Retinal Vascular Tortuosity Index Change after Idiopathic Epiretinal Membrane Surgery: Does Internal Limiting Membrane Peeling Affect Retinal Vascular Tortuosity?
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patient Selection
2.2. Surgical Procedure
2.3. Multimodal Imaging and Quantitative Measurements
2.4. The Retinal Vascular Tortuosity Index Measurement
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Inoue, M.; Kadonosono, K. Macular diseases: Epiretinal membrane. Dev. Ophthalmol. 2014, 54, 159–163. [Google Scholar] [CrossRef] [PubMed]
- Appiah, A.P.; Hirose, T.; Kado, M. A review of 324 cases of idiopathic premacular gliosis. Am. J. Ophthalmol. 1988, 106, 533–535. [Google Scholar] [CrossRef] [PubMed]
- Hagler, W.S.; Aturaliya, U. Macular puckers after retinal detachment surgery. Br. J. Ophthalmol. 1971, 55, 451–457. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Appiah, A.P.; Hirose, T. Secondary causes of premacular fibrosis. Ophthalmology 1989, 96, 389–392. [Google Scholar] [CrossRef] [PubMed]
- Smiddy, W.E.; Maguire, A.M.; Green, W.R.; Michels, R.G.; de la Cruz, Z.; Enger, C.; Jaeger, M.; Rice, T.A. Idiopathic epiretinal membranes: Ultrastructural characteristics and clinicopathologic correlation. Ophthalmology 1989, 96, 811–820. [Google Scholar] [CrossRef]
- Meuer, S.M.; Myers, C.E.; Klein, B.E.; Swift, M.K.; Huang, Y.; Gangaputra, S.; Pak, J.W.; Danis, R.P.; Klein, R. The epidemiology of vitreoretinal interface abnormalities as detected by spectral-domain optical coherence tomography: The beaver dam eye study. Ophthalmology 2015, 122, 787–795. [Google Scholar] [CrossRef] [Green Version]
- Wickham, L.; Konstantinidis, L.; Ting, D.S.W.; Wolfensberger, T.J. Epiretinal membranes, vitreoretinal traction, cystoid macular edema, and submacular hemorrhage. In Ryan’s Retina, 7th ed.; Sadda, S.V.R., Schachat, A.P., Wilkinson, C.P., Hinton, D.R., Wiedemann, P., Freund, K.B., Sarraf, D., Eds.; Elsevier: Amsterdam, The Netherlands, 2022; pp. 2341–2360. [Google Scholar]
- Sebag, J. The vitreoretinal interface and its role in the pathogenesis of vitreomaculopathies. Ophthalmologe 2015, 112, 10–19. [Google Scholar] [CrossRef]
- Fung, A.T.; Galvin, J.; Tran, T. Epiretinal membrane: A review. Clin. Exp. Ophthalmol. 2021, 49, 289–308. [Google Scholar] [CrossRef]
- Foos, R.Y. Vitreoretinal juncture; epiretinal membranes and vitreous. Investig. Ophthalmol. Vis. Sci. 1977, 16, 416–422. [Google Scholar]
- Michalewski, J.; Michalewska, Z.; Cisiecki, S.; Nawrocki, J. Morphologically functional correlations of macular pathology connected with epiretinal membrane formation in spectral optical coherence tomography (SOCT). Graefes Arch. Clin. Exp. Ophthalmol. 2007, 245, 1623–1631. [Google Scholar] [CrossRef]
- Bu, S.C.; Kuijer, R.; Li, X.R.; Hooymans, J.M.; Los, L.I. Idiopathic epiretinal membrane. Retina 2014, 34, 2317–2335. [Google Scholar] [CrossRef]
- Hirayama, K.; Hata, Y.; Noda, Y.; Miura, M.; Yamanaka, I.; Shimokawa, H.; Ishibashi, T. The involvement of the rho-kinase pathway and its regulation in cytokine-induced collagen gel contraction by hyalocytes. Investig. Ophthalmol. Vis. Sci. 2004, 45, 3896–3903. [Google Scholar] [CrossRef]
- Sramek, S.J.; Wallow, I.H.; Stevens, T.S.; Nork, T.M. Immunostaining of preretinal membranes for actin, fibronectin, and glial fibrillary acidic protein. Ophthalmology 1989, 96, 835–841. [Google Scholar] [CrossRef]
- Doguizi, S.; Sekeroglu, M.A.; Ozkoyuncu, D.; Omay, A.E.; Yilmazbas, P. Clinical significance of ectopic inner foveal layers in patients with idiopathic epiretinal membranes. Eye 2018, 32, 1652–1660. [Google Scholar] [CrossRef] [PubMed]
- Miyazawa, K.; Sakimoto, S.; Kanai, M.; Shiraki, A.; Takahashi, S.; Shiraki, N.; Maruyama, K.; Sakaguchi, H.; Nishida, K. Vascular tortuosity analysis in eyes with epiretinal membrane imaged by optical coherence tomography angiography. BMC Ophthalmol. 2022, 22, 198. [Google Scholar] [CrossRef] [PubMed]
- Govetto, A.; Lalane, R.A., III; Sarraf, D.; Figueroa, M.S.; Hubschman, J.P. Insights Into Epiretinal Membranes: Presence of Ectopic Inner Foveal Layers and a New Optical Coherence Tomography Staging Scheme. Am. J. Ophthalmol. 2017, 175, 99–113. [Google Scholar] [CrossRef]
- Folk, J.C.; Adelman, R.A.; Flaxel, C.J.; Hyman, L.; Pulido, J.S.; Olsen, T.W. Idiopathic Epiretinal Membrane and Vitreomacular Traction Preferred Practice Pattern((R)) Guidelines. Ophthalmology 2016, 123, P152–P181. [Google Scholar] [CrossRef] [PubMed]
- Carpentier, C.; Zanolli, M.; Wu, L.; Sepulveda, G.; Berrocal, M.H.; Saravia, M.; Diaz-Llopis, M.; Gallego-Pinazo, R.; Filsecker, L.; Verdaguer-Diaz, J.I.; et al. Residual internal limiting membrane after epiretinal membrane peeling: Results of the Pan-American Collaborative Retina Study Group. Retina 2013, 33, 2026–2031. [Google Scholar] [CrossRef] [PubMed]
- Kwok, A.K.; Lai, T.Y.; Li, W.W.; Woo, D.C.; Chan, N.R. Indocyanine green-assisted internal limiting membrane removal in epiretinal membrane surgery: A clinical and histologic study. Am. J. Ophthalmol. 2004, 138, 194–199. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.W.; Kim, I.T. Outcomes of idiopathic macular epiretinal membrane removal with and without internal limiting membrane peeling: A comparative study. Jpn. J. Ophthalmol. 2010, 54, 129–134. [Google Scholar] [CrossRef]
- Pournaras, C.J.; Emarah, A.; Petropoulos, I.K. Idiopathic macular epiretinal membrane surgery and ILM peeling: Anatomical and functional outcomes. Semin. Ophthalmol. 2011, 26, 42–46. [Google Scholar] [CrossRef] [PubMed]
- Hirata, A.; Murata, K.; Hayashi, K.; Nakamura, K.I. Three-Dimensional Analysis of Peeled Internal Limiting Membrane Using Focused Ion Beam/Scanning Electron Microscopy. Transl. Vis. Sci. Technol. 2018, 7, 15. [Google Scholar] [CrossRef] [PubMed]
- Spaide, R.F.; Klancnik, J.M., Jr.; Cooney, M.J. Retinal vascular layers imaged by fluorescein angiography and optical coherence tomography angiography. JAMA Ophthalmol. 2015, 133, 45–50. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yanik Odabas, O.; Demirel, S.; Ozmert, E.; Batioglu, F. Repeatability of Automated Vessel Density and Superficial and Deep Foveal Avascular Zone Area Measurements Using Optical Coherence Tomography Angiography: Diurnal Findings. Retina 2018, 38, 1238–1245. [Google Scholar] [CrossRef]
- Tsunoda, K.; Watanabe, K.; Akiyama, K.; Usui, T.; Noda, T. Highly reflective foveal region in optical coherence tomography in eyes with vitreomacular traction or epiretinal membrane. Ophthalmology 2012, 119, 581–587. [Google Scholar] [CrossRef]
- Martelli, F.; Giacomozzi, C. Tortuosity Index Calculations in Retinal Images: Some Criticalities Arising from Commonly Used Approaches. Information 2021, 12, 466. [Google Scholar] [CrossRef]
- Hart, W.E.; Goldbaum, M.; Côté, B.; Kube, P.; Nelson, M.R. Measurement and classification of retinal vascular tortuosity. Int. J. Med. Inform. 1999, 53, 239–252. [Google Scholar] [CrossRef]
- Pierro, L.; Arrigo, A.; De Crescenzo, M.; Aragona, E.; Chiesa, R.; Castellano, R.; Catenaccio, B.; Bandello, F. Quantitative Optical Coherence Tomography Angiography Detects Retinal Perfusion Changes in Carotid Artery Stenosis. Front. Neurosci. 2021, 15, 640666. [Google Scholar] [CrossRef]
- Saraf, S.S.; Tyring, A.J.; Chen, C.L.; Le, T.P.; Kalina, R.E.; Wang, R.K.; Chao, J.R. Familial retinal arteriolar tortuosity and quantification of vascular tortuosity using swept-source optical coherence tomography angiography. Am. J. Ophthalmol. Case Rep. 2019, 14, 74–78. [Google Scholar] [CrossRef]
- Yanik, O.; Ciki, K.; Ozmert, E.; Sivri, S. Vascular and structural analyses of retinal and choroidal alterations in Fabry disease: The effect of hyperreflective foci and retinal vascular tortuosity. Ophthalmic Genet. 2022, 43, 344–353. [Google Scholar] [CrossRef]
- Lee, H.; Lee, M.; Chung, H.; Kim, H.C. Quantification of Retinal Vessel Tortuosity in Diabetic Retinopathy Using Optical Coherence Tomography Angiography. Retina 2018, 38, 976–985. [Google Scholar] [CrossRef] [PubMed]
- Koh, V.; Cheung, C.; Zheng, Y.; Wong, T.Y.; Wong, W.; Aung, T. Relationship of Retinal Vascular Tortuosity with the Neuroretinal Rim: The Singapore Malay Eye Study. Investig. Ophthalmol. Vis. Sci. 2010, 51, 3736–3741. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gupta, P.; Sadun, A.A.; Sebag, J. Multifocal retinal contraction in macular pucker analyzed by combined optical coherence tomography/scanning laser ophthalmoscopy. Retina 2008, 28, 447–452. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kofod, M.; la Cour, M. Quantification of retinal tangential movement in epiretinal membranes. Ophthalmology 2012, 119, 1886–1891. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.K.; Kim, S.J.; Jung, Y.S.; Kim, K.G.; Kim, J.H.; Yu, H.G. Improvement of horizontal macular contraction after surgical removal of epiretinal membranes. Eye 2011, 25, 754–761. [Google Scholar] [CrossRef] [Green Version]
- Romano, M.R.; Comune, C.; Ferrara, M.; Cennamo, G.; De Cilla, S.; Toto, L.; Cennamo, G. Retinal Changes Induced by Epiretinal Tangential Forces. J. Ophthalmol. 2015, 2015, 372564. [Google Scholar] [CrossRef] [Green Version]
- Rodrigues, I.A.; Lee, E.J.; Williamson, T.H. Measurement of Retinal Displacement and Metamorphopsia after Epiretinal Membrane or Macular Hole Surgery. Retina 2016, 36, 695–702. [Google Scholar] [CrossRef]
- Arimura, E.; Matsumoto, C.; Okuyama, S.; Takada, S.; Hashimoto, S.; Shimomura, Y. Retinal contraction and metamorphopsia scores in eyes with idiopathic epiretinal membrane. Investig. Ophthalmol. Vis. Sci. 2005, 46, 2961–2966. [Google Scholar] [CrossRef] [Green Version]
- Nomoto, H.; Matsumoto, C.; Arimura, E.; Okuyama, S.; Takada, S.; Hashimoto, S.; Shimomura, Y. Quantification of changes in metamorphopsia and retinal contraction in eyes with spontaneous separation of idiopathic epiretinal membrane. Eye 2013, 27, 924–930. [Google Scholar] [CrossRef] [Green Version]
- Ichikawa, Y.; Imamura, Y.; Ishida, M. Metamorphopsia and Tangential Retinal Displacement after Epiretinal Membrane Surgery. Retina 2017, 37, 673–679. [Google Scholar] [CrossRef]
- Dell’omo, R.; Cifariello, F.; Dell’omo, E.; De Lena, A.; Di Iorio, R.; Filippelli, M.; Costagliola, C. Influence of retinal vessel printings on metamorphopsia and retinal architectural abnormalities in eyes with idiopathic macular epiretinal membrane. Investig. Ophthalmol. Vis. Sci. 2013, 54, 7803–7811. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mastropasqua, R.; D’Aloisio, R.; Viggiano, P.; Borrelli, E.; Iafigliola, C.; Di Nicola, M.; Aharrh-Gnama, A.; Di Marzio, G.; Toto, L.; Mariotti, C.; et al. Early retinal flow changes after vitreoretinal surgery in idiopathic epiretinal membrane using swept source optical coherence tomography angiography. J. Clin. Med. 2019, 8, 2067. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bacherini, D.; Dragotto, F.; Caporossi, T.; Lenzetti, C.; Finocchio, L.; Savastano, A.; Savastano, M.C.; Barca, F.; Dragotto, M.; Vannozzi, L.; et al. The Role of OCT Angiography in the Assessment of Epiretinal Macular Membrane. J. Ophthalmol. 2021, 2021, 8866407. [Google Scholar] [CrossRef] [PubMed]
- Jung, J.J.; Hoang, Q.V.; Ridley-Lane, M.L.; Sebrow, D.B.; Dhrami-Gavazi, E.; Chang, S. Long-Term Retrospective Analysis of Visual Acuity and Optical Coherence Topographic Changes After Single Versus Double Peeling During Vitrectomy for Macular Epiretinal Membranes. Retina 2016, 36, 2101–2109. [Google Scholar] [CrossRef]
- Schechet, S.A.; DeVience, E.; Thompson, J.T. The Effect of Internal Limiting Membrane Peeling on Idiopathic Epiretinal Membrane Surgery, with a Review of the Literature. Retina 2017, 37, 873–880. [Google Scholar] [CrossRef]
- Roh, M.; Eliott, D. Internal Limiting Membrane Peeling During Idiopathic Epiretinal Membrane Removal: Literature Review. Int. Ophthalmol. Clin. 2015, 55, 91–101. [Google Scholar] [CrossRef]
- Díaz-Valverde, A.; Wu, L. To peel or not to peel the internal limiting membrane in idiopathic epiretinal membranes. Retina 2018, 38 (Suppl. 1), S5–S11. [Google Scholar] [CrossRef]
- Okawa, Y.; Maruko, I.; Kawai, M.; Hasegawa, T.; Arakawa, H.; Iida, T. Foveal structure and vasculature in eyes with idiopathic epiretinal membrane. PLoS ONE 2019, 14, e0214881. [Google Scholar] [CrossRef]
- Hirata, A.; Nakada, H.; Mine, K.; Masumoto, M.; Sato, T.; Hayashi, K. Relationship between the morphology of the foveal avascular zone and the degree of aniseikonia before and after vitrectomy in patients with unilateral epiretinal membrane. Graefes Arch. Clin. Exp. Ophthalmol. 2019, 257, 507–515. [Google Scholar] [CrossRef]
- Shiihara, H.; Terasaki, H.; Sonoda, S.; Kakiuchi, N.; Yamaji, H.; Yamaoka, S.; Uno, T.; Watanabe, M.; Sakamoto, T. Association of foveal avascular zone with the metamorphopsia in epiretinal membrane. Sci. Rep. 2020, 10, 17092. [Google Scholar] [CrossRef]
- Yoon, Y.S.; Woo, J.M.; Woo, J.E.; Min, J.K. Superficial foveal avascular zone area changes before and after idiopathic epiretinal membrane surgery. Int. J. Ophthalmol. 2018, 11, 1711–1715. [Google Scholar] [CrossRef] [PubMed]
- Kitagawa, Y.; Shimada, H.; Shinojima, A.; Nakashizuka, H. Foveal Avascular Zone Area Analysis Using Optical Coherence Tomography Angiography Before and After Idiopathic Epiretinal Membrane Surgery. Retina 2019, 39, 339–346. [Google Scholar] [CrossRef] [PubMed]
- Yoshida, H.; Terashima, H.; Ueda, E.; Hasebe, H.; Matsuoka, N.; Nakano, H.; Fukuchi, T. Relationship between morphological changes in the foveal avascular zone of the epiretinal membrane and postoperative visual function. BMJ Open Ophthalmol. 2020, 5, e000636. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Chi, W.; Cai, X.; Deng, Y.; Jiang, X.; Wei, Y.; Zhang, S. Macular microvasculature features before and after vitrectomy in idiopathic macular epiretinal membrane: An OCT angiography analysis. Eye 2019, 33, 619–628. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.W.; Hsia, Y.; Huang, C.J.; Hung, K.C.; Chen, M.S.; Ho, T.C. Biomarkers in the pathogenesis of epiretinal membrane and myopic traction maculopathy: Effects of internal limiting membrane incompliance and posterior staphyloma. Photodiagnosis Photodyn. Ther. 2021, 33, 102208. [Google Scholar] [CrossRef] [PubMed]
- McDonald, H.R.; Verre, W.P.; Aaberg, T.M. Surgical management of idiopathic epiretinal membranes. Ophthalmology 1986, 93, 978–983. [Google Scholar] [CrossRef]
- Kumagai, K.; Furukawa, M.; Suetsugu, T.; Ogino, N. Foveal Avascular Zone Area after Internal Limiting Membrane Peeling for Epiretinal Membrane and Macular Hole Compared with That of Fellow Eyes and Healthy Controls. Retina 2018, 38, 1786–1794. [Google Scholar] [CrossRef]
Preoperative Mean ± SD (Min–Max) | Postoperative Mean ± SD (Min–Max) | p Value | |
---|---|---|---|
Patients, n = 25 | |||
BCVA (LogMAR) | 0.48 ± 0.22 (0.20–1.00) | 0.18 ± 0.15 (0.00–0.52) | <0.001 a |
RVTI | 1.224 ± 0.027 (1.19–1.31) | 1.199 ± 0.021 (1.16–1.24) | 0.004 a |
Central subfield thickness, µm | 477.3 ± 95.9 300–691 | 423.7 ± 59.8 306–515 | 0.001 |
FAZ area, mm2 | 0.089 ± 0.07 0.027–0.249 | 0.085 ± 0.04 0.034–0.201 | 0.516 |
FAZ perimeter, mm | 1.201 ± 0.36 0.698–1.964 | 1.161 ± 0.28 0.724–1.800 | 0.548 |
Foveal vessel density, % | 44.2 ± 8.29 27.6–58.3 | 46.5 ± 5.86 37.1–57.6 | 0.277 |
FAZ acircularity index | 1.22 ± 0.11 1.06–1.38 | 1.16± 0.10 1.06–1.45 | 0.022 |
ERM, n = 10 | |||
BCVA (LogMAR) | 0.56 ± 0.26 (0.20–1.00) | 0.25 ± 0.16 (0.00–0.49) | 0.003 b |
RVTI | 1.230 ± 0.038 (1.19–1.31) | 1.195 ± 0.024 (1.16–1.24) | 0.037 a |
Central subfield thickness, µm | 473.5 ± 106.0 (338–691) | 425.7 ± 72.1 (297–511) | 0.017 |
FAZ area, mm2 | 0.081 ± 0.06 (0.040–0.249) | 0.090 ± 0.03 0.063–0.144 | 0.109 |
FAZ perimeter, mm | 1.187 ± 0.33 (0.918–1.964) | 1.197 ± 0.21 0.961–1.542) | 0.594 |
Foveal vessel density, % | 41.6 ± 9.69 (27.6–57.4) | 44.7 ± 6.28 (37.1–53.7) | 0.374 |
FAZ acircularity index | 1.25 ± 0.08 (1.11–1.36) | 1.14 ± 0.06 (1.08–1.26) | 0.028 |
ERM + ILM, n = 15 | |||
BCVA (LogMAR) | 0.42 ± 0.17 (0.20–0.70) | 0.14 ± 0.13 (0.00–0.52) | 0.005 a |
RVTI | 1.220 ± 0.017 (1.20–1.26) | 1.201 ± 0.020 (1.17–1.23) | 0.036 a |
Central subfield thickness, µm | 479.8 ± 92.4 (300–588) | 422.4 ± 52.8 (338–515) | 0.023 |
FAZ area, mm2 | 0.095 ± 0.07 0.027–0.225 | 0.082 ± 0.05 0.034–0.201 | 0.675 |
FAZ perimeter, mm | 1.211 ± 0.39 (0.698–1.925) | 1.136 ± 0.32 0.724–1.800 | 0.221 |
Foveal vessel density, % | 46.0 ± 6.99 (35.5–58.3) | 47.7 ± 5.47 39.0–57.6 | 0.650 |
FAZ acircularity index | 1.21 ± 0.12 (1.06–1.38) | 1.17 ± 0.13 1.06–1.45 | 0.311 |
ERM, n = 10 Mean ± SD (Min–Max) | ERM + ILM, n = 15 Mean ± SD (Min–Max) | p Value | |
---|---|---|---|
Preoperative | |||
BCVA (LogMAR) | 0.56 ± 0.26 (0.20–1.00) | 0.42 ± 0.17 (0.20–0.70) | 0.133 a |
RVTI | 1.230 ± 0.038 (1.19–1.31) | 1.220 ± 0.017 (1.20–1.26) | 0.956 a |
Central subfield thickness, µm | 473.5 ± 106.0 (338–691) | 479.8 ± 92.4 (300–588) | 0.542 a |
FAZ area, mm2 | 0.081 ± 0.06 (0.040–0.249) | 0.095 ± 0.07 0.027–0.225 | 0.973 a |
FAZ perimeter, mm | 1.187 ± 0.33 (0.918–1.964) | 1.211 ± 0.39 (0.698–1.925) | 0.973 a |
Foveal vessel density, % | 41.6 ± 9.69 (27.6–57.4) | 46.0 ± 6.99 (35.5–58.3) | 0.271 a |
FAZ acircularity index | 1.25 ± 0.08 (1.11–1.36) | 1.21 ± 0.12 (1.06–1.38) | 0.616 a |
Postoperative | |||
BCVA (LogMAR) | 0.25 ± 0.16 (0.00–0.49) | 0.14 ± 0.13 (0.00–0.52) | 0.085 a |
RVTI | 1.195 ± 0.024 (1.16–1.24) | 1.201 ± 0.020 (1.17–1.23) | 0.494 b |
Central subfield thickness, µm | 425.7 ± 72.1 (297–511) | 422.4 ± 52.8 (338–515) | 0.868 a |
FAZ area, mm2 | 0.090 ± 0.03 0.063–0.144 | 0.082 ± 0.05 0.034–0.201 | 0.404 a |
FAZ perimeter, mm | 1.197 ± 0.21 0.961–1.542) | 1.136 ± 0.32 0.724–1.800 | 0.616 a |
Foveal vessel density, % | 44.7 ± 6.28 (37.1–53.7) | 47.7 ± 5.47 39.0–57.6 | 0.217 a |
FAZ acircularity index | 1.14 ± 0.06 (1.08–1.26) | 1.17 ± 0.13 1.06–1.45 | 0.920 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yanık, Ö.; Aydın Ellialtıoğlu, P.; Demirel, S.; Batıoğlu, F.; Özmert, E. Retinal Vascular Tortuosity Index Change after Idiopathic Epiretinal Membrane Surgery: Does Internal Limiting Membrane Peeling Affect Retinal Vascular Tortuosity? Diagnostics 2023, 13, 797. https://doi.org/10.3390/diagnostics13040797
Yanık Ö, Aydın Ellialtıoğlu P, Demirel S, Batıoğlu F, Özmert E. Retinal Vascular Tortuosity Index Change after Idiopathic Epiretinal Membrane Surgery: Does Internal Limiting Membrane Peeling Affect Retinal Vascular Tortuosity? Diagnostics. 2023; 13(4):797. https://doi.org/10.3390/diagnostics13040797
Chicago/Turabian StyleYanık, Özge, Pınar Aydın Ellialtıoğlu, Sibel Demirel, Figen Batıoğlu, and Emin Özmert. 2023. "Retinal Vascular Tortuosity Index Change after Idiopathic Epiretinal Membrane Surgery: Does Internal Limiting Membrane Peeling Affect Retinal Vascular Tortuosity?" Diagnostics 13, no. 4: 797. https://doi.org/10.3390/diagnostics13040797
APA StyleYanık, Ö., Aydın Ellialtıoğlu, P., Demirel, S., Batıoğlu, F., & Özmert, E. (2023). Retinal Vascular Tortuosity Index Change after Idiopathic Epiretinal Membrane Surgery: Does Internal Limiting Membrane Peeling Affect Retinal Vascular Tortuosity? Diagnostics, 13(4), 797. https://doi.org/10.3390/diagnostics13040797