Novel Feature Generation for Classification of Motor Activity from Functional Near-Infrared Spectroscopy Signals Using Machine Learning
Abstract
:1. Introduction
2. Literature Review
3. Materials and Methods
3.1. fNIRS Motor Imagery/Movement Dataset
3.2. Methodology
3.2.1. Data Collection
3.2.2. Data Pre-Processing
3.2.3. Feature Extraction
Time Domain Features:
Frequency Domain Features:
New Feature Generation:
Algorithm 1: Wavelet, Hilbert, and Hjorth parameters-based new feature generation (WHHPBNFG) |
Step 1: Get 14 channel data f[i] for i = 1, 2, … 14. |
Step 2: Find Hjorth parameter activity for 14 channel data for i = 1, 2, … 14 |
which indicates the power level of the signal. |
Step 3: Find Hjorth parameter mobility for i = 1, 2, … 14 |
which indicates the mean frequency or dominant oscillation rate. |
Step 4: Find wavelet decomposition of the 14-channel signal at M level decomposition–Daubechies wavelet |
for i = 1, 2, … 14, j = 1, 2, … M. |
Step 5: Remove extreme 25% wavelet coefficient values from all channels. |
Step 6: Find average of wavelet coefficients for every channel and make it the weight value for the channel. |
Step 7: Find a new feature set by using Hjorth parameters and weight value. |
Step 8: Apply symlet transform on input signal |
. |
Step 9: Apply Hilbert transform on input signal |
. |
Step 10: Find second new feature using step 8 and step 9 results. |
3.2.4. Classifiers for Detecting fNIRS Signal
4. Results
4.1. fNIRS Data Visualization
4.2. Pre-Processed Data Visualization
4.3. Results of Data Analysis and Feature Extraction
4.4. Results of Classification
- Number of Neighbors (k): it defines how many nearest neighbors the algorithm will consider to make a prediction; for this research work, k is considered as 10.
- Distance Metric: Common metrics are Euclidean, Manhattan, and Minkowski. This research uses the Euclidean metric.
- Weights: Determines the weight given to neighbors. For this research work, uniform weights were used.
5. Discussion and Comparison
6. Statistical Test Result
7. Conclusions and Future Work
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Scholkmann, F.; Kleiser, S.; Metz, A.J.; Zimmermann, R.; Pavia, J.M.; Wolf, U.; Wolf, M. A review on continuous wave functional near infrared spectroscopy and imaging instrumentation and methodology. Neuroimage 2014, 85, 6–27. [Google Scholar] [CrossRef]
- Wolf, M.; Ferrari, M.; Quaresima, V. Progress of near-infrared spectroscopy and topography for brain and muscle clinical applications. J. Biomed. Opt. 2007, 12, 062104. [Google Scholar]
- Irani, F.; Platek, S.M.; Bunce, S.; Ruocco, A.C.; Chute, D. Functional near infrared spectroscopy (fNIRS): An emerging neuroimaging technology with important applications for the study of brain disorders. Clin. Neuropsychol. 2007, 21, 9–37. [Google Scholar] [CrossRef] [PubMed]
- Gabrieli, G.; Bizzego, A.; Neoh, M.J.Y.; Esposito, G. fNIRS-QC: Crowd-sourced creation of a dataset and machine learning model for fNIRS quality control. Appl. Sci. 2021, 11, 9531. [Google Scholar] [CrossRef]
- Bizzego, A.; Neoh, M.; Gabrieli, G.; Esposito, G. A machine learning perspective on fnirs signal quality control approaches. IEEE Trans. Neural Syst. Rehabil. Eng. 2022, 30, 2292–2300. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Zhang, J.; Xia, Y.; Chen, P.; Wang, B. A General and Scalable Vision Framework for Functional Near-Infrared Spectroscopy Classification. IEEE Trans. Neural Syst. Rehabil. Eng. 2022, 30, 1982–1991. [Google Scholar] [CrossRef] [PubMed]
- Hramov, A.E.; Grubov, V.; Badarin, A.; Maksimenko, V.A.; Pisarchik, A.N. Functional near-infrared spectroscopy for the classification of motor-related brain activity on the sensor-level. Sensors 2020, 20, 2362. [Google Scholar] [CrossRef]
- Ho, T.K.K.; Kim, M.; Jeon, Y.; Kim, B.C.; Kim, J.G.; Lee, K.H.; Song, J.I.; Gwak, J. Deep learning-based multilevel classification of Alzheimer’s disease using non-invasive functional near-infrared spectroscopy. Front. Aging Neurosci. 2022, 14, 810125. [Google Scholar] [CrossRef]
- Naseer, N.; Qureshi, N.K.; Noori, F.M.; Hong, K.S. Analysis of different classification techniques for two-class functional near-infrared spectroscopy-based brain-computer interface. Comput. Intell. Neurosci. 2016, 2016, 5480760. [Google Scholar] [CrossRef]
- Eastmond, C.; Subedi, A.; De, S.; Intes, X. Deep learning in fNIRS: A review. Neurophotonics 2022, 9, 041411. [Google Scholar] [CrossRef] [PubMed]
- Hur, J.; Yang, J.; Doh, H.; Ahn, W.Y. Mapping fNIRS to fMRI with Neural Data Augmentation and Machine Learning Models. arXiv 2022, arXiv:2206.06486. [Google Scholar]
- Ma, T.; Chen, W.; Li, X.; Xia, Y.; Zhu, X.; He, S. fNIRS signal classification based on deep learning in rock-paper-scissors imagery task. Appl. Sci. 2021, 11, 4922. [Google Scholar] [CrossRef]
- Wickramaratne, S.D.; Mahmud, M.S. A deep learning based ternary task classification system using gramian angular summation field in fNIRS neuroimaging data. In Proceedings of the 2020 IEEE International Conference on E-Health Networking, Application & Services (HEALTHCOM), Shenzhen, China, 1–2 March 2021; IEEE: Piscataway, NJ, USA, 2021; pp. 1–4. [Google Scholar]
- Nagels-Coune, L.; Benitez-Andonegui, A.; Reuter, N.; Lührs, M.; Goebel, R.; De Weerd, P.; Riecke, L.; Sorger, B. Brain-based binary communication using spatiotemporal features of fNIRS responses. Front. Hum. Neurosci. 2020, 14, 113. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Noah, J.A.; Hirsch, J. Separation of the global and local components in functional near-infrared spectroscopy signals using principal component spatial filtering. Neurophotonics 2016, 3, 015004. [Google Scholar] [CrossRef] [PubMed]
- Frank, G.; Makeig, S.; Delorme, A. A Framework to Evaluate Independent Component Analysis applied to EEG signal: Testing on the Picard algorithm. In Proceedings of the 2022 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), Las Vegas, NV, USA, 6–8 December 2022; IEEE: Piscataway, NJ, USA, 2022; pp. 2009–2016. [Google Scholar]
- Dharmaprani, D.; Nguyen, H.K.; Lewis, T.W.; DeLosAngeles, D.; Willoughby, J.O.; Pope, K.J. A comparison of independent component analysis algorithms and measures to discriminate between EEG and artifact components. In Proceedings of the 2016 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Orlando, FL, USA, 16–20 August 2016; IEEE: Piscataway, NJ, USA, 2016; pp. 825–828. [Google Scholar]
- Zhao, Y.; Sun, P.P.; Tan, F.L.; Hou, X.; Zhu, C.Z. NIRS-ICA: A MATLAB toolbox for independent component analysis applied in fNIRS studies. Front. Neuroinform. 2021, 15, 683735. [Google Scholar] [CrossRef] [PubMed]
- Ortega, P.; Faisal, A.A. Deep learning multimodal fNIRS and EEG signals for bimanual grip force decoding. J. Neural Eng. 2021, 18, 0460e6. [Google Scholar] [CrossRef] [PubMed]
- Cao, J.; Garro, E.M.; Zhao, Y. EEG/FNIRS based workload classification using functional brain connectivity and machine learning. Sensors 2022, 22, 7623. [Google Scholar] [CrossRef]
- Aghajani, H.; Garbey, M.; Omurtag, A. Measuring mental workload with EEG+ fNIRS. Front. Hum. Neurosci. 2017, 11, 359. [Google Scholar] [CrossRef]
- Varandas, R.; Lima, R.; Bermúdez i Badia, S.; Silva, H.; Gamboa, H. Automatic cognitive fatigue detection using wearable fNIRS and machine learning. Sensors 2022, 22, 4010. [Google Scholar] [CrossRef]
- Ma, D.; Izzetoglu, M.; Holtzer, R.; Jiao, X. Deep Learning Based Walking Tasks Classification in Older Adults using fNIRS. IEEE Trans. Neural Syst. Rehabil. Eng. 2023, 31, 3437–3447. [Google Scholar] [CrossRef]
- Chen, W.T.; Hsieh, C.Y.; Liu, Y.H.; Cheong, P.L.; Wang, Y.M.; Sun, C.W. Migraine classification by machine learning with functional near-infrared spectroscopy during the mental arithmetic task. Sci. Rep. 2022, 12, 14590. [Google Scholar] [CrossRef] [PubMed]
- Shoushtarian, M.; Alizadehsani, R.; Khosravi, A.; Acevedo, N.; McKay, C.M.; Nahavandi, S.; Fallon, J.B. Objective measurement of tinnitus using functional near-infrared spectroscopy and machine learning. PLoS ONE 2020, 15, e0241695. [Google Scholar] [CrossRef] [PubMed]
- Yang, C.M.; Shin, J.; Kim, J.I.; Lim, Y.B.; Park, S.H.; Kim, B.N. Classifying children with ADHD based on prefrontal functional near-infrared spectroscopy using machine learning. Clin. Psychopharmacol. Neurosci. 2023, 21, 693. [Google Scholar] [CrossRef] [PubMed]
- Trakoolwilaiwan, T.; Behboodi, B.; Lee, J.; Kim, K.; Choi, J.W. Convolutional neural network for high-accuracy functional near-infrared spectroscopy in a brain–computer interface: Three-class classification of rest, right-, and left-hand motor execution. Neurophotonics 2018, 5, 011008. [Google Scholar] [CrossRef]
- Huve, G.; Takahashi, K.; Hashimoto, M. Brain activity recognition with a wearable fNIRS using neural networks. In Proceedings of the 2017 IEEE international conference on mechatronics and automation (ICMA), Takamatsu, Japan, 6–9 August 2017; IEEE: Piscataway, NJ, USA, 2017; pp. 1573–1578. [Google Scholar]
- Yoo, S.H.; Woo, S.W.; Amad, Z. Classification of three categories from prefrontal cortex using LSTM networks: fNIRS study. In Proceedings of the 2018 18th International Conference on Control, Automation and Systems (ICCAS), PyeongChang, Republic of Korea, 17–20 October 2018; IEEE: Piscataway, NJ, USA, 2018; pp. 1141–1146. [Google Scholar]
- Asgher, U.; Khalil, K.; Khan, M.J.; Ahmad, R.; Butt, S.I.; Ayaz, Y.; Naseer, N.; Nazir, S. Enhanced accuracy for multiclass mental workload detection using long short-term memory for brain–computer interface. Front. Neurosci. 2020, 14, 584. [Google Scholar] [CrossRef] [PubMed]
- Mughal, N.E.; Khan, M.J.; Khalil, K.; Javed, K.; Sajid, H.; Naseer, N.; Ghafoor, U.; Hong, K.S. EEG-fNIRS-based hybrid image construction and classification using CNN-LSTM. Front. Neurorobot. 2022, 16, 873239. [Google Scholar] [CrossRef] [PubMed]
- Ghonchi, H.; Fateh, M.; Abolghasemi, V.; Ferdowsi, S.; Rezvani, M. Deep recurrent–convolutional neural network for classification of simultaneous EEG–fNIRS signals. IET Signal Process. 2020, 14, 142–153. [Google Scholar] [CrossRef]
- Hong, K.S.; Khan, M.J.; Hong, M.J. Feature extraction and classification methods for hybrid fNIRS-EEG brain-computer interfaces. Front. Hum. Neurosci. 2018, 12, 246. [Google Scholar] [CrossRef]
- Zafar, A.; Dad Kallu, K.; Atif Yaqub, M.; Ali, M.U.; Hyuk Byun, J.; Yoon, M.; Su Kim, K. A Hybrid GCN and Filter-Based Framework for Channel and Feature Selection: An fNIRS-BCI Study. Int. J. Intell. Syst. 2023, 2023, 8812844. [Google Scholar] [CrossRef]
- Zhong, J.; Shan, Z.; Zhang, X.; Lu, H.; Peng, H.; Hu, B. Robust discriminant feature extraction for automatic depression recognition. Biomed. Signal Process. Control 2023, 82, 104505. [Google Scholar] [CrossRef]
- Cuong, L.S. Feature Extraction and Classification of FNIRS Signal for Mental Workload Evaluation. Doctoral Thesis, International University-HCMC, Ho Chi Minh City, Vietnam, 2017. [Google Scholar]
- Al-Omairi, H.R.; Fudickar, S.; Hein, A.; Rieger, J.W. Improved Motion Artifact Correction in fNIRS Data by Combining Wavelet and Correlation-Based Signal Improvement. Sensors 2023, 23, 3979. [Google Scholar] [CrossRef] [PubMed]
- Arif, A.; Khan, M.J.; Javed, K.; Sajid, H.; Rubab, S.; Naseer, N.; Khan, T.I. Hemodynamic Response Detection Using Integrated EEG-fNIRS-VPA for BCI. Comput. Mater. Contin. 2022, 70, 535–555. [Google Scholar] [CrossRef]
- Liu, R.; Walker, E.; Friedman, L.; Arrington, C.M.; Solovey, E.T. fNIRS-based classification of mind-wandering with personalized window selection for multimodal learning interfaces. J. Multimodal User Interfaces 2021, 15, 257–272. [Google Scholar] [CrossRef]
- Fernandez Rojas, R.; Huang, X.; Ou, K.L. A machine learning approach for the identification of a biomarker of human pain using fNIRS. Sci. Rep. 2019, 9, 5645. [Google Scholar] [CrossRef] [PubMed]
- Behboodi, B.; Lim, S.H.; Luna, M.; Jeon, H.A.; Choi, J.W. Artificial and convolutional neural networks for assessing functional connectivity in resting-state functional near infrared spectroscopy. J. Near Infrared Spectrosc. 2019, 27, 191–205. [Google Scholar] [CrossRef]
- Zheng, Y.; Zhang, D.; Wang, L.; Wang, Y.; Deng, H.; Zhang, S.; Li, D.; Wang, D. Resting-state-based spatial filtering for an fNIRS-based motor imagery brain-computer interface. IEEE Access 2019, 7, 120603–120615. [Google Scholar] [CrossRef]
- Eken, A. Assessment of flourishing levels of individuals by using resting-state fNIRS with different functional connectivity measures. Biomed. Signal Process. Control 2021, 68, 102645. [Google Scholar] [CrossRef]
Machine Learning Algorithm | Mental Drawing—New Feature | Spatial Navigation—New Feature | Mental Drawing—Traditional Feature | Spatial Navigation—Traditional Feature | ||||
---|---|---|---|---|---|---|---|---|
HbO | HbR | HbO | HbR | HbO | HbR | HbO | HbR | |
LDA | 89 | 82 | 82 | 80 | 84 | 68 | 74 | 66 |
KNN | 88 | 83 | 80 | 78 | 73 | 66 | 68 | 64 |
LGBM | 98 | 86 | 97 | 90 | 91 | 72 | 86 | 70 |
XGBOOST | 94 | 84 | 93 | 88 | 85 | 70 | 82 | 72 |
S.No | Journal Reference | Methods Employed | Results |
---|---|---|---|
1 | Liu et al. (2021) [39] | Deep neural and CNN algorithm classification using individual based time window (ITWS). | The average F1 score attained by the ITWS algorithm was 73.2%. |
2 | Fernandez Rojas et al. (2019) [40] | Three algorithms for machine learning. Support vector machines linear discriminant algorithm nearest neighbor for identifying bio markers of human pain. | The model’s SVM shows good performance, with accuracy of 94.17%. |
3 | Behboodi et al. (2019) [41] | Performance of increased sensitivity and specificity using seed-based machine learning model. | Artificial network model performance yielded the best prediction, with 91%. |
4 | Zheng et al. (2019) [42] | The analysis uses classifiers like shrinkage algorithms, common spatial pattern (CSP)-based techniques, and resting-state independent component analysis (RSICA). | The classification accuracy of RSICA obtained is above 70% for all spectral datasets. |
5 | Eken (2021) [43] | A prediction system that utilizes the use of the Dynamic Time Warping algorithm and Pearson’s correlation was developed for calculating functional connectivity. | The results show the proposed model gives the highest accuracy of 85.55%. |
6 | Hramov et al. (2020) [7] | Examination of fNIRS data collected during hypothetical and actual movements. | 90% classification accuracy of motor imagery. |
7 | Proposed research work | Analysis of fNIRS data for motor activity with new feature generation. | 98% classification accuracy of mental drawing and 97% spatial navigation. |
Test | Test Static | p-Value |
---|---|---|
Mann–Whitney U test | 6.051 | 0.049 |
Kruskal–Wallis H test | 10.076 | 0.036 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Akila, V.; Christaline, J.A.; Edward, A.S. Novel Feature Generation for Classification of Motor Activity from Functional Near-Infrared Spectroscopy Signals Using Machine Learning. Diagnostics 2024, 14, 1008. https://doi.org/10.3390/diagnostics14101008
Akila V, Christaline JA, Edward AS. Novel Feature Generation for Classification of Motor Activity from Functional Near-Infrared Spectroscopy Signals Using Machine Learning. Diagnostics. 2024; 14(10):1008. https://doi.org/10.3390/diagnostics14101008
Chicago/Turabian StyleAkila, V., J. Anita Christaline, and A. Shirly Edward. 2024. "Novel Feature Generation for Classification of Motor Activity from Functional Near-Infrared Spectroscopy Signals Using Machine Learning" Diagnostics 14, no. 10: 1008. https://doi.org/10.3390/diagnostics14101008
APA StyleAkila, V., Christaline, J. A., & Edward, A. S. (2024). Novel Feature Generation for Classification of Motor Activity from Functional Near-Infrared Spectroscopy Signals Using Machine Learning. Diagnostics, 14(10), 1008. https://doi.org/10.3390/diagnostics14101008