Assessing the Impact of Image Resolution on Deep Learning for TB Lesion Segmentation on Frontal Chest X-rays
Abstract
:1. Introduction
2. Related Literature and Contributions of the Study
3. Materials and Methods
3.1. Data Characteristics
3.2. Model Architecture
3.3. Image Resolution
- (i)
- The 287 CXRs and their associated TB masks were directly down-sampled using bi-cubic interpolation to the aforementioned resolutions. The OpenCV package (ver. 4.5.4) was used in this regard.
- (ii)
- The lung masks were overlaid on the CXRs and their associated TB masks to delineate the lung boundaries. The lung ROI was cropped to the size of a bounding box and also down-sampled to the aforementioned resolutions.
- (iii)
- Based on performance, the data from step (i) or step (ii) was corrected for aspect ratio, the details are discussed in Section 3.4. The corrected aspect-ratio CXRs/masks were further down-sampled to the aforementioned resolutions.
3.4. Aspect Ratio Correction
3.5. Performance Evaluation
3.6. Optimizing the Segmentation Threshold
3.7. Storing Model Snapshots at the Optimal Resolution
3.8. Test-Time Augmentation (TTA)
3.9. Statistical Analysis
4. Results
5. Discussion and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yang, F.; Lu, P.X.; Deng, M.; Xi, Y.; W, J.; Rajaraman, S.; Xue, Z.; Folio, L.R.; Antani, S.K.; Jaeger, S. Annotations of Lung Abnormalities in the Shenzhen Chest Pulmonary Diseases. MDPI Data 2022, 7, 95. [Google Scholar] [CrossRef]
- Geng, E.; Kreiswirth, B.; Burzynski, J.; Schluger, N.W. Clinical and Radiographic Correlates of Primary and Reactivation Tuberculosis: A Molecular Epidemiology Study. J. Am. Med. Assoc. 2005, 293, 2740–2745. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Demner-Fushman, D.; Kohli, M.D.; Rosenman, M.B.; Shooshan, S.E.; Rodriguez, L.; Antani, S.; Thoma, G.R.; McDonald, C.J. Preparing a Collection of Radiology Examinations for Distribution and Retrieval. J. Am. Med. Inform. Assoc. 2016, 23, 304–310. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kwee, T.C.; Kwee, R.M. Workload of Diagnostic Radiologists in the Foreseeable Future Based on Recent Scientific Advances: Growth Expectations and Role of Artificial Intelligence. Insights Imaging 2021, 12, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Hesamian, M.H.; Jia, W.; He, X.; Kennedy, P. Deep Learning Techniques for Medical Image Segmentation: Achievements and Challenges. J. Digit. Imaging 2019, 32, 582–596. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Narayanan, B.N.; De Silva, M.S.; Hardie, R.C.; Ali, R. Ensemble Method of Lung Segmentation in Chest Radiographs. Proc. IEEE Natl. Aerosp. Electron. Conf. NAECON 2021, 2021-Augus, 382–385. [Google Scholar] [CrossRef]
- Khan, A.R.; Khan, S.; Harouni, M.; Abbasi, R.; Iqbal, S.; Mehmood, Z. Brain Tumor Segmentation Using K-Means Clustering and Deep Learning with Synthetic Data Augmentation for Classification. Microsc. Res. Tech. 2021, 84, 1389–1399. [Google Scholar] [CrossRef]
- Iqbal, S.; Ghani Khan, M.U.; Saba, T.; Mehmood, Z.; Javaid, N.; Rehman, A.; Abbasi, R. Deep Learning Model Integrating Features and Novel Classifiers Fusion for Brain Tumor Segmentation. Microsc. Res. Tech. 2019, 82, 1302–1315. [Google Scholar] [CrossRef]
- Sadad, T.; Rehman, A.; Munir, A.; Saba, T.; Tariq, U.; Ayesha, N.; Abbasi, R. Brain Tumor Detection and Multi-Classification Using Advanced Deep Learning Techniques. Microsc. Res. Tech. 2021, 84, 1296–1308. [Google Scholar] [CrossRef] [PubMed]
- Saqib, M.; Anwar, A.; Anwar, S.; Petersson, L.; Sharma, N.; Blumenstein, M. COVID-19 Detection from Radiographs: Is Deep Learning Able to Handle the Crisis? Signals 2022, 3, 296–312. [Google Scholar] [CrossRef]
- Kermany, D.S.; Goldbaum, M.; Cai, W.; Valentim, C.C.S.; Liang, H.; Baxter, S.L.; McKeown, A.; Yang, G.; Wu, X.; Yan, F.; et al. Identifying Medical Diagnoses and Treatable Diseases by Image-Based Deep Learning. Cell 2018, 172, 1122–1131.e9. [Google Scholar] [CrossRef] [PubMed]
- Rajaraman, S.; Yang, F.; Zamzmi, G.; Xue, Z.; Antani, S.K. A Systematic Evaluation of Ensemble Learning Methods for Fine-Grained Semantic Segmentation of Tuberculosis-Consistent Lesions in Chest Radiographs. Bioengineering 2022, 9, 413. [Google Scholar] [CrossRef] [PubMed]
- Huda, W.; Brad Abrahams, R. X-ray-Based Medical Imaging and Resolution. Am. J. Roentgenol. 2015, 204, W393–W397. [Google Scholar] [CrossRef] [PubMed]
- Jaeger, S.; Candemir, S.; Antani, S.; Wang, Y.-X.J.; Lu, P.-X.; Thoma, G. Two Public Chest X-ray Datasets for Computer-Aided Screening of Pulmonary Diseases. Quant. Imaging Med. Surg. 2014, 4, 475–477. [Google Scholar] [CrossRef] [PubMed]
- Zamzmi, G.; Rajaraman, S.; Hsu, L.-Y.; Sachdev, V.; Antani, S. Real-Time Echocardiography Image Analysis and Quantification of Cardiac Indices. Med. Image Anal. 2022, 80, 102438. [Google Scholar] [CrossRef] [PubMed]
- Van Ginneken, B.; Katsuragawa, S.; Ter Haar Romeny, B.M.; Doi, K.; Viergever, M.A. Automatic Detection of Abnormalities in Chest Radiographs Using Local Texture Analysis. IEEE Trans. Med. Imaging 2002, 21, 139–149. [Google Scholar] [CrossRef]
- Tang, P.; Yang, P.; Nie, D.; Wu, X.; Zhou, J.; Wang, Y. Unified Medical Image Segmentation by Learning from Uncertainty in an End-to-End Manner. Knowl. Based Syst. 2022, 241, 108215. [Google Scholar] [CrossRef]
- Thambawita, V.; Strümke, I.; Hicks, S.A.; Halvorsen, P.; Parasa, S.; Riegler, M.A. Impact of Image Resolution on Deep Learning Performance in Endoscopy Image Classification: An Experimental Study Using a Large Dataset of Endoscopic Images. Diagnostics 2021, 11, 2183. [Google Scholar] [CrossRef]
- Sabottke, C.F.; Spieler, B.M. The Effect of Image Resolution on Deep Learning in Radiography. Radiol. Artif. Intell. 2020, 2, e190015. [Google Scholar] [CrossRef]
- Gordienko, Y.; Gang, P.; Hui, J.; Zeng, W.; Kochura, Y.; Alienin, O.; Rokovyi, O.; Stirenko, S. Deep Learning with Lung Segmentation and Bone Shadow Exclusion Techniques for Chest X-ray Analysis of Lung Cancer. In ICCSEEA 2018: Advances in Computer Science for Engineering and Education; Hu, Z., Petoukhov, S., Dychka, I., He, M., Eds.; Advances in Intelligent Systems and Computing; Springer: Cham, Switzerland, 2018; Volume 754. [Google Scholar] [CrossRef] [Green Version]
- Pavel Yakubovskiy Segmentation Models. Available online: https://github.com/qubvel/segmentation_models (accessed on 2 May 2021).
- Liu, W.; Li, C.; Rahaman, M.M.; Jiang, T.; Sun, H.; Wu, X.; Hu, W.; Chen, H.; Sun, C.; Yao, Y.; et al. Is the aspect ratio of cells important in deep learning? A robust comparison of deep learning methods for multi-scale cytopathology cell image classification: From convolutional neural networks to visual transformers. Comput. Biol. Med. 2022, 141, 105026. [Google Scholar] [CrossRef]
- Ronneberger, O.; Fischer, P.; Brox, T. U-Net: Convolutional Networks for Biomedical Image Segmentation. In Medical Image Computing and Computer-Assisted Intervention—MICCAI 2015; Navab, N., Hornegger, J., Wells, W., Frangi, A., Eds.; Lecture Notes in Computer Science(LNCS); Springer: Cham, Switzerland; Volume 9351. [CrossRef] [Green Version]
- Sagar, A. Uncertainty Quantification Using Variational Inference for Biomedical Image Segmentation. In Proceedings of the 2022 IEEE/CVF Winter Conference on Applications of Computer Vision Workshops (WACVW), Waikoloa, HI, USA, 4–8 January 2022; pp. 44–51. [Google Scholar] [CrossRef]
- Rajaraman, S.; Zamzmi, G.; Folio, L.; Alderson, P.; Antani, S. Chest X-ray Bone Suppression for Improving Classification of Tuberculosis-Consistent Findings. Diagnostics 2021, 11, 840. [Google Scholar] [CrossRef] [PubMed]
- Brunet, D.; Vrscay, E.R.; Wang, Z. On the Mathematical Properties of the Structural Similarity Index. IEEE Trans. Image Process. 2012, 21, 1488–1499. [Google Scholar] [CrossRef] [PubMed]
- Lanaras, C.; Bioucas-Dias, J.; Galliani, S.; Baltsavias, E.; Schindler, K. Super-Resolution of Sentinel-2 Images: Learning a Globally Applicable Deep Neural Network. ISPRS J. Photogramm. Remote Sens. 2018, 146, 305–319. [Google Scholar] [CrossRef] [Green Version]
- Jadon, S. SemSegLoss: A Python Package of Loss Functions for Semantic Segmentation [Formula Presented]. Softw. Impacts 2021, 9, 100079. [Google Scholar] [CrossRef]
- Zhao, S.; Wu, B.; Chu, W.; Hu, Y.; Cai, D. Correlation Maximized Structural Similarity Loss for Semantic Segmentation. arXiv 2019, arXiv:1910.08711. [Google Scholar]
- Renard, F.; Guedria, S.; De Palma, N.; Vuillerme, N. Variability and Reproducibility in Deep Learning for Medical Image Segmentation. Sci. Rep. 2020, 10, 1–16. [Google Scholar] [CrossRef]
- Candemir, S.; Antani, S. A Review on Lung Boundary Detection in Chest X-rays. Int. J. Comput. Assist. Radiol. Surg. 2019, 14, 563–576. [Google Scholar] [CrossRef] [Green Version]
- Huang, G.; Li, Y.; Pleiss, G.; Liu, Z.; Hopcroft, J.E.; Weinberger, K.Q. Snapshot Ensembles: Train 1, Get M for Free. In Proceedings of the 5th International Conference on Learning Representations, ICLR 2017, Toulon, France, 24–26 April 2017. [Google Scholar]
- Moshkov, N.; Mathe, B.; Kertesz-Farkas, A.; Hollandi, R.; Horvath, P. Test-Time Augmentation for Deep Learning-Based Cell Segmentation on Microscopy Images. Sci. Rep. 2020, 10, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Wang, G.; Li, W.; Aertsen, M.; Deprest, J.; Ourselin, S.; Vercauteren, T. Aleatoric Uncertainty Estimation with Test-Time Augmentation for Medical Image Segmentation with Convolutional Neural Networks. Neurocomputing 2019, 338, 34–45. [Google Scholar] [CrossRef]
- Abedalla, A.; Abdullah, M.; Al-Ayyoub, M.; Benkhelifa, E. Chest X-ray Pneumothorax Segmentation Using U-Net with EfficientNet and ResNet Architectures. PeerJ Comput. Sci. 2021, 7, 1–36. [Google Scholar] [CrossRef]
- Rajaraman, S.; Folio, L.R.; Dimperio, J.; Alderson, P.O.; Antani, S.K. Improved Semantic Segmentation of Tuberculosis—Consistent Findings in Chest x-Rays Using Augmented Training of Modality-Specific u-Net Models with Weak Localizations. Diagnostics 2021, 11, 616. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Han, H.; Li, Z.; Wang, L.; Wu, Z.; Lu, J.; Zhou, S.K. High-Resolution Chest X-ray Bone Suppression Using Unpaired CT Structural Priors. IEEE Trans. Med. Imaging 2020, 39, 3053–3063. [Google Scholar] [CrossRef] [PubMed]
- Zamzmi, G.; Rajaraman, S.; Antani, S. UMS-Rep: Unified Modality-Specific Representation for Efficient Medical Image Analysis. Inform. Med. Unlocked 2021, 24, 100571. [Google Scholar] [CrossRef]
- P, S.A.B.; Annavarapu, C.S.R. Deep Learning-Based Improved Snapshot Ensemble Technique for COVID-19 Chest X-ray Classification. Appl. Intell. 2021, 51, 3104–3120. [Google Scholar] [CrossRef] [PubMed]
- Chowdhury, N.K.; Kabir, M.A.; Rahman, M.M.; Rezoana, N. ECOVNet: A Highly Effective Ensemble Based Deep Learning Model for Detecting COVID-19. PeerJ Comput. Sci. 2021, 7, 1–25. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, T.; Pernkopf, F. Lung Sound Classification Using Snapshot Ensemble of Convolutional Neural Networks. Proc. Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. EMBS 2020, 2020-July, 760–763. [Google Scholar] [CrossRef]
- Jha, D.; Smedsrud, P.H.; Johansen, D.; De Lange, T.; Johansen, H.D.; Halvorsen, P.; Riegler, M.A. A Comprehensive Study on Colorectal Polyp Segmentation with ResUNet++, Conditional Random Field and Test-Time Augmentation. IEEE J. Biomed. Heal. Inform. 2021, 25, 2029–2040. [Google Scholar] [CrossRef]
- Lv, Z.; Wang, L.; Guan, Z.; Wu, J.; Du, X.; Zhao, H.; Guizani, M. An Optimizing and Differentially Private Clustering Algorithm for Mixed Data in SDN-Based Smart Grid. IEEE Access 2019, 7, 45773–45782. [Google Scholar] [CrossRef]
- Decencière, E.; Zhang, X.; Cazuguel, G.; Laÿ, B.; Cochener, B.; Trone, C.; Gain, P.; Ordóñez-Varela, J.R.; Massin, P.; Erginay, A.; et al. Feedback on a Publicly Distributed Image Database: The Messidor Database. Image Anal. Stereol. 2014, 33, 231–234. [Google Scholar] [CrossRef] [Green Version]
# TB CXRs | # Men | # Women | Age of Men (in Years) | Age of Women (in Years) | # Lung Masks | # TB Masks | Image Width (in Pixels) | Image Height (in Pixels) |
---|---|---|---|---|---|---|---|---|
336 | 228 | 108 | 38.29 ± 15.12 | 36.5 ± 14.75 | 287 | 336 | 2644 ± 253 | 2799 ± 206 |
Method | TTA Combinations |
---|---|
M1 | Original + horizontal flipping |
M2 | Original + width shifting |
M3 | Original + height shifting |
M4 | Original + width shifting + height shifting |
M5 | Original + horizontal flipping + width shifting + height shifting |
M6 | Original + rotation |
M7 | Original + width shifting + height shifting + rotation |
M8 | Original + horizontal flipping + width shifting + height shifting + rotation |
Resolution | IoU | Dice | SSIM | SRE | Opt. T |
---|---|---|---|---|---|
32 × 32 (O) | 0.2183 (0.1110, 0.3256) | 0.3583 | 0.3725 | 19.9014 | 0.9548 |
32 × 32 (CR) | 0.2934 (0.1751, 0.4117) | 0.4537 | 0.4414 | 22.5763 | 0.6332 |
64 × 64 (O) | 0.3105 (0.1903, 0.4307) | 0.4739 | 0.5548 | 20.5444 | 0.3719 |
64 × 64 (CR) | 0.3789 (0.2529, 0.5049) | 0.5496 | 0.5584 | 24.4192 | 0.1005 |
128 × 128 (O) | 0.4298 (0.3012, 0.5584) | 0.6012 | 0.6694 | 23.1622 | 0.2663 |
128 × 128 (CR) | 0.4652 (0.3357, 0.5947) | 0.6350 | 0.7028 | 30.1203 | 0.0704 |
256 × 256 (O) | 0.4567 (0.3273, 0.5861) | 0.6271 | 0.7456 | 25.3184 | 0.9900 |
256 × 256 (CR) | 0.4859 (0.3561, 0.6157) | 0.6540 | 0.7720 | 29.1329 | 0.9950 |
512 × 512 (O) | 0.4435 (0.3145, 0.5725) | 0.6144 | 0.8327 | 27.6090 | 0.9799 |
512 × 512 (CR) | 0.4799 (0.3502, 0.6096) | 0.6485 | 0.8788 | 31.7887 | 0.9950 |
768 × 768 (O) | 0.4428 (0.3138, 0.5718) | 0.6138 | 0.8683 | 29.3264 | 0.9899 |
768 × 768 (CR) | 0.4512 (0.3220, 0.5804) | 0.6219 | 0.9073 | 33.3214 | 0.9899 |
1024 × 1024 (O) | 0.2746 (0.1587, 0.3905) | 0.4309 | 0.8545 | 28.4218 | 0.9796 |
1024 × 1024 (CR) | 0.3387 (0.2158, 0.4616) | 0.5060 | 0.8796 | 33.3320 | 0.9950 |
Resolution (AR-CR) | IoU | Dice | SSIM | SRE | Opt. T |
---|---|---|---|---|---|
64 × 32 | 0.1583 (0.0635, 0.2531) | 0.2734 | 0.1884 | 21.5695 | 0.9950 |
128 × 96 | 0.3474 (0.2237, 0.4711) | 0.5157 | 0.5175 | 25.2175 | 0.9950 |
256 × 224 | 0.4447 (0.3156, 0.5738) | 0.6151 | 0.7336 | 28.8964 | 0.9698 |
512 × 480 | 0.4815 (0.3517, 0.6113) | 0.6500 | 0.8333 | 31.7451 | 0.9796 |
768 × 736 | 0.4200 (0.2918, 0.5482) | 0.5916 | 0.8544 | 32.8540 | 0.9796 |
1024 × 960 | 0.3259 (0.2042, 0.4476) | 0.4915 | 0.8710 | 33.6026 | 0.0204 |
Snapshot | Opt. TTA Combination |
---|---|
S1 | Original+ width shifting + height shifting + rotation |
S2 | Original + height shifting |
S3 | Original+ horizontal flipping + width shifting + height shifting + rotation |
S4 | Original+ horizontal flipping + width shifting + height shifting + rotation |
S5 | Original+ horizontal flipping + width shifting + height shifting + rotation |
S6 | Original+ width shifting + height shifting |
S7 | Original+ horizontal flipping + width shifting + height shifting + rotation |
S8 | Original+ horizontal flipping + width shifting + height shifting + rotation |
Model | IoU | Dice | SSIM | SRE | Opt. T |
---|---|---|---|---|---|
256 × 256 (CR-Baseline) | 0.4859 (0.3561, 0.6157) | 0.6540 | 0.7720 | 29.1329 | 0.9950 |
S1 | 0.4880 (0.3582, 0.6178) | 0.6559 | 0.7676 | 29.0406 | 0.9950 |
S2 | 0.5090 (0.3792, 0.6388) | 0.6746 | 0.7937 | 29.4457 | 0.9698 |
S3 | 0.5024 (0.3725, 0.6323) | 0.6688 | 0.7900 | 29.4709 | 0.9749 |
S4 | 0.4935 (0.3637, 0.6233) | 0.6609 | 0.7872 | 29.4803 | 0.9296 |
S5 | 0.4974 (0.3675, 0.6273) | 0.6643 | 0.7906 | 29.4893 | 0.4271 |
S6 | 0.4939 (0.3641, 0.6237) | 0.6612 | 0.7876 | 29.4833 | 0.6683 |
S7 | 0.4970 (0.3671, 0.6269) | 0.6640 | 0.7887 | 29.5248 | 0.9296 |
S8 | 0.4780 (0.3483, 0.6077) | 0.6469 | 0.7772 | 29.4381 | 0.0100 |
S1-TTA | 0.4947 (0.3649, 0.6245) | 0.6620 | 0.7788 | 29.2889 | 0.7959 |
S2-TTA | 0.5107 (0.3809, 0.6405) | 0.6762 | 0.7943 | 29.4858 | 0.6633 |
S3-TTA | 0.5110 (0.3812, 0.6408) | 0.6764 | 0.7950 | 29.5209 | 0.4975 |
S4-TTA | 0.5000 (0.3701, 0.6299) | 0.6667 | 0.7926 | 29.5162 | 0.4975 |
S5-TTA | 0.5031 (0.3732, 0.6330) | 0.6694 | 0.7952 | 29.5535 | 0.4975 |
S6-TTA | 0.5020 (0.3721, 0.6319) | 0.6684 | 0.7920 | 29.5307 | 0.4271 |
S7-TTA | 0.5083 (0.3785, 0.6381) | 0.6740 | 0.7944 | 29.5845 | 0.4925 |
S8-TTA | 0.4872 (0.3574, 0.6170) | 0.6552 | 0.7888 | 29.5341 | 0.3878 |
S2, S3-TTA | 0.5174 (0.3876, 0.6472) | 0.6819 | 0.7997 | 29.6055 | 0.5779 |
S2, S3, S5-TTA | 0.5182 (0.3884, 0.6480) | 0.6827 | 0.8002 | 29.6076 | 0.5126 |
S2, S3, S5, S7-TTA | 0.5200 (0.3902, 0.6498) | 0.6842 | 0.8007 | 29.6174 | 0.4925 |
S2, S3, S5, S7, S6-TTA | 0.5200 (0.3902, 0.6498) | 0.6842 | 0.8018 | 29.6408 | 0.4874 |
S2, S3, S5, S7, S6, S4-TTA | 0.5193 (0.3895, 0.6491) | 0.6836 | 0.8009 | 29.6186 | 0.4925 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rajaraman, S.; Yang, F.; Zamzmi, G.; Xue, Z.; Antani, S. Assessing the Impact of Image Resolution on Deep Learning for TB Lesion Segmentation on Frontal Chest X-rays. Diagnostics 2023, 13, 747. https://doi.org/10.3390/diagnostics13040747
Rajaraman S, Yang F, Zamzmi G, Xue Z, Antani S. Assessing the Impact of Image Resolution on Deep Learning for TB Lesion Segmentation on Frontal Chest X-rays. Diagnostics. 2023; 13(4):747. https://doi.org/10.3390/diagnostics13040747
Chicago/Turabian StyleRajaraman, Sivaramakrishnan, Feng Yang, Ghada Zamzmi, Zhiyun Xue, and Sameer Antani. 2023. "Assessing the Impact of Image Resolution on Deep Learning for TB Lesion Segmentation on Frontal Chest X-rays" Diagnostics 13, no. 4: 747. https://doi.org/10.3390/diagnostics13040747
APA StyleRajaraman, S., Yang, F., Zamzmi, G., Xue, Z., & Antani, S. (2023). Assessing the Impact of Image Resolution on Deep Learning for TB Lesion Segmentation on Frontal Chest X-rays. Diagnostics, 13(4), 747. https://doi.org/10.3390/diagnostics13040747