Dias, M.F.; Joo, K.; Kemp, J.A.; Fialho, S.; Cunha, A.D.S.; Woo, S.J.; Kwon, Y.J. Molecular genetics and emerging therapies for retinitis pigmentosa: Basic research and clinical perspectives. Prog. Retin. Eye Res. 2018, 63, 107–131. [Google Scholar] [CrossRef]
- Pozo, M.G.-D.; Fernández-Suárez, E.; Martín-Sánchez, M.; Bravo-Gil, N.; Méndez-Vidal, C.; la Rúa, E.R.-D.; Borrego, S.; Antiñolo, G. Unmasking Retinitis Pigmentosa complex cases by a whole genome sequencing algorithm based on open-access tools: Hidden recessive inheritance and potential oligogenic variants. J. Transl. Med. 2020, 18, 73. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.-F.; Huang, F.; Wu, K.-C.; Wu, J.; Chen, J.; Pang, C.-P.; Lu, F.; Qu, J.; Jin, Z.-B. Genotype-phenotype correlation and mutation spectrum in a large cohort of patients with inherited retinal dystrophy revealed by next-generation sequencing. Genet. Med. Off. J. Am. Coll. Med. Genet. 2015, 17, 271–278. [Google Scholar] [CrossRef]
- Carss, K.J.; Arno, G.; Erwood, M.; Stephens, J.; Sanchis-Juan, A.; Hull, S.; Megy, K.; Grozeva, D.; Dewhurst, E.; Malka, S.; et al. Comprehensive Rare Variant Analysis via Whole-Genome Sequencing to Determine the Molecular Pathology of Inherited Retinal Disease. Am. J. Hum. Genet. 2017, 100, 75–90. [Google Scholar] [CrossRef] [PubMed]
- Birtel, J.; Gliem, M.; Mangold, E.; Müller, P.L.; Holz, F.G.; Neuhaus, C.; Lenzner, S.; Zahnleiter, D.; Betz, C.; Eisenberger, T.; et al. Next-generation sequencing identifies unexpected genotype-phenotype correlations in patients with retinitis pigmentosa. PLoS ONE 2018, 13, e0207958. [Google Scholar] [CrossRef]
- Kim, Y.-J.; Kim, Y.-N.; Yoon, Y.-H.; Seo, E.-J.; Seo, G.-H.; Keum, C.; Lee, B.-H.; Lee, J.-Y. Diverse Genetic Landscape of Suspected Retinitis Pigmentosa in a Large Korean Cohort. Genes 2021, 12, 675. [Google Scholar] [CrossRef]
- Tsang, S.H.; Sharma, T. X-linked Retinitis Pigmentosa. Adv. Exp. Med. Biol. 2018, 1085, 31–35. [Google Scholar] [CrossRef]
- Comander, J.; Weigel-DiFranco, C.; Sandberg, M.A.; Berson, E.L. Visual Function in Carriers of X-Linked Retinitis Pigmentosa. Ophthalmology 2015, 122, 1899–1906. [Google Scholar] [CrossRef]
- Fahim, A.T.; Daiger, S.P. The Role of X-Chromosome Inactivation in Retinal Development and Disease. Adv. Exp. Med. Biol. 2016, 854, 325–331. [Google Scholar] [CrossRef]
- Liu, H.; Huang, J.; Xiao, H.; Zhang, M.; Shi, F.; Jiang, Y.; Du, H.; He, Q.; Wang, Z. Pseudodominant inheritance of autosomal recessive congenital stationary night blindness in one family with three co-segregating deleterious GRM6 variants identified by next-generation sequencing. Mol. Genet. Genom. Med. 2019, 7, e952. [Google Scholar] [CrossRef] [PubMed]
- Lee, W.; Xie, Y.; Zernant, J.; Yuan, B.; Bearelly, S.; Tsang, S.H.; Lupski, J.R.; Allikmets, R. Complex inheritance of ABCA4 disease: Four mutations in a family with multiple macular phenotypes. Hum. Genet. 2016, 135, 9–19. [Google Scholar] [CrossRef] [PubMed]
- Huckfeldt, R.M.; East, J.S.; Stone, E.M.; Sohn, E.H. Phenotypic Variation in a Family With Pseudodominant Stargardt Disease. JAMA Ophthalmol. 2016, 134, 580–583. [Google Scholar] [CrossRef]
- Martin-Merida, I.; Aguilera-Garcia, D.; Fernandez-San Jose, P.; Blanco-Kelly, F.; Zurita, O.; Almoguera, B.; Garcia-Sandoval, B.; Avila-Fernandez, A.; Arteche, A.; Minguez, P.; et al. Toward the Mutational Landscape of Autosomal Dominant Retinitis Pigmentosa: A Comprehensive Analysis of 258 Spanish Families. Investig. Ophthalmol. Vis. Sci. 2018, 59, 2345–2354. [Google Scholar] [CrossRef] [PubMed]
- Abu-Safieh, L.; Vithana, E.N.; Mantel, I.; Holder, G.E.; Pelosini, L.; Bird, A.C.; Bhattacharya, S.S. A large deletion in the adRP gene PRPF31: Evidence that haploinsufficiency is the cause of disease. Mol. Vis. 2006, 12, 384–388. [Google Scholar]
- Rose, A.M.; Mukhopadhyay, R.; Webster, A.R.; Bhattacharya, S.S.; Waseem, N.H. A 112 kb deletion in chromosome 19q13.42 leads to retinitis pigmentosa. Investig. Ophthalmol. Vis. Sci. 2011, 52, 6597–6603. [Google Scholar] [CrossRef]
- Kohn, L.M.; Bowne, S.J.; Sullivan, L.S.; Daiger, S.P.; I Burstedt, M.S.; Kadzhaev, K.; Sandgren, O.; Golovleva, I. Breakpoint characterization of a novel approximately 59 kb genomic deletion on 19q13.42 in autosomal-dominant retinitis pigmentosa with incomplete penetrance. Eur. J. Hum. Genet. 2009, 17, 651–655. [Google Scholar] [CrossRef]
Patient ID/Family | Age Ranges/ Gender | Family History | Night Blindness/Age | Anterior Segment | Optic Nerve Pallor | Arteriolar Attenuation | Macula | Peripheral Retina | BCVA RE/LE | VF Restriction | ERG Results |
---|---|---|---|---|---|---|---|---|---|---|---|
S1/F1 | 20s/M | + | +/ND | − | + | + | without reflex | bone-spicule | 0.2/0.1 | ND | extinguished |
S2/F2 | 30s/M | − | +/16 | − | + | + | without reflex, bull’s eye maculopathy | bone-spicule, “salt and pepper” | 0.7/0.8 | restricted | extinguished |
S3/F3 | 40s/F | − | +/7 | cataract | + | + | normal | bone-spicule | 0.9/0.9 | 5–10° | extinguished |
S4/F4 | 40s/F | + | +/childhood | − | + | + | without reflex, mild dystrophic changes | bone-spicule | 1.0/1.0 | 3–5° | ND |
S5/F5 | 10s/F | + | +/12 | − | + | + | without reflex | bone-spicule | ND | 30° | scotopic extinguished |
S6/F6 | 40s/M | − | +/20 | cataract | + | + | without reflex | bone-spicule | 0.5/0.5 | restricted | extinguished |
S7/F7 | 60s/F | − | +/childhood | cataract | + | + | normal | bone-spicule | 1.0/0.6 | <10° | ND |
S8/F8 | 40s/M | + | +/15 | − | + | + | hyperpigmentation | bone-spicule | 0.2/0.1 | <10° | scotopic extinguished, fotopic <10% |
S9/F9 | 30s/F | − | +/21 | − | + | + | without reflex | bone-spicule | ND | 10° | extinguished |
S10/F10 | 30s/M | − | +/- | − | + | + | normal | bone-spicule | 1.0/1.0 | 15° | residual |
S11/F11 | 50s/M | − | +/30 | cataract | + | + | Hyperpigmentation, ERM | bone-spicule | 0.15/0.1 | 10° | diminished |
S12/F12 | 40s/F | + | +/15 | cataract | + | + | without reflex | bone-spicule | 0.1/0.1 | <10° | residual |
S13/F13 | 40s/M | − | +/40 | − | + | − | CME | hyperpigmentation | 1.0/1.0 | 10° | residual |
S14/F14 | 30s/M | − | +/childhood | − | + | + | macular degeneration, CME | bone-spicule | 0.6/0.8 | 10–15° | residual |
S15/F15 | 30s/F | + | +/6 | cataract | + | + | without reflex | bone-spicule | 0.2/0.2 | 10° | residual |
S16/F16 | 10s/F | + | +/childhood | cataract | + | + | normal | no changes | 1.0/1.0 | 30° | ND |
S17/F17 | 20s/M | − | +/7 | − | + | + | without reflex | bone-spicule | 0.2/0.2 | 10° | residual |
S18/F18 | 40s/M | + | +/early childhood | − | + | + | normal | bone-spicule | 1.0/1.0 | restricted | residual |
S19/F19 | 30s/F | − | +/20 | − | + | + | without reflex | bone-spicule | 0.9/0.7 | <10° | diminished |
Patient/Family | Mode of Inheritance | Gene | Transcript | Variant Classification | Pathogenicity Prediction in Protein Level | ACMG Classification | Molecular Method of Searching the Variants | |||
---|---|---|---|---|---|---|---|---|---|---|
Nucleotide | Protein | SIFT | PolyPhen-2 | CADD | ||||||
S1/F1 | AR | SPATA7 | NM_018418.5 | c.19G>T c.889_890del | p.Val7Phe p.Asp297PhefsX10 | D - | PD - | - - | Pathogenic Pathogenic | NGS panel |
S2/F2 | AR | CERKL | NM_201548.5 | c.397_401del c.1222G>T | p.Leu133GlufsX5 p.Gly408X | - - | - - | - - | Pathogenic Likely pathogenic | NGS panel |
S3/F3 | AD | PRPF8 | NM_006445.4 | c.6974_6985del | p.Val2325_Ala2328del | - | - | - | Likely pathogenic | NGS panel |
S4/F4 | AD | PRPF31 | NM_015629.4 | c.1040delT | p.Leu347ArgfsX16 | - | - | - | Pathogenic | NGS panel |
S5/F5 | AD | PRPF31 | NM_015629.4 | heterozygous deletion chr19:54,606,405-54,637,153 | - | - | - | - | NGS panel | |
S6/F6 | AR | BBS2 | NM_031885.4 | c.815G>A c.653G>A | p.Arg272Gln p.Gly218Asp | D D | PD PD | D LD | Pathogenic Pathogenic | WES |
S7/F7 | AR | USH2A | NM_206933.3 | c.14926G>A c.292A>C | p.Gly4976Ser p.Thr98Pro | D B | PD PD | LD - | Pathogenic Pathogenic | WES |
S8/F8 | X-linked | RPGR | NM_001034853.2 | c.2340_2341del | p.Arg780SerfsTer54 | - | - | LD | Pathogenic | WES |
S9/F9 | AR | USH2A | NM_206933.3 | c.3316+1G>T heterozygous deletion c.(4627+1_4628-1)_(4978+1_4979-1)del | - - | - - | - - | - - | Pathogenic - | WES |
S11/F11 | AD | SNRNP200 | NM_014014.5 | c.1671+19C>A | - | - | - | - | - | WES |
S12/F12 | AR | EYS | NM_001292009.1 | c.7654del heterozygous duplication c.(2732+1_2733-1)_(6078+1_6079-1)dup | p.Val2552Ter - | - - | - - | D - | Pathogenic - | WES |
S13/F13 | AD | RGR | NM_002921 | c.806A>G | p.Tyr269Cys | D | PD | LD | Pathogenic | WES |
S14/F14 | X-linked | RPGR | NM_001034853.2 | c.1070G>A | p.Gly357Asp | LD | PD | LD | Likely pathogenic | WES |
S15/F15 | AD | PRPF31 | NM_015629.4 | heterozygous deletion c.(420+1_421-1)_(697+1_698-1)del | - | - | - | - | - | WES |
S17/F17 | AR | CEP290 | NM_025114.4 | c.1984C>T c.223A>G | p.Gln662X p.Lys75Glu | - B | - LD | D D | Pathogenic Uncertain significance | WES |
S18/F18 | AR | NR2E3 | NM_014249.4 | c.481delA c.951delC | p.Thr161HisfsTer18 p.Thr318fs | - - | - - | - - | Pathogenic Pathogenic | WES |
S19/F19 | AD | PRPF4 | NM_004697.4 | c.1331C>T | p.Thr444Ile | D | D | LD | Benign | WES |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wawrocka, A.; Socha, M.; Walczak-Sztulpa, J.; Koczyk, G.; Skorczyk-Werner, A.; Krawczyński, M.R. Molecular Re-Diagnosis with Whole-Exome Sequencing Increases the Diagnostic Yield in Patients with Non-Syndromic Retinitis Pigmentosa. Diagnostics 2023, 13, 730. https://doi.org/10.3390/diagnostics13040730
Wawrocka A, Socha M, Walczak-Sztulpa J, Koczyk G, Skorczyk-Werner A, Krawczyński MR. Molecular Re-Diagnosis with Whole-Exome Sequencing Increases the Diagnostic Yield in Patients with Non-Syndromic Retinitis Pigmentosa. Diagnostics. 2023; 13(4):730. https://doi.org/10.3390/diagnostics13040730
Chicago/Turabian StyleWawrocka, Anna, Magdalena Socha, Joanna Walczak-Sztulpa, Grzegorz Koczyk, Anna Skorczyk-Werner, and Maciej R. Krawczyński. 2023. "Molecular Re-Diagnosis with Whole-Exome Sequencing Increases the Diagnostic Yield in Patients with Non-Syndromic Retinitis Pigmentosa" Diagnostics 13, no. 4: 730. https://doi.org/10.3390/diagnostics13040730
APA StyleWawrocka, A., Socha, M., Walczak-Sztulpa, J., Koczyk, G., Skorczyk-Werner, A., & Krawczyński, M. R. (2023). Molecular Re-Diagnosis with Whole-Exome Sequencing Increases the Diagnostic Yield in Patients with Non-Syndromic Retinitis Pigmentosa. Diagnostics, 13(4), 730. https://doi.org/10.3390/diagnostics13040730