The Effect of a Bioactive Oral System and CO2 Laser on Enamel Susceptibility to Acid Challenge
Abstract
1. Introduction
2. Materials and Methods
2.1. Specimens Preparation
2.2. The Application of Regenerate Enamel Science System
2.3. The Application of Carbon Dioxide Laser CO2
2.4. Acid Challenge (pH-Cycling)
2.5. Raman Microspectroscopy
2.6. Scanning Electron Microscopy-Energy Dispersive Spectroscopy (SEM-EDX) Analysis
2.7. Vickers Microhardness
2.8. Statistical Analyses
3. Results
3.1. Chemical Analysis of Enamel before and after pH-Cycling
3.2. Vickers Microhardness
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Langhorst, S.E.; O’donnell, J.N.R.; Skrtic, D. In vitro remineralization of enamel by polymeric amorphous calcium phosphate composite: Quantitative microradiographic study. Dent. Mater. 2009, 25, 884–891. [Google Scholar] [CrossRef]
- Malinowski, M.; Duggal, M.S.; Strafford, S.M.; Toumba, K.J. The effect on dental enamel of varying concentrations of fluoridated milk with a cariogenic challenge in situ. J. Dent. 2012, 40, 929–933. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Wang, J.; Joiner, A.; Chang, J. The remineralisation of enamel: A review of the literature. J. Dent. 2014, 42, S12–S20. [Google Scholar] [CrossRef] [PubMed]
- Amaechi, B.T.; Van Loveren, C. Fluorides and non-fluoride remineralization systems. Toothpastes Monogr. Oral Sci. Basel Karger 2013, 23, 15–26. [Google Scholar] [CrossRef]
- Hornby, K.; Ricketts, S.R.; Philpotts, C.J.; Joiner, A.; Schemehorn, B.; Willson, R. Enhanced enamel benefits from a novel toothpaste and dual phase gel containing calcium silicate and sodium phosphate salts. J. Dent. 2014, 42, S39–S45. [Google Scholar] [CrossRef]
- Barrera-Ortega, C.C.; Vázquez-Olmos, A.R.; Sato-Berrú, R.Y.; Araiza-Téllez, M.A. Study of demineralized dental enamel treated with different fluorinated compounds by Raman spectroscopy. J. Biomed. Phys. Eng. 2020, 10, 635–644. [Google Scholar] [CrossRef] [PubMed]
- Vicente, A.; Ortiz-Ruiz, A.J.; González-Paz, B.M.; Martínez-Beneyto, Y.; Bravo-González, L.A. Effectiveness of a toothpaste and a serum containing calcium silicate on protecting the enamel after interproximal reduction against demineralization. Sci. Rep. 2021, 11, 834. [Google Scholar] [CrossRef] [PubMed]
- Parker, A.S.; Patel, A.N.; Al Botros, R.; Snowden, M.E.; McKelvey, K.; Unwin, P.R.; Ashcroft, A.T.; Carvell, M.; Joiner, A.; Peruffo, M. Measurement of the efficacy of calcium silicate for the protection and repair of dental enamel. J. Dent. 2014, 42, S21–S29. [Google Scholar] [CrossRef]
- Fernandes, N.L.; da Cunha Juliellen, L.; de Oliveira Andressa, F.B.; D’Alpino, H.P.; Sampaio, C.F. Resistance against erosive challenge of dental enamel treated with 1,450-PPM fluoride toothpastes containing different biomimetic compounds. Eur. J. Dent. 2021, 15, 433–439. [Google Scholar] [CrossRef]
- Tomaz, P.L.S.; de Sousa, L.A.; de Aguiar, K.F.; de Sá Oliveira, T.; Matochek, M.H.; Polassi, M.R.; D’Alpino, P.H. Effects of 1450-ppm fluoride-containing toothpastes associated with boosters on the enamel remineralization and surface roughness after cariogenic challenge. Eur. J. Dent. 2020, 14, 161–170. [Google Scholar] [CrossRef]
- Schmidlin, P.; Zobrist, K.; Attin, T.; Wegehaupt, F. In vitro re-hardening of artificial enamel caries lesions using enamelmatrix proteins or self-assembling peptides. J. Appl. Oral. Sci. 2016, 24, 31–36. [Google Scholar] [CrossRef]
- Kasraei, S.; Kasraei, P.; Valizadeh, S.; Azarsina, M. Rehardening of eroded enamel with CPP-ACFP paste and CO2 laser treatment. BioMed. Res. Int. 2021, 2021, 3304553. [Google Scholar] [CrossRef] [PubMed]
- Esteves-Oliveira, M.; El-Sayed, K.F.; Dörfer, C.; Schwendicke, F. Impact of combined CO2 laser irradiation and fluoride on enamel and dentin biofilm-induced mineral loss. Clin. Oral Investig. 2017, 21, 1243–1250. [Google Scholar] [CrossRef] [PubMed]
- Palaia, G.; Del Vecchio, A.; Impellizzeri, A.; Tenore, G.; Visca, P.; Libotte, F.; Russo, C.; Romeo, U. Histological ex vivo evaluation of peri-incisional thermal effect created by a new-generation CO2 superpulsed laser. Sci. World J. 2014, 2014, 345685. [Google Scholar] [CrossRef]
- Al-Maliky, M.A.; Frentzen, M.; Meister, J. Laser-assisted prevention of enamel caries: A 10-year review of the literature. Lasers Med. Sci. 2020, 35, 13–30. [Google Scholar] [CrossRef]
- Zancopé, B.R.; Rodrigues, L.P.; Parisott, T.M.; Steiner-Oliveira, C.; Rodrigues, L.K.; Nobre-Dos-Santos, M. CO2 laser irradiation enhances CaF2 formation and inhibits lesion progression on demineralized dental enamel-in vitro study. Lasers Med. Sci. 2016, 31, 539–547. [Google Scholar] [CrossRef] [PubMed]
- Rechmann, P.; Le, C.; Kinsel, R.; Kerbage, C.; Rechmann, B. In vitro CO2 9.3-μm short-pulsed laser caries prevention—Effects of a newly developed laser irradiation pattern. Lasers Med. Sci. 2020, 35, 979–989. [Google Scholar] [CrossRef]
- Yilmaz, N.; Baltaci, E.; Baygin, O.; Tüzüner, T.; Ozkaya, S.; Canakci, A. Effect of the usage of Er, Cr: YSGG laser with and without different remineralization agents on the enamel erosion of primary teeth. Lasers Med. Sci. 2020, 35, 1607–1620. [Google Scholar] [CrossRef] [PubMed]
- Adel, S.M.; Marzouk, E.S.; El-Harouni, N. Combined effect of Er, Cr: YSGG laser and casein phosphopeptide amorphous calcium phosphate on the prevention of enamel demineralization: An in-vitro study. Angle Orthod. 2020, 90, 369–375. [Google Scholar] [CrossRef] [PubMed]
- Baena, J.R.; Lendl, B. Raman spectroscopy in chemical bioanalysis. Curr. Opin. Chem. Biol 2004, 8, 534–539. [Google Scholar] [CrossRef]
- Kuramochi, E.; Iizuka, J.; Mukai, Y. Influences of bicarbonate on processes of enamel subsurface remineralization and demineralization: Assessment using micro-Raman spectroscopy and transverse microradiography. Eur. J. Oral Sci. 2016, 124, 554–558. [Google Scholar] [CrossRef] [PubMed]
- Xu, C.; Reed, R.; Gorski, J.P.; Wang, Y.; Walker, M.P. The distribution of carbonate in enamel and its correlation with structure and mechanical properties. J. Mater. Sci. 2012, 47, 8035–8043. [Google Scholar] [CrossRef]
- Al-Shareefi, S.; Addie, A.; Al-Taee, L. Biochemical and Mechanical Analysis of Occlusal and Proximal Carious Lesions. Diagnostics 2022, 12, 2944. [Google Scholar] [CrossRef] [PubMed]
- Luk, K.; Zhao, I.S.; Yu, O.Y.; Zhang, J.; Gutknecht, N.; Chu, C.H. Effects of 10,600 nm carbon dioxide laser on remineralizing caries: A literature review. Photobiomodul. Photomed. Laser Surg. 2020, 38, 59–65. [Google Scholar] [CrossRef] [PubMed]
- Featherstone, J.D.B.; Glena, R.; Shariati, M.; Shields, C. Dependence of in vitro demineralization of apatite and remineralization of dental enamel on fluoride concentration. J. Dent. Res. 1990, 69, 620–625. [Google Scholar] [CrossRef]
- Amaechi, B.T. Protocols to study dental caries in vitro: pH cycling models. In Odontogenesis; Humana Press: New York, NY, USA, 2019; pp. 379–392. [Google Scholar] [CrossRef]
- Ko, A.C.T.; Choo-Smith, L.P.; Hewko, M.; Sowa, M.G. Detection of early dental caries using polarized Raman spectroscopy. Opt. Express 2006, 14, 203–215. [Google Scholar] [PubMed]
- Tsuda, H.; Arends, J. Raman spectroscopy in dental research: A short review of recent studies. Adv. Dent. Res. 1997, 11, 539–547. [Google Scholar] [CrossRef]
- Awonusi, A.; Morris, M.D.; Tecklenburg, M.M. Carbonate assignment and calibration in the Raman spectrum of apatite. Calcif. Tissue Int. 2007, 81, 46–52. [Google Scholar] [CrossRef]
- Ramakrishnaiah, R.; Rehman, G.U.; Basavarajappa, S.; Al Khuraif, A.A.; Durgesh, B.H.; Khan, A.S.; Rehman, I.U. Applications of Raman spectroscopy in dentistry: Analysis of tooth structure. Appl. Spectrosc. Rev. 2015, 50, 332–350. [Google Scholar] [CrossRef]
- Sun, Y.; Li, X.; Deng, Y.; Sun, J.N.; Tao, D.; Chen, H.; Hu, Q.; Liu, R.; Liu, W.; Feng, X.; et al. Mode of action studies on the formation of enamel minerals from a novel toothpaste containing calcium silicate and sodium phosphate salts. J. Dent. 2014, 42, S30–S38. [Google Scholar] [CrossRef] [PubMed]
- Al-Janabi, S.Z.; Al-Dahan, Z.A. The Effects of Nano-Hydroxyapatite and Casein Phosphopeptide-Amorphous Calcium Phosphate in Preventing Loss of Minerals from Teeth after Exposure to an Acidic Beverage: An in Vitro Study. J. Baghdad Coll. Dent. 2015, 325, 1–6. [Google Scholar]
- Esfahani, K.S.; Mazaheri, R.; Pishevar, L. Effects of treatment with various remineralizing agents on the microhardness of demineralized enamel surface. J. Dent. Res. Dent. Clin. Dent. Prospects 2015, 9, 239. [Google Scholar] [CrossRef]
- Liu, Q.; Matinlinna, J.P.; Chen, Z.; Ning, C.; Ni, G.; Pan, H.; Darvell, B.W. Effect of thermal treatment on carbonated hydroxyapatite: Morphology, composition, crystal characteristics and solubility. Ceram. Int. 2015, 41, 6149–6157. [Google Scholar] [CrossRef]
- Rodríguez-Vilchis, L.E.; Contreras-Bulnes, R.; Olea-Mejìa, O.F.; Sánchez-Flores, I.; Centeno-Pedraza, C. Morphological and structural changes on human dental enamel after Er: YAG laser irradiation: AFM, SEM, and EDS evaluation. Photomed. Laser Surg. 2011, 29, 493–500. [Google Scholar] [CrossRef] [PubMed]
- Hsu, C.Y.; Jordan, T.H.; Dederich, D.N.; Wefel, J.S. Effects of low-energy CO2 laser irradiation and the organic matrix on inhibition of enamel demineralization. J. Dent. Res. 2000, 79, 1725–1730. [Google Scholar] [CrossRef]
- Liu, Y.; Hsu, C.Y.S. Laser-induced compositional changes on enamel: A FT-Raman study. J. Dent. 2007, 35, 226–230. [Google Scholar] [CrossRef] [PubMed]
- Garma, N.M.; Jasim, E.S. The effect of Er: YAG laser on enamel resistance to caries during orthodontic treatment: An in vitro study. J. Baghdad Coll. Dent. 2015, 27, 182–188. [Google Scholar] [CrossRef]
- Chen, C.C.; Huang, S.T. The Effects of Lasers and Fluoride on the Acid Resistance of Decalcified Human Enamel. Photomed. Laser Surg. 2009, 27, 447–452. [Google Scholar] [CrossRef] [PubMed]
- Saber-Samandari, S.; Gross, K.A. Micromechanical properties of single crystal hydroxyapatite by nanoindentation. Acta Biomater. 2009, 5, 2206–2212. [Google Scholar] [CrossRef] [PubMed]
- Freeman, J.J.; Wopenka, B.; Silva, M.J.; Pasteris, J.D. Raman spectroscopic detection of changes in bioapatite in mouse femora as a function of age and in vitro fluoride treatment. Calcif. Tissue Int. 2001, 68, 156–162. [Google Scholar]
- Crombie, F.A.; Manton, D.J.; Palamara, J.E.; Zalizniak, I.; Cochrane, N.J.; Reynolds, E.C. Characterisation of developmentally hypomineralised human enamel. J. Dent. 2013, 41, 611–618. [Google Scholar] [CrossRef] [PubMed]
Raman Peaks | Groups (n = 10) | Peaks Intensities (Mean ± SD) before pH-Cycling | Peaks Intensities (Mean ± SD) after pH-Cycling |
---|---|---|---|
Phosphate peaks | |||
ν1-PO4 (960 cm−1) | Control | 1594.99 ± 15.3 | 779.22 ± 17.4 ^ |
Regenerate | 2811.21± 11.0 * | 1072.51± 16.9 *^ | |
CO2 Laser | 1891.62 ± 16.6 * | 940.69 ± 18.0 *^ | |
ν2-PO4 (433 cm−1) | Control | 260.38 ± 14.9 | 187.68 ± 11.4 ^ |
Regenerate | 396.54 ± 11.2 * | 354.22 ± 10.6 *^ | |
CO2 Laser | 334.91 ± 11.3 * | 247.31 ± 14.4 *^ | |
ν3-PO4 (1029 cm−1) | Control | 64.56 ± 11.3 | 182.0 ± 11.0 ^ |
Regenerate | 132.16 ± 11.1 * | 344.24 ± 15.9 *^ | |
CO2 Laser | 40.03 ± 8.1 * | 71.94 ± 7.5 *^ | |
ν4-PO4 (579 cm−1) | Control | 246.21 ± 12.9 | 158.43 ± 8.3 ^ |
Regenerate | 422.06 ± 14.9 * | 355.47 ± 15.8 *^ | |
CO2 Laser | 352.64 ± 14.5 * | 217.31 ± 11.4 *^ | |
Carbonate peakCO3 (1070 cm−1) | Control | 70.66 ± 8.3 | 242.79 ± 19.7 ^ |
Regenerate | 91.83 ± 6.1 * | 355.53 ± 27.2 *^ | |
CO2 Laser | 36.66 ± 6.7 * | 67.76 ± 14.1 *^ |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shubbar, M.; Addie, A.; Al-Taee, L. The Effect of a Bioactive Oral System and CO2 Laser on Enamel Susceptibility to Acid Challenge. Diagnostics 2023, 13, 1087. https://doi.org/10.3390/diagnostics13061087
Shubbar M, Addie A, Al-Taee L. The Effect of a Bioactive Oral System and CO2 Laser on Enamel Susceptibility to Acid Challenge. Diagnostics. 2023; 13(6):1087. https://doi.org/10.3390/diagnostics13061087
Chicago/Turabian StyleShubbar, Mustafa, Ali Addie, and Lamis Al-Taee. 2023. "The Effect of a Bioactive Oral System and CO2 Laser on Enamel Susceptibility to Acid Challenge" Diagnostics 13, no. 6: 1087. https://doi.org/10.3390/diagnostics13061087
APA StyleShubbar, M., Addie, A., & Al-Taee, L. (2023). The Effect of a Bioactive Oral System and CO2 Laser on Enamel Susceptibility to Acid Challenge. Diagnostics, 13(6), 1087. https://doi.org/10.3390/diagnostics13061087