Polycystic Ovary Syndrome: Pathophysiology and Controversies in Diagnosis
Abstract
:1. Introduction
2. Pathogenesis of PCOS
2.1. Hyperandrogenism
2.2. Insulin Resistance and Hyperglycemia
2.3. Anti-Mullerian Hormone
3. Other Clinical Features of PCOS
3.1. Metabolic Syndrome
3.2. Reproductive–Infertility
4. Challenges in the Diagnosis of PCOS and Different Criteria
4.1. NIH Criteria
4.2. Rotterdam Criteria
4.3. Androgen Excess–PCOS (AE-PCOS) Society 2006 Criteria
5. Limitations of the Currently Used Diagnostic Criteria
6. Artificial Intelligence in PCOS Diagnosis
7. Future Remarks
8. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Hestiantoro, A.; Hasani, R.D.K.; Shadrina, A.; Situmorang, H.; Ilma, N.; Muharam, R.; Sumapraja, K.; Wiweko, B. Body fat percentage is a better marker than body mass index for determining inflammation status in polycystic ovary syndrome. Int. J. Reprod. Biomed. (IJRM) 2018, 16, 623–628. [Google Scholar] [CrossRef] [PubMed]
- Pundir, C.S.; Deswal, R.; Narwal, V.; Dang, A. The prevalence of polycystic ovary syndrome: A brief systematic review. J. Hum. Reprod. Sci. 2020, 13, 261–271. [Google Scholar] [CrossRef] [PubMed]
- Hoeger, K.M.; Dokras, A.; Piltonen, T. Update on PCOS: Consequences, challenges, and guiding treatment. J. Clin. Endocrinol. Metab. 2021, 106, e1071–e1083. [Google Scholar] [CrossRef] [PubMed]
- Escobar-Morreale, H.F. Polycystic ovary syndrome: Definition, aetiology, diagnosis and treatment. Nat. Rev. Endocrinol. 2018, 14, 270–284. [Google Scholar] [CrossRef] [PubMed]
- Laganà, A.S.; Vitale, S.G.; Noventa, M.; Vitagliano, A. Current management of polycystic ovary syndrome: From bench to bedside. Int. J. Endocrinol. 2018, 2018, 7234543. [Google Scholar] [CrossRef]
- Carmina, E.; Campagna, A.M.; Lobo, R.A. A 20-year follow-up of young women with polycystic ovary syndrome. Obstet. Gynecol. 2012, 119, 263–269. [Google Scholar] [CrossRef]
- van Keizerswaard, J.; de Loos, A.L.D.; Louwers, Y.V.; Laven, J.S. Sterility. Changes in individual polycystic ovary syndrome phenotypical characteristics over time: A long-term follow-up study. Fertil. Steril. 2022, 117, 1059–1066. [Google Scholar] [CrossRef]
- Singh, N.; Hooja, N.; Yadav, A.; Bairwa, P.; Jaiswal, A. Comparison of the various diagnostic criteria used in polycystic ovary syndrome. Int. J. Reprod. Contracept. Obstet. Gynecol. 2022, 11, 2180–2183. [Google Scholar] [CrossRef]
- Chemerinski, A.; Cooney, L.; Shah, D.; Butts, S.; Gibson-Helm, M.; Dokras, A. Knowledge of PCOS in physicians-in-training: Identifying gaps and educational opportunities. Gynecol. Endocrinol. 2020, 36, 854–859. [Google Scholar] [CrossRef]
- Chitra, P.; Sumathi, M.; Srilatha, K.; Jayasudha, F.; Amudha, S. Review of Artificial Intelligent based Algorithm for Prediction of Polycystic Ovary Syndrome (PCOS) from Blood Samples. In Proceedings of the 2022 4th International Conference on Inventive Research in Computing Applications (ICIRCA), Coimbatore, India, 21–23 September 2022. [Google Scholar] [CrossRef]
- Ramamoorthy, S.; Senthil Kumar, T.; Md. Mansoorroomi, S.; Premnath, B. Enhancing intricate details of ultrasound PCOD scan images using tailored anisotropic diffusion filter (TADF). In Intelligence in Big Data Technologies—Beyond the Hype: Proceedings of ICBDCC 2019; Springer: Berlin/Heidelberg, Germany, 2021; pp. 43–52. [Google Scholar] [CrossRef]
- Bharati, S.; Podder, P.; Mondal, M.R.H. Diagnosis of polycystic ovary syndrome using machine learning algorithms. In Proceedings of the 2020 IEEE Region 10 Symposium (TENSYMP), Dhaka, Bangladesh, 5–7 June 2020; pp. 1486–1489. [Google Scholar] [CrossRef]
- Sumathi, M.; Chitra, P.; Prabha, R.S.; Srilatha, K. Study and detection of PCOS related diseases using CNN. In Proceedings of the IOP Conference Series: Materials Science and Engineering, Tamil Nadu, India, 4–5 December 2021; p. 012062. [Google Scholar]
- Purnama, B.; Wisesti, U.N.; Nhita, F.; Gayatri, A.; Mutiah, T. A classification of polycystic Ovary Syndrome based on follicle detection of ultrasound images. In Proceedings of the 2015 3rd International Conference on Information and Communication Technology (ICoICT), Nusa Dua, Bali, Indonesia, 27–29 May 2015; pp. 396–401. [Google Scholar]
- Santosh, K.; Antani, S.; Guru, D.S.; Dey, N. Medical Imaging: Artificial Intelligence, Image Recognition, and Machine Learning Techniques; CRC Press: Boca Raton, FL, USA, 2019. [Google Scholar]
- Deepika, V.J. Applications of artificial intelligence techniques in polycystic ovarian syndrome diagnosis. J. Adv. Res. Technol. Manag. Sci. 2019, 1, 59–63. [Google Scholar]
- Danaei Mehr, H.; Polat, H. Diagnosis of polycystic ovary syndrome through different machine learning and feature selection techniques. Health Technol. 2022, 12, 137–150. [Google Scholar] [CrossRef]
- Armanini, D.; Boscaro, M.; Bordin, L.; Sabbadin, C. Controversies in the pathogenesis, diagnosis and treatment of PCOS: Focus on insulin resistance, Inflammation, and hyperandrogenism. Int. J. Mol. Sci. 2022, 23, 4110. [Google Scholar] [CrossRef] [PubMed]
- Tsilchorozidou, T.; Honour, J.W.; Conway, G.S. Altered cortisol metabolism in polycystic ovary syndrome: Insulin enhances 5α-reduction but not the elevated adrenal steroid production rates. J. Clin. Endocrinol. Metab. 2003, 88, 5907–5913. [Google Scholar] [CrossRef] [PubMed]
- Hernández-Jiménez, J.L.; Barrera, D.; Espinoza-Simón, E.; González, J.; Ortíz-Hernández, R.; Escobar, L.; Echeverría, O.; Torres-Ramírez, N. Polycystic ovarian syndrome: Signs and feedback effects of hyperandrogenism and insulin resistance. Gynecol. Endocrinol. 2022, 38, 2–9. [Google Scholar] [CrossRef]
- Yang, R.; Yang, S.; Li, R.; Liu, P.; Qiao, J.; Zhang, Y. Effects of hyperandrogenism on metabolic abnormalities in patients with polycystic ovary syndrome: A meta-analysis. Reprod. Biol. Endocrinol. 2016, 14, 67. [Google Scholar] [CrossRef]
- Bongrani, A.; Plotton, I.; Mellouk, N.; Ramé, C.; Guerif, F.; Froment, P.; Dupont, J. High androgen concentrations in follicular fluid of polycystic ovary syndrome women. Reprod. Biol. Endocrinol. 2022, 20, 88. [Google Scholar] [CrossRef]
- Azziz, R. Polycystic ovary syndrome. Obstet. Gynecol. 2018, 132, 321–336. [Google Scholar] [CrossRef]
- Kahraman, F.C.; Erdoğan, S.S. Grading of hirsutism: A practical approach to the modified Ferriman-Gallwey scoring system. Adv. Dermatol. Allergol./Postępy Dermatol. I Alergol. 2021, 38, 744–748. [Google Scholar]
- Wild, R.A. Ferriman Gallwey Self-Scoring: Performance Assessment in Women with the Polycystic Ovary Syndrome; The University of Oklahoma Health Sciences Center: Oklahoma, Japan, 2004. [Google Scholar]
- Abruzzese, G.A.; Silva, A.F.; Velazquez, M.E.; Ferrer, M.; Motta, A.B. Hyperandrogenism and Polycystic ovary syndrome: Effects in pregnancy and offspring development. WIREs Mech. Dis. 2022, 14, e1558. [Google Scholar] [CrossRef]
- Teede, H.J.; Misso, M.L.; Costello, M.F.; Dokras, A.; Laven, J.; Moran, L.; Piltonen, T.; Norman, R.J. Recommendations from the international evidence-based guideline for the assessment and management of polycystic ovary syndrome. Hum. Reprod. 2018, 33, 1602–1618. [Google Scholar] [CrossRef]
- Kim, J.J.; Hwang, K.R.; Oh, S.H.; Chae, S.J.; Yoon, S.H.; Choi, Y.M. Prevalence of insulin resistance in Korean women with polycystic ovary syndrome according to various homeostasis model assessment for insulin resistance cutoff values. Fertil. Steril. 2019, 112, 959–966.e1. [Google Scholar] [CrossRef] [PubMed]
- Zeng, X.; Xie, Y.-J.; Liu, Y.-T.; Long, S.-L.; Mo, Z.-C. Polycystic ovarian syndrome: Correlation between hyperandrogenism, insulin resistance and obesity. Clin. Chim. Acta 2020, 502, 214–221. [Google Scholar] [CrossRef]
- Deswal, R.; Nanda, S.; Dang, A.S. Association of Luteinizing hormone and LH receptor gene polymorphism with susceptibility of Polycystic ovary syndrome. Syst. Biol. Reprod. Med. 2019, 65, 400–408. [Google Scholar] [CrossRef] [PubMed]
- Dunaif, A.; Finegood, D.T. Beta-cell dysfunction independent of obesity and glucose intolerance in the polycystic ovary syndrome. J. Clin. Endocrinol. Metab. 1996, 81, 942–947. [Google Scholar] [CrossRef] [PubMed]
- Zhao, H.; Zhang, J.; Cheng, X.; Nie, X.; He, B. Insulin resistance in polycystic ovary syndrome across various tissues: An updated review of pathogenesis, evaluation, and treatment. J. Ovarian Res. 2023, 16, 9. [Google Scholar] [CrossRef]
- He, F.-F.; Li, Y.-M. Role of gut microbiota in the development of insulin resistance and the mechanism underlying polycystic ovary syndrome: A review. J. Ovarian Res. 2020, 13, 73. [Google Scholar] [CrossRef]
- Zhang, C.; Hu, J.; Wang, W.; Sun, Y.; Sun, K. HMGB1-induced aberrant autophagy contributes to insulin resistance in granulosa cells in PCOS. FASEB J. 2020, 34, 9563–9574. [Google Scholar] [CrossRef]
- Stepto, N.; Cassar, S.; Joham, A.E.; Hutchison, S.K.; Harrison, C.L.; Goldstein, R.F.; Teede, H.J. Women with polycystic ovary syndrome have intrinsic insulin resistance on euglycaemic-hyperinsulaemic clamp. Hum. Reprod. 2013, 28, 777–784. [Google Scholar] [CrossRef]
- Amisi, C.A. Markers of insulin resistance in Polycystic ovary syndrome women: An update. World J. Diabetes 2022, 13, 129. [Google Scholar] [CrossRef]
- Amato, M.C.; Vesco, R.; Vigneri, E.; Ciresi, A.; Giordano, C. Hyperinsulinism and polycystic ovary syndrome (PCOS): Role of insulin clearance. J. Endocrinol. Investig. 2015, 38, 1319–1326. [Google Scholar] [CrossRef]
- Lv, P.-P.; Jin, M.; Rao, J.-P.; Chen, J.; Wang, L.-Q.; Huang, C.-C.; Yang, S.-Q.; Yao, Q.-P.; Feng, L.; Shen, J.-M.; et al. Role of anti-Müllerian hormone and testosterone in follicular growth: A cross-sectional study. BMC Endocr. Disord. 2020, 20, 101. [Google Scholar] [CrossRef] [PubMed]
- Silva, M.S.; Giacobini, P. New insights into anti-Müllerian hormone role in the hypothalamic–pituitary–gonadal axis and neuroendocrine development. Cell. Mol. Life Sci. 2021, 78, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Anderson, R.A.; Su, H.I. The Clinical value and interpretation of anti-müllerian hormone in women with cancer. Front. Endocrinol. 2020, 11, 574263. [Google Scholar] [CrossRef] [PubMed]
- Moolhuijsen, L.M.; Visser, J.A. AMH in PCOS: Controlling the ovary, placenta, or brain? Curr. Opin. Endocr. Metab. Res. 2020, 12, 91–97. [Google Scholar] [CrossRef]
- Dewailly, D.; Gronier, H.; Poncelet, E.; Robin, G.; Leroy, M.; Pigny, P.; Duhamel, A.; Catteau-Jonard, S. Diagnosis of polycystic ovary syndrome (PCOS): Revisiting the threshold values of follicle count on ultrasound and of the serum AMH level for the definition of polycystic ovaries. Hum. Reprod. 2011, 26, 3123–3129. [Google Scholar] [CrossRef]
- Carmina, E.; Campagna, A.M.; Fruzzetti, F.; Lobo, R.A. Amh measurement versus ovarian ultrasound in the diagnosis of polycystic ovary syndrome in different phenotypes. Endocr. Pract. 2016, 22, 287–293. [Google Scholar] [CrossRef]
- de Loos, A.D.; Hund, M.; Buck, K.; Meun, C.; Sillman, J.; Laven, J.S. Antimüllerian hormone to determine polycystic ovarian morphology. Fertil. Steril. 2021, 116, 1149–1157. [Google Scholar] [CrossRef]
- Assens, M.; Dyre, L.; Henriksen, L.S.; Brocks, V.; Sundberg, K.; Jensen, L.N.; Pedersen, A.T.; Main, K.M. Menstrual pattern, reproductive hormones, and transabdominal 3D ultrasound in 317 adolescent girls. J. Clin. Endocrinol. Metab. 2020, 105, e3257–e3266. [Google Scholar] [CrossRef]
- Dewailly, D.; Robin, G.; Peigne, M.; Decanter, C.; Pigny, P.; Catteau-Jonard, S. Interactions between androgens, FSH, anti-Müllerian hormone and estradiol during folliculogenesis in the human normal and polycystic ovary. Hum. Reprod. Update 2016, 22, 709–724. [Google Scholar] [CrossRef]
- Jonard, S.; Dewailly, D. The follicular excess in polycystic ovaries, due to intra-ovarian hyperandrogenism, may be the main culprit for the follicular arrest. Hum. Reprod. Update 2004, 10, 107–117. [Google Scholar] [CrossRef]
- Pierre, A.; Taieb, J.; Giton, F.; Grynberg, M.; Touleimat, S.; El Hachem, H.; Fanchin, R.; Monniaux, D.; Cohen-Tannoudji, J.; Di Clemente, N.; et al. Dysregulation of the anti-müllerian hormone system by steroids in women with polycystic ovary syndrome. J. Clin. Endocrinol. Metab. 2017, 102, 3970–3978. [Google Scholar] [CrossRef] [PubMed]
- Butt, M.S.; Saleem, J.; Aiman, S.; Zakar, R.; Sadique, I.; Fischer, F. Serum anti-Müllerian hormone as a predictor of polycystic ovarian syndrome among women of reproductive age. BMC Women’s Health 2022, 22, 199. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Ma, X.; Luo, J.; Wang, X.; Han, L. Expression of Serum PSA, Nesfatin-1, and AMH in Patients with Polycystic Ovary Syndrome. Cell. Mol. Biol. 2021, 67, 57–63. [Google Scholar] [CrossRef] [PubMed]
- Madusudhanan, R.R.; Nambisan, B.; Brahmanandan, M.; Radha, S. Study on the Prevalence and Characteristics of Metabolic Syndrome in Women of Reproductive Age Group with Polycystic Ovarian Syndrome. J. South Asian Fed. Obstet. Gynaecol. 2016, 9, 341–347. [Google Scholar] [CrossRef]
- Glueck, C.; Papanna, R.; Wang, P.; Goldenberg, N.; Sieve-Smith, L. Incidence and treatment of metabolic syndrome in newly referred women with confirmed polycystic ovarian syndrome. Metabolism 2003, 52, 908–915. [Google Scholar] [CrossRef]
- Ishak, A.; Kadir, A.A.; Hussain, N.H.N.; Ismail, S.B. Prevalence and Characteristics of Metabolic Syndrome among Polycystic Ovarian Syndrome Patients in Malaysia. Int. J. Collab. Res. Intern. Med. Public Health 2012, 4, 1577–1591. [Google Scholar]
- Rantakallio, J.S.; Nevalainen, J.E.; West, S.I.; Ollila, M.M.; Puukka, K.; Bloigu, A.H.; Järvelin, M.R.; Tapanainen, J.S.; Franks, S.; Dunkel, L.; et al. Association of self-reported polycystic ovary syndrome, obesity, and weight gain from adolescence to adulthood with hypertensive disorders of pregnancy: A community-based approach. Hypertension 2021, 77, 1010–1019. [Google Scholar] [CrossRef]
- Gibson-Helm, M.; Teede, H.; Dunaif, A.; Dokras, A. Delayed diagnosis and a lack of information associated with dissatisfaction in women with polycystic ovary syndrome. J. Clin. Endocrinol. Metab. 2017, 102, 604–612. [Google Scholar] [CrossRef]
- Ng, N.Y.H.; Jiang, G.; Cheung, L.P.; Zhang, Y.; Tam, C.H.T.; Luk, A.O.Y.; Quan, J.; Lau, E.S.H.; Yau, T.T.L.; Chan, M.H.M.; et al. Progression of glucose intolerance and cardiometabolic risk factors over a decade in Chinese women with polycystic ovary syndrome: A case-control study. PLoS Med. 2019, 16, e1002953. [Google Scholar] [CrossRef]
- Ramezani Tehrani, F. Trend of cardio-metabolic risk factors in polycystic ovary syndrome: A population-based prospective cohort study. PLoS ONE 2015, 10, e0137609. [Google Scholar] [CrossRef]
- Guo, F.; Gong, Z.; Fernando, T.; Zhang, L.; Zhu, X.; Shi, Y. The lipid profiles in different characteristics of women with PCOS and the interaction between dyslipidemia and metabolic disorder states: A retrospective study in Chinese population. Front. Endocrinol. 2022, 13, 892125. [Google Scholar] [CrossRef] [PubMed]
- Cander, S.; Şişman, P.; Özen, Ö. Evaluation of Insulin Resistance and Vitamin D Levels in Patients with Polycystic Ovary Syndrome. Turk. J. Intern. Med. 2022, 4, 66–72. [Google Scholar] [CrossRef]
- Joham, A.E.; Boyle, J.A.; Zoungas, S.; Teede, H.J. Hypertension in reproductive-aged women with polycystic ovary syndrome and association with obesity. Am. J. Hypertens. 2015, 28, 847–851. [Google Scholar] [CrossRef]
- Zachurzok-Buczynska, A.; Szydlowski, L.; Gawlik, A.; Wilk, K.; Malecka-Tendera, E. Blood pressure regulation and resting heart rate abnormalities in adolescent girls with polycystic ovary syndrome. Fertil. Steril. 2011, 96, 1519–1525. [Google Scholar] [CrossRef]
- Costello, M.F.; Misso, M.L.; Balen, A.; Boyle, J.; Devoto, L.; Garad, R.M.; Hart, R.; Johnson, L.; Jordan, C.; Legro, R.S.; et al. A brief update on the evidence supporting the treatment of infertility in polycystic ovary syndrome. Aust. New Zealand J. Obstet. Gynaecol. 2019, 59, 867–873. [Google Scholar] [CrossRef]
- Li, M.; Ruan, X.; Mueck, A.O. Management strategy of infertility in polycystic ovary syndrome. Glob. Health J. 2022, 6, 70–74. [Google Scholar] [CrossRef]
- Louwers, Y.V.; Laven, J.S. Characteristics of polycystic ovary syndrome throughout life. Ther. Adv. Reprod. Health 2020, 14, 2633494120911038. [Google Scholar] [CrossRef]
- Deshpande, P.S.; Gupta, A.S. Causes and prevalence of factors causing infertility in a public health facility. J. Hum. Reprod. Sci. 2019, 12, 287. [Google Scholar]
- Joham, A.E.; Teede, H.; Ranasinha, S.; Zoungas, S.; Boyle, J. Prevalence of infertility and use of fertility treatment in women with polycystic ovary syndrome: Data from a large community-based cohort study. J. Women’s Health 2015, 24, 299–307. [Google Scholar] [CrossRef]
- Bahri Khomami, M.; Joham, A.E.; Boyle, J.A.; Piltonen, T.; Silagy, M.; Arora, C.; Misso, M.L.; Teede, H.J.; Moran, L.J. Increased maternal pregnancy complications in polycystic ovary syndrome appear to be independent of obesity—A systematic review, meta-analysis, and meta-regression. Obes. Rev. 2019, 20, 659–674. [Google Scholar] [CrossRef]
- American College of Obstetricians and Gynecologists. ACOG Practice Bulletin No. 194: Polycystic ovary syndrome. Obstet. Gynecol. 2018, 131, e157–e171. [Google Scholar] [CrossRef] [PubMed]
- Parker, J.; O’brien, C.; Hawrelak, J.; Gersh, F.L. Polycystic ovary syndrome: An evolutionary adaptation to lifestyle and the environment. Int. J. Environ. Res. Public Health 2022, 19, 1336. [Google Scholar] [CrossRef] [PubMed]
- Zawadski, J. Diagnostic Criteria for Polycystic Ovary Syndrome: Towards a Rational Approach. In Polycystic Ovary Syndrome; Blackwell Scientific: Boston, MA, USA, 1992; pp. 377–384. [Google Scholar]
- Eshre, T.R.; ASRM-Sponsored PCOS Consensus Workshop Group. Revised 2003 consensus on diagnostic criteria and long-term health risks related to polycystic ovary syndrome. Fertil. Steril. 2004, 81, 19–25. [Google Scholar]
- Sirmans, S.M.; Pate, K.A. Epidemiology, diagnosis, and management of polycystic ovary syndrome. Clin. Epidemiol. 2014, 6, 1–13. [Google Scholar] [CrossRef]
- Cioana, M.; Deng, J.; Nadarajah, A.; Hou, M.; Qiu, Y.; Chen, S.S.; Rivas, A.; Banfield, L.; Alfaraidi, H.; Alotaibi, A.; et al. Prevalence of polycystic ovary syndrome in patients with pediatric type 2 diabetes: A systematic review and meta-analysis. JAMA Netw. Open 2022, 5, e2147454. [Google Scholar] [CrossRef]
- Naz, M.S.G.; Tehrani, F.R.; Majd, H.A.; Ahmadi, F.; Ozgoli, G.; Fakari, F.R.; Ghasemi, V. The prevalence of polycystic ovary syndrome in adolescents: A systematic review and meta-analysis. Int. J. Reprod. Biomed. (IJRM) 2019, 17, 533–542. [Google Scholar] [CrossRef]
- Carmina, E.; Lobo, R.A. Comparing lean and obese PCOS in different PCOS phenotypes: Evidence that the body weight is more important than the rotterdam phenotype in influencing the metabolic status. Diagnostics 2022, 12, 2313. [Google Scholar] [CrossRef]
- Azziz, R.; Carmina, E.; Dewailly, D.; Diamanti-Kandarakis, E.; Escobar-Morreale, H.F.; Futterweit, W.; Janssen, O.E.; Legro, R.S.; Norman, R.; Taylor, A.E.; et al. The Androgen Excess and PCOS Society criteria for the polycystic ovary syndrome: The complete task force report. Fertil. Steril. 2009, 91, 456–488. [Google Scholar] [CrossRef]
- Witchel, S.F.; Oberfield, S.; Rosenfield, R.L.; Codner, E.; Bonny, A.; Ibáñez, L.; Pena, A.; Horikawa, R.; Gomez-Lobo, V.; Joel, D.; et al. The diagnosis of polycystic ovary syndrome during adolescence. Horm. Res. Paediatr. 2015, 83, 376–389. [Google Scholar] [CrossRef]
- Peña, A.S.; Witchel, S.F.; Hoeger, K.M.; Oberfield, S.E.; Vogiatzi, M.G.; Misso, M.; Garad, R.; Dabadghao, P.; Teede, H. Adolescent polycystic ovary syndrome according to the international evidence-based guideline. BMC Med. 2020, 18, 1–16. [Google Scholar] [CrossRef]
- Huddleston, H.G.; Dokras, A. Diagnosis and treatment of polycystic ovary syndrome. JAMA 2022, 327, 274–275. [Google Scholar] [CrossRef] [PubMed]
- Lauritsen, M.P.; Pinborg, A.; Loft, A.; Petersen, J.H.; Mikkelsen, A.L.; Bjerge, M.R.; Andersen, A.N. Revised criteria for PCOS in WHO Group II anovulatory infertility—A revival of hypothalamic amenorrhoea? Clin. Endocrinol. 2015, 82, 584–591. [Google Scholar] [CrossRef] [PubMed]
- Ding, T.; Hardiman, P.J.; Petersen, I.; Wang, F.-F.; Qu, F.; Baio, G. The prevalence of polycystic ovary syndrome in reproductive-aged women of different ethnicity: A systematic review and meta-analysis. Oncotarget 2017, 8, 96351–96358. [Google Scholar] [CrossRef] [PubMed]
- Dewailly, D.; Lujan, M.E.; Carmina, E.; Cedars, M.I.; Laven, J.; Norman, R.J.; Escobar-Morreale, H. Definition and significance of polycystic ovarian morphology: A task force report from the Androgen Excess and Polycystic Ovary Syndrome Society. Hum. Reprod. Updat. 2014, 20, 334–352. [Google Scholar] [CrossRef] [PubMed]
- Vural, F.; Vural, B.; Kardaş, E.; Coşkun, A.D.E.; Yildirim, I. The diagnostic performance of antimullerian hormone for polycystic ovarian syndrome and polycystic ovarian morphology. Arch. Gynecol. Obstet. 2022, 307, 1083–1090. [Google Scholar] [CrossRef]
- Adone, A.; Fulmali, D.G. Polycystic Ovarian Syndrome in Adolescents. Cureus J. Med. Sci. 2023, 15, e34183. [Google Scholar] [CrossRef]
- Hiam, D.; Patten, R.; Gibson-Helm, M.; Moreno-Asso, A.; McIlvenna, L.; Levinger, I.; Harrison, C.; Moran, L.J.; Joham, A.; Parker, A. The effectiveness of high intensity intermittent training on metabolic, reproductive and mental health in women with polycystic ovary syndrome: Study protocol for the iHIT-randomised controlled trial. Trials 2019, 20, 1–9. [Google Scholar] [CrossRef]
- Joham, A.E.; Peña, A.S. Polycystic Ovary Syndrome in Adolescence. In Seminars in Reproductive Medicine; Thieme Medical Publishers, Inc.: New York, NY, USA, 2022. [Google Scholar]
- Kiruthika, V.; Sathiya, S.; Ramya, M.M. Machine learning based ovarian detection in ultrasound images. Int. J. Adv. Mechatron. Syst. 2020, 8, 75–85. [Google Scholar] [CrossRef]
- Wagh, P.; Panjwani, M.; Amrutha, S. Early detection of PCOD using machine learning techniques. In Artificial Intelligence and Speech Technology; CRC Press: Boca Raton, FL, USA, 2021; pp. 9–20. [Google Scholar] [CrossRef]
- Raihan-Al-Masud, M.; Mondal, M.R. Data-driven diagnosis of spinal abnormalities using feature selection and machine learning algorithms. PLoS ONE 2020, 15, e0228422. [Google Scholar] [CrossRef]
- Denny, A.; Raj, A.; Ashok, A.; Ram, C.M.; George, R. i-hope: Detection and prediction system for polycystic ovary syndrome (pcos) using machine learning techniques. In Proceedings of the TENCON 2019–2019 IEEE Region 10 Conference (TENCON), Kochi, India, 17–20 October 2019; pp. 673–678. [Google Scholar] [CrossRef]
- Tiwari, S.; Kane, L.; Koundal, D.; Jain, A.; Alhudhaif, A.; Polat, K.; Zaguia, A.; Alenezi, F.; Althubiti, S.A. SPOSDS: A smart Polycystic Ovary Syndrome diagnostic system using machine learning. Expert Syst. Appl. 2022, 203, 117592. [Google Scholar] [CrossRef]
- Hassan, M.M.; Mirza, T.J. Comparative analysis of machine learning algorithms in diagnosis of polycystic ovarian syndrome. Int. J. Comput. Appl. 2020, 975, 8887. [Google Scholar]
- Silva, I.S.; Ferreira, C.N.; Costa, L.B.X.; Sóter, M.O.; Carvalho, L.M.L.; Albuquerque, J.D.C.; Sales, M.F.; Candido, A.L.; Reis, F.M.; Veloso, A.A.; et al. Polycystic ovary syndrome: Clinical and laboratory variables related to new phenotypes using machine-learning models. J. Endocrinol. Investig. 2022, 45, 497–505. [Google Scholar] [CrossRef] [PubMed]
- Izquierdo-Verdiguier, E.; Zurita-Milla, R. An evaluation of Guided Regularized Random Forest for classification and regression tasks in remote sensing. Int. J. Appl. Earth Obs. Geoinf. 2020, 88, 102051. [Google Scholar] [CrossRef]
- Çiçek, İ.B.; Küçükakçali, Z.; Yağin, F.H. Detection of risk factors of PCOS patients with Local Interpretable Model-agnostic Explanations (LIME) Method that an explainable artificial intelligence model. J. Cogn. Syst. 2021, 6, 59–63. [Google Scholar]
- Kiruthika, V.; Sathiya, S.; Ramya, M.M. Automatic texture and intensity based ovarian classification. J. Med. Eng. Technol. 2018, 42, 604–616. [Google Scholar]
- Deng, Y.; Wang, Y.; Shen, Y. An automated diagnostic system of polycystic ovary syndrome based on object growing. Artif. Intell. Med. 2011, 51, 199–209. [Google Scholar] [CrossRef]
- Chen, Z.; Wang, Z.; Du, M.; Liu, Z. Artificial intelligence in the assessment of female reproductive function using ultrasound: A review. J. Ultrasound Med. 2022, 41, 1343–1353. [Google Scholar] [CrossRef]
- Peng, Y.; Yang, H.; Song, J.; Feng, D.; Na, Z.; Jiang, H.; Meng, Y.; Shi, B.; Li, D. Elevated Serum Leptin Levels as a Predictive Marker for Polycystic Ovary Syndrome. Front. Endocrinol. 2022, 13, 845165. [Google Scholar] [CrossRef]
- Nikolettos, K.; Nikolettos, N.; Vlahos, N.; Pagonopoulou, O.; Asimakopoulos, B. Role of leptin, adiponectin, and kisspeptin in polycystic ovarian syndrome pathogenesis. Minerva Obstet. Gynecol. 2022. [Google Scholar] [CrossRef]
- Yadav, A.; Kataria, M.A.; Saini, V.; Yadav, A. Role of leptin and adiponectin in insulin resistance. Clin. Chim. Acta 2013, 417, 80–84. [Google Scholar] [CrossRef]
- Reid, I.R.; Baldock, P.A.; Cornish, J. Effects of Leptin on the Skeleton. Endocr. Rev. 2018, 39, 938–959. [Google Scholar] [CrossRef]
- Catteau, A.; Caillon, H.; Barrière, P.; Denis, M.; Masson, D.; Fréour, T. Leptin and its potential interest in assisted reproduction cycles. Hum. Reprod. Updat. 2016, 22, 320–341. [Google Scholar] [CrossRef] [PubMed]
- Childs, G.V.; Odle, A.K.; MacNicol, M.C.; MacNicol, A.M. The Importance of Leptin to Reproduction. Endocrinology 2021, 162, bqaa204. [Google Scholar] [CrossRef] [PubMed]
- Nautiyal, H.; Imam, S.S.; Alshehri, S.; Ghoneim, M.M.; Afzal, M.; Alzarea, S.I.; Güven, E.; Al-Abbasi, F.A.; Kazmi, I. Polycystic Ovarian Syndrome: A Complex Disease with a Genetics Approach. Biomedicines 2022, 10, 540. [Google Scholar] [CrossRef] [PubMed]
- Beyazit, F.; Hiz, M.M.; Turkon, H.; Unsal, M.A. Serum spexin, adiponectin and leptin levels in polycystic ovarian syndrome in association with FTO gene polymorphism. Ginekol. Polska 2021, 92, 682–688. [Google Scholar] [CrossRef]
- Boshku, A.A.; Panova, D.I.; Ivanovska, B.Z. Adiponectin as a serum marker of adipose tissue dysfunction in women with polycystic ovary syndrome: Correlation with indicators of metabolic disturbances. Acta Endocrinol. 2018, 14, 346–352. [Google Scholar] [CrossRef]
- Onyegbule, O.A.; Meludu, S.C.; Dioka, C.E.; Okwara, J.E.; Obi-Ezeani, C.N.; Njoku, C.M. Serum adiponectin and metabolic profile in women with polycystic ovarian syndrome in relation to body mass index. Int. J. Res. Med. Sci. 2022, 10, 599–603. [Google Scholar] [CrossRef]
- Shirazi, F.K.H.; Khodamoradi, Z.; Jeddi, M. Insulin resistance and high molecular weight adiponectin in obese and non-obese patients with Polycystic Ovarian Syndrome (PCOS). BMC Endocr. Disord. 2021, 21, 45. [Google Scholar] [CrossRef]
- Polak, K.; Czyzyk, A.; Simoncini, T.; Meczekalski, B. New markers of insulin resistance in polycystic ovary syndrome. J. Endocrinol. Investig. 2017, 40, 1–8. [Google Scholar] [CrossRef]
- Chen, C.-I.; Hsu, M.-I.; Lin, S.-H.; Chang, Y.-C.I.; Hsu, C.-S.; Tzeng, C.-R. Adiponectin and leptin in overweight/obese and lean women with polycystic ovary syndrome. Gynecol. Endocrinol. 2015, 31, 264–268. [Google Scholar] [CrossRef]
- Baldauff, N.H.; Witchel, S.F. Polycystic ovary syndrome in adolescent girls. Curr. Opin. Endocrinol. Diabetes Obes. 2017, 24, 56–66. [Google Scholar] [CrossRef]
- Gu, Y.; Zhou, G.; Zhou, F.; Wu, Q.; Ma, C.; Zhang, Y.; Ding, J.; Hua, K. Life modifications and PCOS: Old story but new tales. Front. Endocrinol. 2022, 13, 448. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Yao, X. Bioinformatics searching of diagnostic markers and immune infiltration in polycystic ovary syndrome. Front. Genet. 2022, 2366. [Google Scholar] [CrossRef]
- Zou, J.; Li, Y.; Liao, N.; Liu, J.; Zhang, Q.; Luo, M.; Xiao, J.; Chen, Y.; Wang, M.; Chen, K.; et al. Identification of key genes associated with polycystic ovary syndrome (PCOS) and ovarian cancer using an integrated bioinformatics analysis. J. Ovarian Res. 2022, 15, 30. [Google Scholar] [CrossRef] [PubMed]
Anovulation/Oligo-Ovulation | Hyperandrogenism | PCOM | |
---|---|---|---|
Phenotype A | * | * | * |
Phenotype B | * | * | |
Phenotype C | * | * | |
Phenotype D | * | * |
NIH 1999 | ROTTERDAM 2003 | AE-PCOS SOCIETY 2006 | |
---|---|---|---|
Both elements are needed: | 2 of 3 elements are needed: | Both elements are needed: | |
1 | Chronic anovulation | Oligo- and or anovulation | Oligo-anovulation and/or polycystic ovarian morphology |
2 | Clinical and/or biochemical signs of hyperandrogenism | Clinical and/or biochemical signs of hyperandrogenism | Clinical and/or biochemical signs of hyperandrogenism |
3 | - | Polycystic ovarian morphology | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fahs, D.; Salloum, D.; Nasrallah, M.; Ghazeeri, G. Polycystic Ovary Syndrome: Pathophysiology and Controversies in Diagnosis. Diagnostics 2023, 13, 1559. https://doi.org/10.3390/diagnostics13091559
Fahs D, Salloum D, Nasrallah M, Ghazeeri G. Polycystic Ovary Syndrome: Pathophysiology and Controversies in Diagnosis. Diagnostics. 2023; 13(9):1559. https://doi.org/10.3390/diagnostics13091559
Chicago/Turabian StyleFahs, Duaa, Dima Salloum, Mona Nasrallah, and Ghina Ghazeeri. 2023. "Polycystic Ovary Syndrome: Pathophysiology and Controversies in Diagnosis" Diagnostics 13, no. 9: 1559. https://doi.org/10.3390/diagnostics13091559
APA StyleFahs, D., Salloum, D., Nasrallah, M., & Ghazeeri, G. (2023). Polycystic Ovary Syndrome: Pathophysiology and Controversies in Diagnosis. Diagnostics, 13(9), 1559. https://doi.org/10.3390/diagnostics13091559