Analysis of Corneal Deformation in Paediatric Patients Affected by Maturity Onset Diabetes of the Young Type 2
Abstract
:1. Introduction
2. Materials and Methods
Statistical Analysis
3. Results
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Tinto, N.; Zagari, A.; Capuano, M.; De Simone, A.; Capobianco, V.; Daniele, G.; Giugliano, M.; Spadaro, R.; Franzese, A.; Sacchetti, L. Glucokinase gene mutations: Structural and genotype-phenotype analyses in MODY children from South Italy. PLoS ONE 2008, 3, e1870. [Google Scholar] [CrossRef] [PubMed]
- Capuano, M.; Garcia-Herrero, C.M.; Tinto, N.; Carluccio, C.; Capobianco, V.; Coto, I.; Cola, A.; Iafusco, D.; Franzese, A.; Zagari, A.; et al. Glucokinase (GCK) mutations and their characterization in MODY2 children of southern Italy. PLoS ONE 2012, 7, e38906. [Google Scholar] [CrossRef] [PubMed]
- Pinelli, M.; Acquaviva, F.; Barbetti, F.; Caredda, E.; Cocozza, S.; Delvecchio, M.; Mozzillo, E.; Pirozzi, D.; Prisco, F.; Rabbone, I.; et al. Identification of candidate children for maturity-onset diabetes of the young type 2 (MODY 2) gene testing: A seven-item clinical flowchart (7-iF). PLoS ONE 2013, 11, e79933. [Google Scholar]
- Sanyoura, M.; Philipson, L.H.; Naylor, R. Monogenic diabetes in children and adolescents: Recognition and treatment options. Curr. Diabetes Rep. 2018, 18, 58. [Google Scholar] [CrossRef] [PubMed]
- Delvecchio, M.; Salzano, G.; Bonura, C.; Cauvin, V.; Cherubini, V.; d’Annunzio, G.; Franzese, A.; Giglio, S.; Grazzo, V.; Graziani, V.; et al. Can HbA1c combined with fasting plasma glucose help to assess priority for GCK-MODY vs HNF1A-MODY genetic testing? Acta Diabetol. 2018, 55, 981–983. [Google Scholar] [CrossRef]
- Bitterman, O.; Tinto, N.; Franzese, A.; Iafusco, F.; Festa, C.; Mozzillo, E.; Napoli, A.; Iafusco, D. Glucokinase deficit and birthweight: Does maternal hyperglycemia always meet fetal needs? Acta Diabetol. 2018, 55, 1247–1250. [Google Scholar] [CrossRef]
- Delvecchio, M.; Mozzillo, E.; Salzano, G.; Iafusco, D.; Frontino, G.; Patera, P.I.; Rabbone, I.; Cherubini, V.; Grasso, V.; Tinto, N.; et al. Monogenic Diabetes Accounts for 6.3% of Cases Referred to 15 Italian Pediatric Diabetes Centers During 2007 to 2012. J. Clin. Endocrinol. Metab. 2017, 102, 1826–1834. [Google Scholar] [CrossRef]
- Sady, C.; Khosrof, S.; Nagaraj, R. Advanced Maillard reaction and crosslinking of corneal collagen in diabetes. Biochem. Biophys. Res. Commun. 1995, 214, 793–797. [Google Scholar] [CrossRef]
- Kaji, Y.; Usui, T.; Oshika, T.; Matsubara, M.; Yamashita, H.; Araie, M.; Murata, T.; Ishibashi, T.; Nagai, R.; Horiuchi, S.; et al. Advanced glycation end products in diabetic corneas. Investig. Ophthalmol. Vis. Sci. 2000, 41, 362–368. [Google Scholar]
- Wang, W.; Du, S.; Zhang, X. Corneal deformation response in patients with primary open-angle glaucoma and in healthy subjects analyzed by Corvis ST. Investig. Ophthalmol. Vis. Sci. 2015, 56, 5557–5565. [Google Scholar] [CrossRef]
- Elsheikh, A.; Joda, A.; Abass, A.; Garway-Heath, D. Assessment of the ocular response analyzer as an instrument for measurement of intraocular pressure and corneal biomechanics. Curr. Eye Res. 2015, 40, 1111–1119. [Google Scholar] [CrossRef] [PubMed]
- Lanza, M.; Cennamo, M.; Iaccarino, S.; Romano, V.; Bifani, M.; Irregolare, C.; Lanza, A. Evaluation of corneal deformation analyzed with a Scheimpflug based device. Cont. Lens Anterior Eye. 2015, 38, 89–93. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Xu, G.; Wang, W.; Wang, J.; Chen, L.; He, M.; Chen, Z. Changes in corneal biomechanics in patients with diabetes mellitus: A systematic review and meta-analysis. Acta Diabetol. 2020, 57, 973–981. [Google Scholar] [CrossRef] [PubMed]
- Lanza, M.; Iaccarino, S.; Bifani, M. In vivo human corneal deformation analysis with a Scheimpflug camera, a critical review. J. Biophotonics 2016, 9, 464–477. [Google Scholar] [CrossRef]
- Chong, J.; Dupps, W.J., Jr. Corneal biomechanics: Measurement and structural correlations. Exp. Eye Res. 2021, 205, 108508. [Google Scholar] [CrossRef]
- Del Buey, M.A.; Casas, P.; Caramello, C.; López, N.; de la Rica, M.; Subirón, A.B.; Lanchares, E.; Huerva, V.; Grzybowski, A.; Ascaso, F.J. An update on corneal biomechanics and architecture in diabetes. J. Ophthalmol. 2019, 2019, 7645352. [Google Scholar] [CrossRef]
- Pérez-Rico, C.; Gutiérrez-Ortíz, C.; González-Mesa, A.; Zandueta, A.M.; Moreno-Salgueiro, A.; Germain, F. Effect of diabetes mellitus on Corvis ST measurement process. Acta Ophthalmol. 2015, 93, e193–e198. [Google Scholar] [CrossRef]
- Ramm, L.; Herber, R.; Spoerl, E.; Pillunat, L.E.; Terai, N. Measurement of Corneal Biomechanical Properties in Diabetes Mellitus Using the Ocular Response Analyzer and the Corvis ST. Cornea 2019, 38, 595–599. [Google Scholar] [CrossRef]
- Ramm, L.; Herber, R.; Spoerl, E.; Pillunat, L.E.; Terai, N. Factors Influencing Corneal Biomechanics in Diabetes Mellitus. Cornea 2020, 39, 552–557. [Google Scholar] [CrossRef]
- Kara, N.; Yildirim, Y.; Univar, T.; Kontbay, T. Corneal biomechanical properties in children with diabetes mellitus. Eur. J. Ophthalmol. 2013, 21, 27–32. [Google Scholar] [CrossRef]
- Nalcacioglu-Yuksekkaya, P.; Sen, E.; Cetinkaya, S.; Bas, V.; Aycan, Z.; Ozturk, F. Corneal biomechanical characteristics in children with diabetes mellitus. Int. Ophthalmol. 2014, 34, 881–886. [Google Scholar] [CrossRef] [PubMed]
- Lanza, M.; Iaccarino, S.; Mele, L.; Carnevale, U.A.G.; Irregolare, C.; Lanza, A.; Femiano, F.; Bifani, M. Intraocular pressure evaluation in healthy eyes and diseased ones using contact and no contact devices. Cont. Lens Anterior Eye 2016, 39, 154–159. [Google Scholar] [CrossRef] [PubMed]
- Lanza, M.; Sbordone, S.; Tortori, A.; Gironi Carnevale, U.A.; Melillo, P.; Simonelli, F. Evaluating Intraocular Pressure After Myopic Photorefractive Keratectomy: A Comparison of Different Tonometers. J. Glaucoma 2022, 31, 406–412. [Google Scholar] [CrossRef] [PubMed]
- Galgauskas, S.; Laurinavičiūtė, G.; Norvydaitė, D.; Stech, S.; Ašoklis, R. Changes in choroidal thickness and corneal parameters in diabetic eyes. Eur. J. Ophthalmol. 2016, 26, 163–167. [Google Scholar] [CrossRef] [PubMed]
- Briggs, S.; Osuagwu, U.L.; AlHarthi, E.M. Manifestations of type 2 diabetes in corneal endothelial cell density, corneal thickness and intraocular pressure. J. Biomed. Res. 2015, 30, 12. [Google Scholar]
- Ozdamar, Y.; Cankaya, B.; Ozalp, S.; Acaroglu, G.; Karakaya, J.; Özkan, S.S. Is there a correlation between diabetes mellitus and central corneal thickness? J. Glaucoma 2010, 19, 613–616. [Google Scholar] [CrossRef]
- El-Agamy, A.; Alsubaie, S. Corneal endothelium and central corneal thickness changes in type 2 diabetes mellitus. Clin. Ophthalmol. 2017, 11, 481–486. [Google Scholar] [CrossRef]
- Sanchis-Gimeno, J.A.; Alonso, L.; Rahhal, M.; Bastir, M.; Perez-Bermejo, M.; Belda-Salmeron, L. Corneal thickness differences between type 2 diabetes and non-diabetes subjects during preoperative laser surgery examination. J. Diabetes Complicat. 2017, 31, 209–212. [Google Scholar] [CrossRef]
- Karahan, M.; Demirtaş, A.A.; Erdem, S.; Ava, S.; Dursun, M.E.; Beştaş, A.; Haspolat, Y.K.; Keklikçi, U. Evaluation of anterior segment parameters with Pentacam in children with poorly-controlled type 1 Diabetes Mellitus without diabetic retinopathy. Photodiagn. Photodyn. Ther. 2021, 33, 102206. [Google Scholar] [CrossRef]
- Uzel, M.M.; Elgin, U.; Sen, E.; Keskin, M.; Sağsak, E.; Aycan, Z. Comparison of anterior segment parameters in juvenile diabetes mellitus and healthy eyes. Eur. J. Ophthalmol. 2016, 26, 618–622. [Google Scholar] [CrossRef]
- Wang, S.; Jia, Y.; Li, T.; Wang, A.; Gao, L.; Yang, C.; Zou, H. Comparison of Corneal Parameters of Children with Diabetes Mellitus and Healthy Children. J. Ophthalmol. 2019, 2019, 2037072. [Google Scholar] [CrossRef] [PubMed]
- Akinci, A.; Bulus, D.; Aycan, Z.; Oner, O. Central corneal thickness in children with diabetes. J. Refract. Surg. 2009, 25, 1041–1044. [Google Scholar] [CrossRef] [PubMed]
- Macias-Rodriguez, Y.; Ramos-Dávila, E.M.; Ruiz-Lozano, R.E.; Reyes-Arena, J.V.; Rivera-Alvarado, I.J.; Hernandez-Camarena, J.C.; Rodriguez-Garcia, A. Reproducibility, Repeatability, and Correlation of Central Corneal Thickness Measurement with the Pentacam Scheimpflug System and Ultrasound Pachymetry. Klin. Mon. Augenheilkd. 2022. Epub ahead of print. [Google Scholar] [CrossRef]
- Liaboe, C.A.; Aldrich, B.T.; Carter, P.C.; Skeie, J.M.; Burckart, K.A.; Schmidt, G.A.; Greiner, M.A. Assessing the impact of diabetes mellitus on donor corneal endothelial cell density. Cornea 2017, 36, 561–566. [Google Scholar] [CrossRef]
- Larsson, L.I.; Bourne, W.M.; Pach, J.M.; Brubaker, R.F. Structure and function of the corneal endothelium in diabetes mellitus type I and type II. Arch. Ophthalmol. 1996, 114, 9–14. [Google Scholar] [CrossRef]
- Ljubimov, A.V. Diabetic complications in the cornea. Vis. Res. 2017, 139, 138–152. [Google Scholar] [CrossRef]
- Scheler, A.; Spoerl, E.; Boehm, A.G. Effect of diabetes mellitus on corneal biomechanics and measurement of intraocular pressure. Acta Ophthalmol. 2012, 90, e447–e451. [Google Scholar] [CrossRef] [PubMed]
- Ramm, L.; Herber, R.; Spoerl, E.; Pillunat, L.E.; Terai, N. Intraocular pressure measurements in diabetes mellitus. Eur. J. Ophthalmol. 2020, 30, 1432–1439. [Google Scholar] [CrossRef]
MODY2 1 Group | Control Group | p-Value | ||
---|---|---|---|---|
AGE (years mean) | 12.8 (±5.66) | 13 (±5.05) | 0.58 | |
SEX (Males/Females) | 8/7 | 7/8 | ||
REFRACTIVE PARAMETERS: | UCVA 2 | 0.95 (±0.18) | 0.89 (±0.22) | 0.09 |
BCVA 3 | 1 | 1 | ||
sphere (D) | −0.12 (±0.39) | −0.31 (±0.60) | 0.62 | |
cylinder (D) | −0.05 (±0.20) | 0 |
MODY2 1 Group | Control Group | ||
---|---|---|---|
AUXOLOGICAL DATA (mean): | Weight (kg) | 44.2 (±21.35) | 44 (±29.40) |
Height (cm) | 149.6 (±23.61) | 126.5 (±59.75) | |
BMI 2 (kg/mq) | 18.62 (±4.65) | 18.62 (±9.63) | |
Time elapsed since diagnosis (years) | 8.33 (±6.52) | - | |
Waist circumference (cm) | 64.57 (±11.95) | ||
Fasting blood sugar (mg/dL) | 103.2 (±7.06) | - | |
HbA1c 3 value (%) | 6.18 (±0.39) | - |
Instrument | Parameters | MODY2 1 Group | Control Group | p-Value |
---|---|---|---|---|
Specular Microscope | ECD 2 (cd/mm2) | 3083.70 ± 340.15 | 2934.23 ± 165.90 | 0.039 |
CCT 3 (µm) | 539.47 ± 27.64 | 558.15 ± 21.34 | 0.006 | |
Corvis ST | IOP 4 (mmHg) | 16.83 ± 2.98 | 16.83 ± 1.72 | 1.000 |
Pachymetry (µm) | 553.30 ± 26.70 | 574.58 ± 17.69 | 0.001 | |
Pentacam | K1 F 5 (D) | 43.40 ± 1.92 | 43.27 ± 0.98 | 0.753 |
K2 F 6 (D) | 44.30 ± 1.90 | 44.21 ± 1.09 | 0.826 | |
Km F 7 (D) | 43.84 ± 1.89 | 43.73 ± 1.00 | 0.792 | |
Pachymetry Apex (µm) | 558.61 ± 23.06 | 576.31 ± 17.72 | 0.003 | |
Pachymetry Pupil (µm) | 557.93 ± 22.98 | 575.81 ± 18.05 | 0.002 | |
Corneal Volume 3 mm (mm3) | 4.03 ± 0.17 | 4.17 ± 0.14 | 0.002 | |
Corneal Volume 5 mm (mm3) | 11.76 ± 0.46 | 12.20 ± 0.36 | 0.000 |
Parameters | MODY2 1 Group | Control Group | p Value |
---|---|---|---|
Deformation Amplitude Max (mm) | 1.01 ± 0.10 | 1.02 ± 0.09 | 0.851 |
A1 2 Time (ms) | 7.67 ± 0.36 | 7.66 ± 0.21 | 0.871 |
A1 2 Velocity (m/s) | 0.14 ± 0.02 | 0.14 ± 0.02 | 0.933 |
A2 3 Time (ms) | 21.54 ± 0.87 | 21.70 ± 0.53 | 0.391 |
A2 3 Velocity (m/s) | −0.25 ± 0.04 | −0.25 ± 0.03 | 0.399 |
HC 4 Time (ms) | 17.09 ± 0.51 | 17.36 ± 0.53 | 0.059 |
Peak Distance (mm) | 4.78 ± 0.32 | 4.84 ± 0.21 | 0.440 |
Radius (mm) | 7.97 ± 1.16 | 8.43 ± 0.91 | 0.107 |
A1 2 Deformation Amplitude (mm) | 0.14 ± 0.01 | 0.14 ± 0.01 | 0.795 |
HC 4 Deformation Amplitude (mm) | 1.01 ± 0.10 | 1.02 ± 0.09 | 0.851 |
A2 3 Deformation Amplitude (mm) | 0.47 ± 0.11 | 0.45 ± 0.06 | 0.497 |
A1 2 Deflection Length (mm) | 2.30 ± 0.12 | 2.37 ± 0.16 | 0.090 |
HC 4 Deflection Length (mm) | 6.14 ± 0.49 | 6.44 ± 0.33 | 0.010 |
A2 3 Deflection Length (mm) | 3.47 ± 0.84 | 3.47 ± 0.67 | 0.996 |
A1 2 Deflection Amplitude (mm) | 0.10 ± 0.01 | 0.10 ± 0.01 | 0.040 |
HC 4 Deflection Amplitude (mm) | 0.81 ± 0.10 | 0.82 ± 0.07 | 0.574 |
A2 3 Deflection Amplitude (mm) | 0.14 ± 0.12 | 0.13 ± 0.05 | 0.774 |
Deflection Amplitude Max (mm) | 0.86 ± 0.18 | 0.84 ± 0.08 | 0.696 |
Deflection Amplitude Max (ms) | 16.78 ± 2.98 | 16.01 ± 0.55 | 0.174 |
Whole Eye Movement Max (mm) | 0.35 ± 0.07 | 0.33 ± 0.05 | 0.339 |
Whole Eye Movement Max (ms) | 21.90 ± 1.29 | 21.62 ± 0.59 | 0.294 |
A1 2 Deflection Area (mm2) | 0.18 ± 0.02 | 0.20 ± 0.02 | 0.002 |
HC 4 Deflection Area (mm2) | 2.82 ± 0.49 | 2.95 ± 0.35 | 0.265 |
A2 3 Deflection Area (mm2) | 0.36 ± 0.52 | 0.32 ± 0.18 | 0.696 |
Max Inverse Radius (mm−1) | 0.17 ± 0.07 | 0.15 ± 0.02 | 0.151 |
Deflection Amplitude Ratio Max (2 mm) | 4.00 ± 0.34 | 3.87 ± 0.32 | 0.150 |
Pachymety Slope (µm) | 35.27 ± 5.40 | 39.46 ± 7.93 | 0.033 |
Deflection Amplitude Ratio Max (1 mm) | 1.52 ± 0.04 | 1.50 ± 0.04 | 0.166 |
bIOP 5 | 16.74 ± 2.80 | 16.17 ± 1.56 | 0.353 |
Integrated Radius (mm−1) | 7.09 ± 0.66 | 6.71 ± 0.73 | 0.055 |
Best Model | Weight (kg) | Height (cm) | BMI 1 (kg/mq) | Waist Circumference (cm) | Fasting Blood Sugar (mg/dL) | HbA1c 2 (%) | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
p | p | p | p | p | p | |||||||
Deformation Amplitude Max (mm) | 0.019 | 0.984 | 0.013 | 0.991 | 0.005 | 0.982 | 62.315 | <0.001 | −0.001 | 0.997 | 7.35 × 10−5 | 0.997 |
A1 3 Time (ms) | −0.007 | 0.987 | 0.002 | 0.997 | −0.003 | 0.975 | −0.009 | 0.969 | −0.002 | 0.988 | 3.9 × 10−5 | 0.996 |
A1 3 Velocity (ms) | 0.056 | 0.989 | 0.029 | 0.995 | 0.015 | 0.986 | 449.089 | <0.001 | 0.0133 | 0.992 | −2.1 × 10−5 | 0.999 |
A2 4 Time (ms) | −0.000 | 0.994 | −0.0006 | 0.993 | −4.4 × 10−5 | 0.997 | −9.6 × 10−5 | 0.998 | 6.1 × 10−5 | 0.997 | 0.285 | <0.001 |
A2 4 Velocity (ms) | −0.010 | 0.995 | −0.005 | 0.997 | −0.004 | 0.991 | −0.005 | 0.995 | −0.004 | 0.993 | 4.49 × 10−5 | 0.999 |
HC 5 Time (ms) | −0.001 | 0.991 | −0.001 | 0.995 | −0.000 | 0.991 | −0.000 | 0.995 | −7.9 × 10−5 | 0.998 | 0.360 | <0.001 |
Peak Distance (mm) | 0.017 | 0.971 | 0.008 | 0.988 | 0.005 | 0.961 | 0.016 | 0.950 | 0.002 | 0.989 | 0.000 | 0.988 |
Radius (mm) | −0.000 | 0.993 | −0.001 | 0.991 | −4 × 10−5 | 0.997 | −0.000 | 0.996 | 7.81 × 10−5 | 0.996 | 6.85 × 10−6 | 0.994 |
A1 3 Deflection Amplitude (mm) | −0.026 | 0.995 | −0.007 | 0.999 | −0.008 | 0.993 | −0.022 | 0.992 | −0.005 | 0.997 | −0.000 | 0.998 |
HC 5 Deflection Amplitude (mm) | 0.0195 | 0.985 | 0.0135 | 0.991 | 0.005 | 0.982 | 62.316 | <0.001 | −0.001 | 0.997 | 7.35 × 10−5 | 0.997 |
A2 4 Deflection Amplitude (mm) | 0.001 | 0.999 | 0.0009 | 0.999 | −4.6 × 10−5 | 0.999 | 0.004 | 0.989 | −0.001 | 0.994 | 5.38 × 10−5 | 0.996 |
A1 3 Deflection Length (mm) | −0.004 | 0.992 | −0.004 | 0.994 | −0.001 | 0.992 | −0.003 | 0.990 | 0.000 | 0.998 | 8.22 × 10−6 | 0.999 |
HC 5 Deflection Length (mm) | 0.001 | 0.994 | −0.000 | 0.999 | 0.000 | 0.989 | 10.121 | <0.001 | 0.000 | 0.995 | 1.44 × 10−5 | 0.996 |
A2 4 Deflection Length (mm) | 9.57 × 10−5 | 0.999 | −1.1 × 10−5 | 0.999 | 4.15 × 10−5 | 0.997 | 0.0002 | 0.995 | −7.4 × 10−5 | 0.997 | 7.36 × 10−7 | 0.999 |
A1 3 Deflection Amplitude (mm) | −0.042 | 0.996 | −0.026 | 0.998 | −0.010 | 0.995 | −0.054 | 0.991 | 0.011 | 0.997 | −0.00097 | 0.995 |
HC 5 Deflection Amplitude (mm) | 0.060 | 0.968 | 0.036 | 0.983 | 0.016 | 0.960 | 77.465 | <0.001 | 0.002 | 0.996 | −4.2 × 10−5 | 1.000 |
A2 4 Deflection Amplitude (mm) | 0.004 | 0.993 | 0.003 | 0.995 | 0.001 | 0.994 | 0.0027 | 0.991 | −0.000 | 0.998 | 3.41 × 10−6 | 0.999 |
Deflection Amplitude Max (mm) | 0.005 | 0.989 | 0.003 | 0.994 | 0.001 | 0.988 | 0.005 | 0.982 | −0.001 | 0.996 | −3E−06 | 1.000 |
Deflection Amplitude Max (ms) | −8.3 × 10−5 | 0.996 | −9.5 × 10−5 | 0.996 | −2 × 10−5 | 0.996 | −2.1 × 10−5 | 0.998 | −5 × 10−5 | 0.994 | −7.2 × 10−7 | 0.998 |
Whole Eye Movement Max (mm) | −0.009 | 0.992 | −0.008 | 0.994 | −0.002 | 0.990 | 0.003 | 0.996 | −0.003 | 0.991 | 0.000125 | 0.994 |
Whole Eye Movement Max (ms) | −0.000 | 0.997 | −0.001 | 0.993 | −2.3 × 10−5 | 0.999 | 0.000 | 0.991 | −0.000 | 0.988 | 3.85 × 10−6 | 0.997 |
A1 3 Deflection Area (mm) | −0.0137 | 0.996 | −0.011 | 0.997 | −0.002 | 0.996 | −0.008 | 0.996 | −0.001 | 0.999 | −0.00029 | 0.995 |
HC 5 Deflection Area (mm) | 0.006 | 0.979 | 0.003 | 0.991 | 6.151 | <0.001 | 22.222 | <0.001 | 0.000 | 0.995 | 1.67 × 10−5 | 0.997 |
A2 4 Deflection Area (mm) | 0.001 | 0.994 | 0.001 | 0.995 | 0.000 | 0.995 | 0.001 | 0.991 | −0.000 | 0.998 | 1.41 × 10−6 | 1.000 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lanza, M.; Mozzillo, E.; Boccia, R.; Fedi, L.; Di Candia, F.; Tinto, N.; Melillo, P.; Simonelli, F.; Franzese, A. Analysis of Corneal Deformation in Paediatric Patients Affected by Maturity Onset Diabetes of the Young Type 2. Diagnostics 2023, 13, 1500. https://doi.org/10.3390/diagnostics13081500
Lanza M, Mozzillo E, Boccia R, Fedi L, Di Candia F, Tinto N, Melillo P, Simonelli F, Franzese A. Analysis of Corneal Deformation in Paediatric Patients Affected by Maturity Onset Diabetes of the Young Type 2. Diagnostics. 2023; 13(8):1500. https://doi.org/10.3390/diagnostics13081500
Chicago/Turabian StyleLanza, Michele, Enza Mozzillo, Rosa Boccia, Ludovica Fedi, Francesca Di Candia, Nadia Tinto, Paolo Melillo, Francesca Simonelli, and Adriana Franzese. 2023. "Analysis of Corneal Deformation in Paediatric Patients Affected by Maturity Onset Diabetes of the Young Type 2" Diagnostics 13, no. 8: 1500. https://doi.org/10.3390/diagnostics13081500
APA StyleLanza, M., Mozzillo, E., Boccia, R., Fedi, L., Di Candia, F., Tinto, N., Melillo, P., Simonelli, F., & Franzese, A. (2023). Analysis of Corneal Deformation in Paediatric Patients Affected by Maturity Onset Diabetes of the Young Type 2. Diagnostics, 13(8), 1500. https://doi.org/10.3390/diagnostics13081500