The Genetic Landscape of Sleep Disorders in Parkinson’s Disease
Abstract
:1. Introduction
2. Genes Involved in PD Patients’ Sleep Disorders
2.1. GBA
2.2. SNCA
2.3. LRRK2
2.4. “CLOCK” GENES
2.5. TEF
2.6. Preprohypocretin
2.7. Parkin
2.8. ZNF184
2.9. ANK2.CAMK2D
2.10. SYT17
2.11. USP25
2.12. miRNAs
2.13. Prions
3. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- de Lau, L.; Breteler, M. Epidemiology of Parkinson’s disease. Lancet Neurol. 2006, 5, 525–535. [Google Scholar] [CrossRef] [PubMed]
- Kalinderi, K.; Bostantjopoulou, S.; Fidani, L. The genetic background of Parkinson’s disease: Current progress and future prospects. Acta. Neurol. Scand. 2016, 134, 314–326. [Google Scholar] [CrossRef] [PubMed]
- Thangaleela, S.; Sivamaruthi, B.S.; Kesika, P.; Mariappan, S.; Rashmi, S.; Choeisoongnern, T.; Sittiprapaporn, P.; Chaiyasut, C. Neurological Insights into Sleep Disorders in Parkinson’s Disease. Brain Sci. 2023, 13, 1202. [Google Scholar] [CrossRef] [PubMed]
- Riboldi, G.M.; Di Fonzo, A.B. GBA, Gaucher Disease, and Parkinson’s Disease: From Genetic to Clinic to New Therapeutic Approaches. Cells 2019, 8, 364. [Google Scholar] [CrossRef] [PubMed]
- Gan-Or, Z.; Amshalom, I.; Kilarski, L.L.; Bar-Shira, A.; Gana-Weisz, M.; Mirelman, A.; Marder, K.; Bressman, S.; Giladi, N.; Orr-Urtreger, A. Differential effects of severe vs mild GBA mutations on Parkinson disease. Neurology 2015, 84, 880–887. [Google Scholar] [CrossRef]
- Iranzo, A.; Tolosa, E.; Gelpi, E.; Molinuevo, J.L.; Valldeoriola, F.; Serradell, M.; Sanchez-Valle, R.; Vilaseca, I.; Lomeña, F.; Vilas, D.; et al. Neurodegenerative disease status and post-mortem pathology in idiopathic rapid-eye-movement sleep behaviour disorder: An observational cohort study. Lancet Neurol. 2013, 12, 443–453. [Google Scholar] [CrossRef]
- Gan-Or, Z.; Mirelman, A.; Postuma, R.B.; Arnulf, I.; Bar-Shira, A.; Dauvilliers, Y.; Desautels, A.; Gagnon, J.F.; Leblond, C.S.; Frauscher, B.; et al. GBA mutations are associated with Rapid Eye Movement Sleep Behavior Disorder. Ann. Clin. Transl. Neurol. 2015, 2, 941–945. [Google Scholar] [CrossRef]
- Jesús, S.; Huertas, I.; Bernal-Bernal, I.; Bonilla-Toribio, M.; Cáceres-Redondo, M.T.; Vargas-González, L.; Gómez-Llamas, M.; Carrillo, F.; Calderón, E.; Carballo, M.; et al. GBA Variants Influence Motor and Non-Motor Features of Parkinson’s Disease. PLoS ONE 2016, 11, e0167749. [Google Scholar] [CrossRef]
- Thaler, A.; Gurevich, T.; Bar Shira, A.; Gana Weisz, M.; Ash, E.; Shiner, T.; Orr-Urtreger, A.; Giladi, N.; Mirelman, A. A "dose" effect of mutations in the GBA gene on Parkinson’s disease phenotype. Park. Relat. Disord. 2017, 36, 47–51. [Google Scholar] [CrossRef]
- De Michele, G.; Palmieri, G.R.; Pane, C.; Valente, E.M.; Palmieri, I.; Dello Iacovo, C.D.P.; Cuomo, N.; Giglio, A.; De Lucia, N.; Fico, T.; et al. Motor and non-motor features in Parkinson’s Disease patients carrying GBA gene mutations. Acta Neurol. Belg. 2023, 123, 221–226. [Google Scholar] [CrossRef]
- Thaler, A.; Bregman, N.; Gurevich, T.; Shiner, T.; Dror, Y.; Zmira, O.; Gan-Or, Z.; Bar-Shira, A.; Gana-Weisz, M.; Orr-Urtreger, A.; et al. Parkinson’s disease phenotype is influenced by the severity of the mutations in the GBA gene. Park. Relat. Disord. 2018, 55, 45–49. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.; Cheng, Y.; Li, C.; Shang, H. Genetic heterogeneity on sleep disorders in Parkinson’s disease: A systematic review and meta-analysis. Transl. Neurodegener. 2022, 11, 21. [Google Scholar] [CrossRef] [PubMed]
- Perez-Lloret, S.; Chevalier, G.; Bordet, S.; Barbar, H.; Capani, F.; Udovin, L.; Otero-Losada, M. The Genetic Basis of Probable REM Sleep Behavior Disorder in Parkinson’s Disease. Brain Sci. 2023, 13, 1146. [Google Scholar] [CrossRef] [PubMed]
- Ye, H.; Robak, L.A.; Yu, M.; Cykowski, M.; Shulman, J.M. Genetics and Pathogenesis of Parkinson’s Syndrome. Annu. Rev. Pathol. 2023, 18, 95–121. [Google Scholar] [CrossRef] [PubMed]
- Lundvig, D.; Lindersson, E.; Jensen, P. Pathogenic effects of a-synuclein aggregation. Mol. Brain Res. 2005, 134, 3–17. [Google Scholar] [CrossRef] [PubMed]
- Bennett, C. The role of a-synuclein in neurodegenerative diseases. Pharmacol. Ther. 2005, 105, 311–331. [Google Scholar] [CrossRef]
- Toffoli, M.; Dreussi, E.; Cecchin, E.; Valente, M.; Sanvilli, N.; Montico, M.; Gagno, S.; Garziera, M.; Polano, M.; Savarese, M.; et al. SNCA 3’UTR genetic variants in patients with Parkinson’s disease and REM sleep behavior disorder. Neurol. Sci. 2017, 38, 1233–1240. [Google Scholar] [CrossRef]
- Bjørnarå, K.A.; Pihlstrøm, L.; Dietrichs, E.; Toft, M. Risk variants of the α-synuclein locus and REM sleep behavior disorder in Parkinson’s disease: A genetic association study. BMC Neurol. 2018, 18, 20. [Google Scholar] [CrossRef]
- Simitsi, A.M.; Koros, C.; Stamelou, M.; Papadimitriou, D.; Leonardos, A.; Bougea, A.; Papagiannakis, N.; Pachi, I.; Angelopoulou, E.; Lourentzos, K.; et al. REM sleep behavior disorder and other sleep abnormalities in p. A53T SNCA mutation carriers. Sleep 2021, 44, zsaa248. [Google Scholar] [CrossRef]
- Li, Y.; Kang, W.; Zhang, L.; Zhou, L.; Niu, M.; Liu, J. Hyposmia Is Associated with RBD for PD Patients with Variants of SNCA. Front. Aging Neurosci. 2017, 9, 303. [Google Scholar] [CrossRef]
- Ubeda-Bañon, I.; Saiz-Sanchez, D.; de la Rosa-Prieto, C.; Argandoña-Palacios, L.; Garcia-Muñozguren, S.; Martinez-Marcos, A. alpha-Synucleinopathy in the human olfactory system in Parkinson’s disease: Involvement of calcium-binding protein- and substance P-positive cells. Acta Neuropathol. 2010, 119, 723–735. [Google Scholar] [CrossRef] [PubMed]
- Lahut, S.; Gispert, S.; Ömür, Ö.; Depboylu, C.; Seidel, K.; Domínguez-Bautista, J.A.; Brehm, N.; Tireli, H.; Hackmann, K.; Pirkevi, C.; et al. Blood RNA biomarkers in prodromal PARK4 and rapid eye movement sleep behavior disorder show role of complexin 1 loss for risk of Parkinson’s disease. Dis. Model Mech. 2017, 10, 619–631. [Google Scholar] [PubMed]
- Rocha, E.M.; Keeney, M.T.; Di Maio, R.; De Miranda, B.R.; Greenamyre, J.T. LRRK2 and idiopathic Parkinson’s disease. Trends Neurosci. 2022, 45, 224–236. [Google Scholar] [CrossRef] [PubMed]
- Monfrini, E.; Di Fonzo, A. Leucine-Rich Repeat Kinase (LRRK2) Genetics and Parkinson’s Disease. Adv. Neurobiol. 2017, 14, 3–30. [Google Scholar] [PubMed]
- Pont-Sunyer, C.; Iranzo, A.; Gaig, C.; Fernández-Arcos, A.; Vilas, D.; Valldeoriola, F.; Compta, Y.; Fernández-Santiago, R.; Fernández, M.; Bayés, A.; et al. Sleep Disorders in Parkinsonian and Nonparkinsonian LRRK2 Mutation Carriers. PLoS ONE 2015, 10, e0132368. [Google Scholar] [CrossRef]
- Mirelman, A.; Alcalay, R.N.; Saunders-Pullman, R.; Yasinovsky, K.; Thaler, A.; Gurevich, T.; Mejia-Santana, H.; Raymond, D.; Gana-Weisz, M.; Bar-Shira, A.; et al. Nonmotor symptoms in healthy Ashkenazi Jewish carriers of the G2019S mutation in the LRRK2 gene. Mov. Disord. 2015, 30, 981–986. [Google Scholar] [CrossRef] [PubMed]
- Sun, Q.; Wang, T.; Jiang, T.F.; Huang, P.; Li, D.H.; Wang, Y.; Xiao, Q.; Liu, J.; Chen, S.D. Effect of a Leucine-rich Repeat Kinase 2 Variant on Motor and Non-motor Symptoms in Chinese Parkinson’s Disease Patients. Aging Dis. 2016, 7, 230–236. [Google Scholar] [CrossRef]
- De Rosa, A.; Guacci, A.; Peluso, S.; Del Gaudio, L.; Massarelli, M.; Barbato, S.; Criscuolo, C.; De Michele, G. A case of restless leg syndrome in a family with LRRK2 gene mutation. Int. J. Neurosci. 2013, 123, 283–285. [Google Scholar] [CrossRef]
- Dibner, C.; Schibler, U.; Albrecht, U. The mammalian circadian timing system: Organization and coordination of central and peripheral clocks. Annu. Rev. Physiol. 2010, 72, 517–549. [Google Scholar] [CrossRef]
- Leng, Y.; Musiek, E.S.; Hu, K.; Cappuccio, F.P.; Yaffe, K. Association between circadian rhythms and neurodegenerative diseases. Lancet Neurol. 2019, 18, 307–318. [Google Scholar] [CrossRef]
- Parekh, P.K.; Ozburn, A.R.; McClung, C.A. Circadian clock genes: Effects on dopamine, reward and addiction. Alcohol 2015, 49, 341–349. [Google Scholar] [CrossRef] [PubMed]
- Kawarai, T.; Kawakami, H.; Yamamura, Y.; Nakamura, S. Structure and organization of the gene encoding human dopamine transporter. Gene 1997, 195, 11–18. [Google Scholar] [CrossRef] [PubMed]
- Lou, F.; Li, M.; Luo, X.; Ren, Y. CLOCK 3111T/C Variant Correlates with Motor Fluctuation and Sleep Disorders in Chinese Patients with Parkinson’s Disease. Park. Dis. 2018, 2018, 4670380. [Google Scholar] [CrossRef] [PubMed]
- Mattam, U.; Jagota, A. Daily rhythms of serotonin metabolism and the expression of clock genes in suprachiasmatic nucleus of rotenone-induced Parkinson’s disease male Wistar rat model and effect of melatonin administration. Biogerontology 2014, 16, 109–123. [Google Scholar] [CrossRef] [PubMed]
- Delgado-Lara, D.L.; González-Enríquez, G.V.; Torres-Mendoza, B.M.; González-Usigli, H.; Cárdenas-Bedoya, J.; Macías-Islas, M.A.; de la Rosa, A.C.; Jiménez-Delgado, A.; Pacheco-Moisés, F.; Cruz-Serrano, J.A.; et al. Effect of melatonin administration on the PER1 and BMAL1 clock genes in patients with Parkinson’s disease. Biomed. Pharmacother. 2020, 129, 110485. [Google Scholar] [CrossRef] [PubMed]
- Cai, Y.; Liu, S.; Sothern, R.B.; Xu, S.; Chan, P. Expression of clock genes Per1 and Bmal1 in total leukocytes in health and Parkinson’s disease. Eur. J. Neurol. 2010, 17, 550–554. [Google Scholar] [CrossRef] [PubMed]
- Ding, H.; Liu, S.; Yuan, Y.; Lin, Q.; Chan, P.; Cai, Y. Decreased expression of Bmal2 in patients with Parkinson’s disease. Neurosci. Lett. 2011, 499, 186–188. [Google Scholar] [CrossRef]
- Li, T.; Cheng, C.; Jia, C.; Leng, Y.; Qian, J.; Yu, H.; Liu, Y.; Wang, N.; Yang, Y.; Al-Nusaif, M.; et al. Peripheral Clock System Abnormalities in Patients with Parkinson’s Disease. Front. Aging Neurosci. 2021, 13, 736026. [Google Scholar] [CrossRef]
- Yang, Y.; Kim, W.S.; Michaelian, J.C.; Lewis, S.J.G.; Phillips, C.L.; D’Rozario, A.L.; Chatterjee, P.; Martins, R.N.; Grunstein, R.; Halliday, G.M.; et al. Predicting neurodegeneration from sleep related biofluid changes. Neurobiol Dis. 2023, 190, 106369. [Google Scholar] [CrossRef]
- Pradhan, G.; Samson, S.L.; Sun, Y. Ghrelin: Much more than a hunger hormone. Curr. Opin. Clin. Nutr. Metab. Care 2013, 16, 619–624. [Google Scholar] [CrossRef]
- Tarianyk, K.A.; Lytvynenko, N.V.; Shkodina, A.D.; Kaidashev, I.P. The role of circadian regulation of ghrelin levels in parkinson’s disease (literature review). Wiad Lek. 2021, 74, 1750–1753. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Li, Y.; Xu, X.; Gu, J.; Chen, H.; Gui, Y. Exosomes rich in Wnt5 improved circadian rhythm dysfunction via enhanced PPARγ activity in the 6-hydroxydopamine model of Parkinson’s disease. Neurosci. Lett. 2023, 802, 137139. [Google Scholar] [CrossRef] [PubMed]
- Hua, P.; Liu, W.; Zhao, Y.; Ding, H.; Wang, L.; Xiao, H. Tef polymorphism is associated with sleep disturbances in patients with Parkinson’s disease. Sleep Med. 2012, 13, 297–300. [Google Scholar] [CrossRef]
- Hua, P.; Cui, C.; Chen, Y.; Yao, Y.; Yu, C.Y.; Xu, L.G.; Liu, W.G. Thyrotroph embryonic factor polymorphism predicts faster progression of Parkinson’s disease in a longitudinal study. J. Integr. Neurosci. 2021, 20, 95–101. [Google Scholar] [CrossRef] [PubMed]
- Kalinderi, K.; Papaliagkas, V.; Fidani, L. Current genetic data on depression and anxiety in Parkinson’s disease patients. Park. Relat. Disord. 2023, 105922. [Google Scholar] [CrossRef]
- Mignot, E. Genetic and familial aspects of narcolepsy. Neurology 1998, 50, S16–S22. [Google Scholar] [CrossRef] [PubMed]
- Korotkova, T.M.; Sergeeva, O.A.; Eriksson, K.S.; Haas, H.L.; Brown, R.E. Excitation of ventral tegmental area dopaminergic and nondopaminergic neurons by orexins/hypocretins. J. Neurosci. 2003, 23, 7–11. [Google Scholar] [CrossRef] [PubMed]
- Eisensehr, I.; Linke, R.; Tatsch, K.; von Lindeiner, H.; Kharraz, B.; Gildehaus, F.J.; Eberle, R.; Pollmacher, T.; Schuld, A.; Noachtar, S. Alteration of the striatal dopaminergic system in human narcolepsy. Neurology 2003, 60, 1817–1819. [Google Scholar] [CrossRef]
- Dauvilliers, Y.; Neidhart, E.; Lecendreux, M.; Billiard, M.; Tafti, M. MAO-A and COMT polymorphisms and gene effects in narcolepsy. Mol. Psychiatry 2001, 6, 367–372. [Google Scholar] [CrossRef]
- Rissling, I.; Körner, Y.; Geller, F.; Stiasny-Kolster, K.; Oertel, W.H.; Möller, J.C. Preprohypocretin polymorphisms in Parkinson disease patients reporting “sleep attacks”. Sleep 2005, 28, 871–875. [Google Scholar] [CrossRef]
- Gasser, T. Genetic basis of Parkinson’s dis-ease: Inheritance, penetrance, and expression. Appl. Clin. Genet. 2011, 4, 67–80. [Google Scholar] [CrossRef]
- Abbas, N.; Lücking, C.B.; Ricard, S.; Dürr, A.; Bonifati, V.; De Michele, G.; Bouley, S.; Vaughan, J.R.; Gasser, T.; Marconi, R.; et al. A wide variety of mutations in the parkin gene are responsible for autosomal recessive parkinsonism in Europe. Hum. Mol. Genet. 1999, 8, 567–574. [Google Scholar] [CrossRef]
- Hedrich, K.; Eskelson, C.; Wilmot, B.; Marder, K.; Harris, J.; Garrels, J.; Meija-Santana, H.; Vieregge, P.; Jacobs, H.; Bressman, S.B.; et al. Distribution, type, and origin of Parkin mutations: Review and case studies. Mov. Disord. 2004, 19, 1146–1157. [Google Scholar] [CrossRef]
- Farrer, M.; Chan, P.; Chen, R.; Tan, L.; Lincoln, S.; Hernandez, D.; Forno, L.; Gwinn-Hardy, K.; Petrucelli, L.; Hussey, J.; et al. Lewy bodies and parkinsonism in families with parkin mutations. Ann. Neurol. 2001, 50, 293–300. [Google Scholar] [CrossRef]
- Kumru, H.; Santamaria, J.; Tolosa, E.; Valldeoriola, F.; Muñoz, E.; Marti, M.J.; Iranzo, A. Rapid eye movement sleep behavior disorder in parkinsonism with parkin mutations. Ann. Neurol. 2004, 56, 599–603. [Google Scholar] [CrossRef]
- Limousin, N.; Konofal, E.; Karroum, E.; Lohmann, E.; Theodorou, I.; Dürr, A.; Arnulf, I. Restless legs syndrome, rapid eye movement sleep behavior disorder, and hypersomnia in patients with two parkin mutations. Mov. Disord. 2009, 24, 1970–1976. [Google Scholar] [CrossRef]
- Goldwurm, S.; Menzies, M.L.; Banyer, J.L.; Powell, L.W.; Jazwinska, E.C. Identification of a novel Krueppel-related zinc finger gene (ZNF184) mapping to 6p21.3. Genomics 1997, 40, 486–489. [Google Scholar] [CrossRef]
- Zhang, B.; Cui, C.; Yu, H.; Li, G. Association between ZNF184 and symptoms of Parkinson’s disease in southern Chinese. Neurol. Sci. 2020, 41, 2121–2126. [Google Scholar] [CrossRef]
- Stevens, S.R.; Rasband, M.N. Ankyrins and neurological disease. Curr. Opin. Neurobiol. 2021, 69, 51–57. [Google Scholar] [CrossRef]
- Tone, D.; Ode, K.L.; Zhang, Q.; Fujishima, H.; Yamada, R.G.; Nagashima, Y.; Matsumoto, K.; Wen, Z.; Yoshida, S.Y.; Mitani, T.T.; et al. Distinct phosphorylation states of mammalian CaMKII_ control the induction and maintenance of sleep. PLoS Biol. 2022, 20, e3001813. [Google Scholar] [CrossRef] [PubMed]
- Wolfes, A.C.; Dean, C. The diversity of synaptotagmin isoforms. Curr. Opin. Neurobiol. 2020, 63, 198–209. [Google Scholar] [CrossRef]
- Fujioka, A.; Nagano, M.; Ikegami, K.; Masumoto, K.H.; Yoshikawa, T.; Koinuma, S.; Nakahama, K.I.; Shigeyoshi, Y. Circadian expression and specific localization of synaptotagmin17 in the suprachiasmatic nucleus, the master circadian oscillator in mammals. Brain Res. 2023, 1798, 148129. [Google Scholar] [CrossRef]
- Zhong, B.; Liu, X.; Wang, X.; Chang, S.H.; Liu, X.; Wang, A.; Reynolds, J.M.; Dong, C. Negative regulation of IL-17-mediated signaling and inflammation by the ubiquitin-specific protease USP25. Nat. Immunol. 2012, 13, 1110–1117. [Google Scholar] [CrossRef]
- Zheng, Q.; Li, G.; Wang, S.; Zhou, Y.; Liu, K.; Gao, Y.; Zhou, Y.; Zheng, L.; Zhu, L.; Deng, Q.; et al. Trisomy 21-induced dysregulation of microglial homeostasis in Alzheimer’s brains is mediated by USP25. Sci. Adv. 2021, 7, eabe1340. [Google Scholar] [CrossRef]
- Gan-Or, Z.; Girard, S.L.; Noreau, A.; Leblond, C.S.; Gagnon, J.F.; Arnulf, I.; Mirarchi, C.; Dauvilliers, Y.; Desautels, A.; Mitterling, T.; et al. Parkinson’s Disease Genetic Loci in Rapid Eye Movement Sleep Behavior Disorder. J. Mol. Neurosci. 2015, 56, 617–622. [Google Scholar] [CrossRef]
- Do, C.B.; Tung, J.Y.; Dorfman, E.; Kiefer, A.K.; Drabant, E.M.; Francke, U.; Mountain, J.L.; Goldman, S.M.; Tanner, C.M.; Langston, J.W.; et al. Web-based genome-wide association study identifies two novel loci and a substantial genetic component for Parkinson’s disease. PLoS Genet. 2011, 7, e1002141. [Google Scholar] [CrossRef]
- Nalls, M.A.; Pankratz, N.; Lill, C.M.; Do, C.B.; Hernandez, D.G.; Saad, M.; DeStefano, A.L.; Kara, E.; Bras, J.; Sharma, M.; et al. Large-scale meta-analysis of genome-wide association data identifies six new risk loci for Parkinson’s disease. Nat. Genet. 2014, 46, 989–993. [Google Scholar] [CrossRef]
- Titze-de-Almeida, R.; Titze-de-Almeida, S.S.; Ferreira, G.G.; Brito Silva, A.P.; de Paula Brandão, P.R.; Oertel, W.H.; Schenck, C.H.; Delgado Rodrigues, R.N. microRNA signatures in prodromal REM sleep behavior disorder and early Parkinson’s disease as noninvasive biomarkers. Sleep Med. 2021, 78, 160–168. [Google Scholar] [CrossRef]
- Fernández-Santiago, R.; Iranzo, A.; Gaig, C.; Serradell, M.; Fernández, M.; Tolosa, E.; Santamaría, J.; Ezquerra, M. MicroRNA association with synucleinopathy conversion in rapid eye movement behavior disorder. Ann. Neurol. 2023, 77, 895–901. [Google Scholar] [CrossRef] [PubMed]
- Katunina, E.A.; Blokhin, V.; Nodel, M.R.; Pavlova, E.N.; Kalinkin, A.L.; Kucheryanu, V.G.; Alekperova, L.; Selikhova, M.V.; Martynov, M.Y.; Ugrumov, M.V. Searching for Biomarkers in the Blood of Patients at Risk of Developing Parkinson’sParkinson's Disease at the Prodromal Stage. Int. J. Mol. Sci. 2023, 24, 1842. [Google Scholar] [CrossRef]
- Mays, C.E.; Soto, C. The stress of prion disease. Brain Res. 2016, 1648, 553–560. [Google Scholar] [CrossRef] [PubMed]
- Satoh, K. CSF biomarkers for prion diseases. Neurochem. Int. 2022, 155, 105306. [Google Scholar] [CrossRef]
- Zhang, W.J.; Shang, X.L.; Peng, J.; Zhou, M.H.; Sun, W.J. Expression of prion protein inthecerebrospinal fluid of patients with Parkinson’s disease complicated with rapid eye movement sleep behavior disorder. Genet. Mol. Res. 2017, 16, 22. [Google Scholar] [CrossRef]
Gene | Genetic Data | References |
---|---|---|
GBA | GBA mutations carriers—OR = 3.13 for pRBD sGBA and GD-PD had higher frequencies of RBD A recent meta-analysis PD heterozygous GBA patients—high risk RBD GBA variants, like N370S and L444P- higher RBD risk in PD patients GBA_N370S_rs76763715—more frequent pRBD among PD patients GBA variants, like rs2230288/E326K, rs75548401/T369M, and rs369068553/V460L—RBD | [3,7,11,12,13] |
SNCA | SNCA variants conferring risk of PD—increase risk of pRBD a marker of PD subtypes Sleep disorders like RBD—more common in A53T-PD carriers PD patients with minor G allele of rs894278—more likely to have hyposmia and RBD simultaneously and worse PD progression | [18,19,20] |
LRRK2 | Sleep complaints RBD, and RLS have been found to be frequent in LRRK2-PD patients Relationship between RBD and motor phenotypes in LRRK2 PD patients | [25,26,27,28] |
“CLOCK” GENES | the CLOCK 3111T/C polymorphism could be an independent risk factor for sleep disorders in PD CLOCK 3111T/C variant may lower the PD age of onset Bmal1 levels have been positively correlated with PD severity and sleep quality | [33,36,37] |
TEF | TT genotype of TEF rs738499—rapid deterioration in sleep quality in PD | [43,44] |
Preprohypocretin | T allele of preprohypocretin -909T/C—sudden onset of sleep in PD | [50] |
Parkin | PD with parkin mutation-frequent RBD, RLS | [55,56] |
ZNF184 | ZNF184_rs9468199—increase the risk of pRBD | [13,58] |
ANK2.CAMK2D | ANK2.CAMK2D_rs78738012—increase the risk of pRBD | [13] |
SYT17 | COQ7.SYT17_rs11343—reduce pRBD risk | [13] |
USP25 | homozygous carriers of USP25 rs2823357—faster progression to synucleinopathies | [65] |
miRNAs | miR-19b was downregulated ~5 years before the diagnosis of overt synucleinopathy | [69] |
Prions | PD complicated with RBD—elevated CSF PrP mRNA and protein levels | [72] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kalinderi, K.; Papaliagkas, V.; Fidani, L. The Genetic Landscape of Sleep Disorders in Parkinson’s Disease. Diagnostics 2024, 14, 106. https://doi.org/10.3390/diagnostics14010106
Kalinderi K, Papaliagkas V, Fidani L. The Genetic Landscape of Sleep Disorders in Parkinson’s Disease. Diagnostics. 2024; 14(1):106. https://doi.org/10.3390/diagnostics14010106
Chicago/Turabian StyleKalinderi, Kallirhoe, Vasileios Papaliagkas, and Liana Fidani. 2024. "The Genetic Landscape of Sleep Disorders in Parkinson’s Disease" Diagnostics 14, no. 1: 106. https://doi.org/10.3390/diagnostics14010106
APA StyleKalinderi, K., Papaliagkas, V., & Fidani, L. (2024). The Genetic Landscape of Sleep Disorders in Parkinson’s Disease. Diagnostics, 14(1), 106. https://doi.org/10.3390/diagnostics14010106