Evaluating the Performance of FlukeCatcher at Detecting Urogenital Schistosomiasis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Sample Size Determination
2.3. Study Participants and Sites
2.4. Urine Collection and Examination
2.4.1. Membrane Filtration Microscopy Technique (UFM)
2.4.2. FlukeCatcher Filtration Microscopy Technique (FCM)
2.5. Data Analysis
3. Results
3.1. Prevalence of S. haematobium Infection among Recruited Children
3.2. Performance of FlukeCatcher at Detecting S. haematobium Infection
3.3. Performance of FlukeCatcher at Estimating Egg Counts
3.4. Agreement between FCM and UFM
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- WHO. Schistosomiasis; World Health Organization: Geneva, Switzerland, 2023. Available online: https://www.who.int/news-room/fact-sheets/detail/schistosomiasis (accessed on 8 January 2022).
- McManus, D.; Dunne, D.; Sacko, M.; Utzinger, J.; Vennervald, B.; Zhou, X.-N. Schistosomiasis. Nat. Rev. Dis. Primer 2018, 4, 13. [Google Scholar] [CrossRef]
- Chala, B.; Torben, W. An Epidemiological Trend of Urogenital Schistosomiasis in Ethiopia. Front. Public Health 2018, 6, 60. [Google Scholar] [CrossRef]
- Mostafa, M.H.; Sheweita, S.A.; O’connor, P.J. Relationship between schistosomiasis and bladder cancer. Clin. Microbiol. Rev. 1999, 12, 97–111. [Google Scholar] [CrossRef]
- Orish, V.N.; Morhe, E.K.S.; Azanu, W.; Alhassan, R.K.; Gyapong, M. The parasitology of female genital schistosomiasis. Curr. Res. Parasitol. Vector-Borne Dis. 2022, 2, 100093. [Google Scholar] [CrossRef]
- CDC (Centers for Disease Control and Prevention). Parasites—Schistosomiasis. Available online: https://www.cdc.gov/parasites/schistosomiasis/index.html (accessed on 11 April 2018).
- Lo, N. WHO Guideline on Control and Elimination of Human Schistosomiasis; World Health Organization: Geneva, Switzerland, 2022. Available online: https://iris.who.int/bitstream/handle/10665/351856/9789240041608-eng.pdf?sequence=1 (accessed on 28 February 2024).
- WHO (World Health Organization). Neglected Tropical Diseases. Available online: https://www.who.int/news-room/questions-and-answers/item/neglected-tropical-diseases (accessed on 16 January 2023).
- CDC (Centers for Disease Control and Prevention). DPDx—Laboratory Identification of Parasites of Public Health Concern: Schistosomiasis. Available online: https://www.cdc.gov/dpdx/schistosomiasis/index.html (accessed on 14 August 2019).
- Esiere, R.K.; Ibeneme, E.O.; Effanga, E.O.; Imalele, E.E.; Esiere, M.K.; Inyang-Etoh, P.C.; Alaribe, A.A.A. Detecting Schistosoma haematobium infection by microscopy and polymerase chain reaction (PCR) in school children in three senatorial districts of Cross River State, Nigeria. J. Parasit. Dis. 2022, 46, 272–279. [Google Scholar] [CrossRef]
- Song, H.B.; Kim, J.; Jin, Y.; Lee, J.S.; Jeoung, H.G.; Lee, Y.H.; Saeed, A.A.W.; Hong, S.-T. Comparison of ELISA and Urine Microscopy for Diagnosis of Schistosoma haematobium Infection. J. Korean Med. Sci. 2018, 33, e238. [Google Scholar] [CrossRef]
- Mohammed, H.; Landeryou, T.; Chernet, M.; Liyew, E.F.; Wulataw, Y.; Getachew, B.; Difabachew, H.; Phillips, A.; Maddren, R.; Ower, A.; et al. Comparing the accuracy of two diagnostic methods for detection of light Schistosoma haematobium infection in an elimination setting in Wolaita Zone, South Western Ethiopia. PLoS ONE 2022, 17, e0267378. [Google Scholar] [CrossRef]
- Pomari, E.; Perandin, F.; La Marca, G.; Bisoffi, Z. Improved detection of DNA Schistosoma haematobium from eggs extracted by bead beating in urine. Parasitol. Res. 2018, 118, 683–686. [Google Scholar] [CrossRef]
- Zárate-Rendón, D.; Vlaminck, J.; Levecke, B.; Briones-Montero, A.; Geldhof, P. Comparison of Kato-Katz Thick Smear, Mini-FLOTAC, and Flukefinder for the Detection and Quantification of Fasciola hepatica Eggs in Artificially Spiked Human Stool. Am. J. Trop. Med. Hyg. 2019, 101, 59–61. [Google Scholar] [CrossRef] [PubMed]
- Bosco, A.; Ciuca, L.; Maurelli, M.P.; Vitiello, P.; Cringoli, G.; Prada, J.M.; Rinaldi, L. Comparison of Mini-FLOTAC, Flukefinder and sedimentation techniques for detection and quantification of Fasciola hepatica and Calicophoron daubneyi eggs using spiked and naturally infected bovine faecal samples. Parasit Vectors 2023, 16, 260. [Google Scholar] [CrossRef] [PubMed]
- Reigate, C.; Williams, H.W.; Denwood, M.J.; Morphew, R.M.; Thomas, E.R.; Brophy, P.M. Evaluation of two Fasciola hepatica faecal egg counting protocols in sheep and cattle. Vet. Parasitol. 2021, 294, 109435. [Google Scholar] [CrossRef] [PubMed]
- Nzalawahe, J.; Kassuku, A.; Stothard, J.R.; Coles, G.; Eisler, M. Trematode infections in cattle in Arumeru District, Tanzania are associated with irrigation. Parasit Vectors 2014, 1, 107. [Google Scholar] [CrossRef] [PubMed]
- Degarege, A.; Mekonnen, Z.; Levecke, B.; Legesse, M.; Negash, Y.; Vercruysse, J.; Erko, B. Prevalence of Schistosoma haematobium Infection among School-Age Children in Afar Area, Northeastern Ethiopia. PLoS ONE 2015, 10, e0133142. [Google Scholar] [CrossRef] [PubMed]
- Hajian-Tilaki, K. Sample size estimation in diagnostic test studies of biomedical informatics. J. Biomed. Inform. 2014, 48, 193–204. [Google Scholar] [CrossRef] [PubMed]
- Waligora, M.; Dranseika, V.; Piasecki, J. Child’s assent in research: Age threshold or personalisation? BMC Medical Ethics 2014, 15, 44. [Google Scholar] [CrossRef] [PubMed]
- WHO. Basic Laboratory Methods in Medical Parasitology; World Health Organization: Geneva, Switzerland, 1991. Available online: https://iris.who.int/handle/10665/40793 (accessed on 28 February 2024).
- Armoo, S.; Cunningham, L.J.; Campbell, S.J.; Aboagye, F.T.; Boampong, F.K.; Hamidu, B.A.; Osei-Atweneboana, M.Y.; Stothard, J.R.; Adams, E.R. Detecting Schistosoma mansoni infections among pre-school-aged children in southern Ghana: A diagnostic comparison of urine-CCA, real-time PCR and Kato-Katz assays. BMC Infect. Dis. 2020, 20, 301. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, W.J.; Magalhães, F.D.C.; Elias, A.M.S.; de Castro, V.N.; Favero, V.; Lindholz, C.G.; Oliveira, A.; Barbosa, F.S.; Gil, F.; Gomes, M.A.; et al. Evaluation of diagnostic methods for the detection of intestinal schistosomiasis in endemic areas with low parasite loads: Saline gradient, Helmintex, Kato-Katz and rapid urine test. PLoS Neglected Trop. Dis. 2018, 12, e0006232. [Google Scholar] [CrossRef] [PubMed]
- Habtamu, K.; Degarege, A.; Ye-Ebiyo, Y.; Erko, B. Comparison of the Kato-Katz and FLOTAC techniques for the diagnosis of soil-transmitted helminth infections. Parasitol. Int. 2011, 60, 398–402. [Google Scholar] [CrossRef] [PubMed]
- Magalhães, F.D.C.; Moreira, J.M.P.; de Rezende, M.C.; Favero, V.; Graeff-Teixeira, C.; Coelho, P.M.Z.; Carneiro, M.; Geiger, S.M.; Negrão-Corrêa, D. Evaluation of isotype-based serology for diagnosis of Schistosoma mansoni infection in individuals living in endemic areas with low parasite burden. Acta Trop. 2023, 248, 107017. [Google Scholar] [CrossRef]
- Deol, A.K.; Fleming, F.M.; Calvo-Urbano, B.; Walker, M.; Bucumi, V.; Gnandou, I.; Tukahebwa, E.M.; Jemu, S.; Mwingira, U.J.; Alkohlani, A.; et al. Schistosomiasis—Assessing Progress toward the 2020 and 2025 Global Goals. N. Engl. J. Med. 2019, 381, 2519–2528. [Google Scholar] [CrossRef]
- McHugh, M. Interrater reliability: The kappa statistic. Biochem. Med. 2012, 22, 276–282. [Google Scholar] [CrossRef]
- Howell, A. Snail-Borne Diseases in Bovids at High and Low Altitude in Eastern Uganda: Integrated Parasitological and Malacological Mapping; University of Liverpool: Liverpool, UK, 2011; Available online: https://www.researchgate.net/publication/267948147_Snail-borne_diseases_in_bovids_at_high_and_low_altitude_in_Eastern_Uganda_Integrated_parasitological_and_malacological_mapping (accessed on 9 January 2024).
- Hecker, A.S.; Raulf, M.-K.; König, S.; Knubben-Schweizer, G.; Wenzel, C.; May, K.; Strube, C. In-herd prevalence of Fasciola hepatica and Calicophoron/Paramphistomum spp. infections in German dairy cows with comparison of two coproscopical methods and establishment of real-time pyrosequencing for rumen fluke species differentiation. Veter-Parasitol. 2024, 327, 110142. [Google Scholar] [CrossRef] [PubMed]
- DLing, D.; Pai, M.; Schiller, I.; Dendukuri, N. A Bayesian framework for estimating the incremental value of a diagnostic test in the absence of a gold standard. BMC Med. Res. Methodol. 2014, 14, 67. [Google Scholar] [CrossRef] [PubMed]
- Tenny, S.; Hoffman, M. Prevalence. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2023. Available online: https://pubmed.ncbi.nlm.nih.gov/28613617/ (accessed on 31 March 2024).
- Knopp, S.; Ame, S.M.; Hattendorf, J.; Ali, S.M.; Khamis, I.S.; Bakar, F.; Khamis, M.A.; Person, B.; Kabole, F.; Rollinson, D. Urogenital schistosomiasis elimination in Zanzibar: Accuracy of urine filtration and haematuria reagent strips for diagnosing light intensity Schistosoma haematobium infections. Parasites Vectors 2018, 11, 552. [Google Scholar] [CrossRef] [PubMed]
- Knopp, S.; Corstjens, P.L.A.M.; Koukounari, A.; Cercamondi, C.I.; Ame, S.M.; Ali, S.M.; de Dood, C.J.; Mohammed, K.A.; Utzinger, J.; Rollinson, D.; et al. Sensitivity and Specificity of a Urine Circulating Anodic Antigen Test for the Diagnosis of Schistosoma haematobium in Low Endemic Setting. PLoS Neglected Trop. Dis. 2015, 9, e0003752. [Google Scholar] [CrossRef]
Infection Status * | |||||
---|---|---|---|---|---|
None | Light | Heavy | Total | ||
Age (years) | 5–10 | 375 (85%, 95% CI: 81.7%, 88.3%) | 63 (14%, 95% CI: 10.8%, 17.2%) | 4 (1%, 95% CI: 0.07%, 1.9%) | 442 |
11–15 | 99 (76%, 95% CI: 68.7%, 83.3%) | 30 (23%, 95% CI: 15.8%, 30.2%) | 1 (1%, 95% CI: 0.0%, 2.7%) | 130 | |
Sex | Female | 216 (85%, 95% CI: 80.6%, 89.4%) | 37 (14%, 95% CI: 9.7%, 18.3%) | 2 (1%, 95% CI: 0.0%, 2.0%) | 255 |
Male | 258 (81%, 95% CI: 76.7%, 85.3%) | 56 (18%, 95% CI: 13.8%, 22.2%) | 3 (1%, 95% CI: 0.0%, 2.0%) | 317 | |
Total | 474 (83%) | 93 (16%) | 5 (1%) | 572 |
FCM + UFM Combined Result | Total | |||
---|---|---|---|---|
Positive | Negative | |||
FCM result | Positive | 82 | 0 | 82 |
Negative | 16 | 474 | 490 | |
UFM result | Positive | 64 | 0 | 64 |
Negative | 34 | 474 | 508 | |
Total | 98 | 474 | 572 |
Combined FCM and UFM Results as Reference (95% CI) | ||
---|---|---|
FCM | Sensitivity | 84% (77%–91%) |
Negative predictive value | 97% (95%–98%) | |
UFM | Sensitivity | 65% (56%–75%) |
Negative predictive value | 93% (91%–96%) |
Testing Method | p-Value 3 | |||
---|---|---|---|---|
UFM | FCM | |||
Age (years) | 5–10 | 13.8 (SD = 22.6) | 6.4 (SD = 7.3) | <0.0001 |
11–15 | 16.4 (SD = 18.7) | 7.1 (SD = 8.5) | <0.0001 | |
Infection intensity 2 | Light intensity | 9.8 (SD = 12.8) | 5.9 (SD = 7.1) | <0.0001 |
Heavy intensity | 72.4 (SD = 13.4) | 17.8 (SD = 7.7) | 0.0625 | |
All infected | 14.7 (SD = 21.2) | 6.6 (SD = 7.7) | <0.0001 |
Tests Compared | Cohen’s Kappa for Classifying Infection Status (95% CI) | Spearman’s Correlation for Estimating Egg Count (p-Value) | Cohen’s Kappa for Classifying Infection Intensity (p-Value) |
---|---|---|---|
UFM vs. combined results | 0.76 (0.68–0.83) | 0.82 (p < 0.0001) * | - |
FCM vs. combined results | 0.90 (0.84–0.95) | 0.91 (p < 0.0001) * | - |
FCM vs. UFM | 0.61 (0.51–0.71) | 0.66 (p < 0.0001) | −0.89 (p = 1.00) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fok, L.; Erko, B.; Brett-Major, D.; Animut, A.; Broadhurst, M.J.; Dai, D.; Linville, J.; Levecke, B.; Negash, Y.; Degarege, A. Evaluating the Performance of FlukeCatcher at Detecting Urogenital Schistosomiasis. Diagnostics 2024, 14, 1037. https://doi.org/10.3390/diagnostics14101037
Fok L, Erko B, Brett-Major D, Animut A, Broadhurst MJ, Dai D, Linville J, Levecke B, Negash Y, Degarege A. Evaluating the Performance of FlukeCatcher at Detecting Urogenital Schistosomiasis. Diagnostics. 2024; 14(10):1037. https://doi.org/10.3390/diagnostics14101037
Chicago/Turabian StyleFok, Louis, Berhanu Erko, David Brett-Major, Abebe Animut, M. Jana Broadhurst, Daisy Dai, John Linville, Bruno Levecke, Yohannes Negash, and Abraham Degarege. 2024. "Evaluating the Performance of FlukeCatcher at Detecting Urogenital Schistosomiasis" Diagnostics 14, no. 10: 1037. https://doi.org/10.3390/diagnostics14101037
APA StyleFok, L., Erko, B., Brett-Major, D., Animut, A., Broadhurst, M. J., Dai, D., Linville, J., Levecke, B., Negash, Y., & Degarege, A. (2024). Evaluating the Performance of FlukeCatcher at Detecting Urogenital Schistosomiasis. Diagnostics, 14(10), 1037. https://doi.org/10.3390/diagnostics14101037