Complete Blood Counts and Research Parameters in the Detection of Myelodysplastic Syndromes
Abstract
:1. Introduction
2. Patients and Methods
2.1. Instrumentation
2.1.1. Mindray Technology
2.1.2. Implantation: Quality Control and Metrological Aspects
2.2. Patients
2.3. Statistics Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sekeres, M.A.; Taylor, J. Diagnosis and Treatment of Myelodysplastic Syndromes: A Review. JAMA 2022, 328, 872–880. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Manero, G. Myelodysplastic syndromes: 2023 update on diagnosis, risk-stratification, and management. Am. J. Haematol. 2023, 98, 1307–1325. [Google Scholar] [CrossRef] [PubMed]
- Khan, A.M. Why are myelodysplastic syndromes unrecognized and underdiagnosed? A primary care perspective. Am. J. Med. 2012, 125, S15–S17. [Google Scholar] [CrossRef] [PubMed]
- Bastida, J.M.; López-Godino, O.; Vicente-Sánchez, A.; Bonanad-Boix, S.; Xicoy-Cirici, B.; Hernández-Sánchez, J.M.; Such, E.; Cervera, J.; Caballero-Berrocal, J.C.; López-Cadenas, F.; et al. Hidden myelodysplastic syndrome(MDS): A prospective study to confirm or exclude MDS inpatients with anemia of uncertain etiology. Int. J. Lab. Hematol. 2019, 41, 109–117. [Google Scholar] [CrossRef] [PubMed]
- Fenaux, P.; Haase, D.; Santini, V.; Sanz, G.; Platzbecker, U.; Mey, U. Myelodysplastic syndromes: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann. Oncol. 2021, 32, 142–156. [Google Scholar] [CrossRef] [PubMed]
- Swerdlow, S.H.; Campo, E.; Harris, N.L.; Jaffe, E.S.; Pileri, S.A.; Stein, H.; Thiele, J.; Vardiman, J.W. World Health Organization Classification of Tumours of Haematopoietic and Lymphoid Tissues; IARC Press: Lyon, France, 2008. [Google Scholar]
- Greenberg, P.L.; Tuechler, H.; Schanz, J.; Sanz, G.; Garcia-Manero, G.; Solé, F.; Bennett, J.M.; Bowen, D.; Fenaux, P.; Dreyfus, F.; et al. Revised International Prognostic Scoring System for Myelodysplastic Syndromes. Blood 2012, 120, 2454–2465. [Google Scholar] [CrossRef]
- Zhu, J.; Clauser, S.; Freynet, N.; Bardet, V. Automated Detection of Dysplasia: Data Mining from Our Hematology Analyzers. Diagnostics 2022, 12, 56. [Google Scholar] [CrossRef] [PubMed]
- BC-6800 Plus Auto Hematology Analyzer. Operator’s Manual; Mindray Bio-medical Electronics Co., Ltd.: Shenzhen, China, 2018. [Google Scholar]
- Sun, P.; Li, N.; Zhang, S.; Liu, S.; Zhang, H.; Yue, B. Combination of NeuX and NeuZ can predict neutrophil dysplasia features of myelodysplastic neoplasms in peripheral blood. Int. J. Lab. Hematol. 2023, 45, 522–527. [Google Scholar] [CrossRef]
- Li, H.; Hu, F.; Gale, R.P.; Sekeres, M.A.; Liang, Y. Myelodysplastic syndromes. Nat. Rev. Dis. Primers 2022, 8, 74. [Google Scholar] [CrossRef]
- Shekhar, R.; Srinivasan, V.K.; Pai, S. How I investigate dysgranulopoiesis. Int. J. Lab. Hematol. 2021, 43, 538–546. [Google Scholar] [CrossRef]
- Furundarena, J.R.; Araiz, M.; Uranga, M.; Sainz, M.R.; Agirre, A.; Trassorras, M.; Uresandi, N.; Montes, M.C.; Argoitia, N. The utility of the Sysmex XE-2100 analyzer’s NEUT-X and NEUT-Y parameters for detecting neutrophil dysplasia in myelodysplastic syndromes. Int. J. Lab. Hem. 2010, 32, 360–366. [Google Scholar] [CrossRef] [PubMed]
- Goel, S.; Sachdev, R.; Gajendra, S.; Jha, B.; Sahni, T.; Dorwal, P.; Srivastava, C.; Tiwari, A.K.; Sood, N.; Gupta, S.; et al. Picking up myelodysplastic syndromes and megaloblastic anemias on peripheral blood: Use of NEUT-X and NEUT-Y in guiding smear reviews. Int. J. Lab. Hem. 2015, 37, e48–e51. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.; Han, E.; Lee, H.K.; Kim, Y.; Han, K. Screening of myelodysplastic syndrome using cell population data obtained from an automatic hematology analyzer. Int. J. Lab. Hematol. 2021, 43, e54–e57. [Google Scholar] [CrossRef] [PubMed]
- Murphy, P.T.; Bergin, S.; O’Brien, M.; Healy, G.; Murphy, P.W.; Glavey, S.; Quinn, J. Cell population data from Sysmex XN analyzer and myelodysplastic syndrome. Int. J. Lab. Hematol. 2022, 44, e138–e139. [Google Scholar] [CrossRef] [PubMed]
- Di Luise, D.; Giannotta, J.A.; Ammirabile, M.; De Zordi, V.; Torricelli, S.; Bottalico, S.; Chiaretto, M.L.; Fattizzo, B.; Migliorini, A.C.; Ceriotti, F. Cell Population Data NE-WX, NE-FSC, LY-Y of Sysmex XN-9000 can provide additional information to differentiate macrocytic anaemia from myelodysplastic syndrome: A preliminary study. Int. J. Lab. Hematol. 2022, 44, e40–e43. [Google Scholar] [CrossRef] [PubMed]
- Kwiecień, I.; Rutkowska, E.; Gawroński, K.; Kulik, K.; Dudzik, A.; Zakrzewska, A.; Raniszewska, A.; Sawicki, W.; Rzepecki, P. Usefulness of New Neutrophil-Related Hematologic Parameters in Patients with Myelodysplastic Syndrome. Cancers 2023, 15, 2488. [Google Scholar] [CrossRef] [PubMed]
- Boutault, R.; Peterlin, P.; Boubaya, M.; Sockel, K.; Chevallier, P.; Garnier, A.; Guillaume, T.; Le Bourgeois, A.; Debord, C.; Godon, C.; et al. A novel complete blood count-based score to screen for myelodysplastic syndrome in cytopenic patients. Br. J. Haematol. 2018, 183, 736–746. [Google Scholar] [CrossRef] [PubMed]
- Pozdnyakova, O.; Niculescu, R.S.; Kroll, T.; Golemme, L.; Raymond, N.; Briggs, D.; Kim, A. Beyond the routine CBC: Machine learning and statistical analyses identify research CBC parameter associations with myelodysplastic syndromes and specific underlying pathogenic variants. J. Clin. Pathol. 2023, 76, 624–631. [Google Scholar] [CrossRef] [PubMed]
- Raess, P.W.; van de Geijn, G.J.M.; Njo, T.L.; Klop, B.; Sukhachev, D.; Wertheim, G.; McAleer, T.; Master, S.R.; Bagg, A. Automated screening for myelodysplastic syndromes through analysis of complete blood count and cell population data parameters. Am. J. Hematol. 2014, 89, 369–374. [Google Scholar] [CrossRef]
- Kim, S.Y.; Park, Y.; Kim, H.; Kim, J.; Kwon, G.C.; Koo, S.H. Discriminating myelodysplastic syndrome and other myeloid malignancies from non-clonal disorders by multiparametric analysis of automated cell data. Clin. Chim. Acta 2018, 480, 56–64. [Google Scholar] [CrossRef]
- Ravalet, N.; Foucault, A.; Picou, F.; Gombert, M.; Renoult, E.; Lejeune, J.; Vallet, N.; Lachot, S.; Rault, E.; Gyan, E.; et al. Automated Early Detection of Myelodysplastic Syndrome within the General Population Using the Research Parameters of Beckman–Coulter DxH 800 Hematology Analyzer. Cancers 2021, 13, 389. [Google Scholar] [CrossRef] [PubMed]
- Hwang, S.M.; Nam, Y. Complete blood count and cell population data parameters from the Abbott Alinity hq analyzer are useful in differentiating myelodysplastic syndromes from other forms of cytopenia. Int. J. Lab. Hematol. 2022, 44, 468–476. [Google Scholar] [CrossRef] [PubMed]
- Dima, F.; Hoffmann, J.J.; Montolli, V.; Lippi, G. Assessment of reticulated platelets with automated hemocytometers: Are we measuring the same thing? Diagnosis 2016, 3, 91–93. [Google Scholar] [CrossRef] [PubMed]
- Briggs, C.; Kunka, S.; Hart, D.; Oguni, S.; Machin, S.J. Assessment of an immature platelet fraction IPF in peripheral thrombocytopenia. Br. J. Haematol. 2004, 126, 93–99. [Google Scholar] [CrossRef] [PubMed]
- Larruzea Ibarra, A.; Muñoz Marín, L.; Perea Durán, G.; Torra Puig, M. Evaluation of Immature Platelet Fraction in Patients with Myelodysplastic Syndromes. Association with Poor Prognosis Factors. Clin. Chem. Lab. Med. 2019, 57, e128–e130. [Google Scholar] [CrossRef] [PubMed]
- Sugimori, N.; Kondo, Y.; Shibayama, M.; Omote, M.; Takami, A.; Sugimori, C.; Ishiyama, K.; Yamazaki, H.; Nakao, S. Aberrant increase in the immature platelet fraction in patients with myelodysplastic syndrome: A marker of karyotypic abnormalities associated with poor prognosis. J. Haematol. 2019, 82, 54–60. [Google Scholar] [CrossRef] [PubMed]
- Santini, V. Anemia as the Main Manifestation of Myelodysplastic Syndromes. Semin. Hematol. 2015, 52, 348–356. [Google Scholar] [CrossRef] [PubMed]
- Le Roux, G.; Vlad, A.; Eclache, V.; Malanquin, C.; Collon, J.-F.; Gantier, M.; Schillinger, F.; Peltier, J.-Y.; Savin, B.; Letestu, R.; et al. Routine diagnostic procedures of myelodysplastic syndromes: Value of a structural blood cell parameter (NEUT-X) determined by the Sysmex XE-2100. Int. J. Lab. Hem. 2010, 32, e237–e243. [Google Scholar] [CrossRef]
- Inaba, T.; Yuki, Y.; Yuasa, S.; Fujita, N.; Yoshitomi, K.; Kamisako, T.; Torii, K.; Okada, T.; Urasaki, Y.; Ueda, T.; et al. Clinical utility of the neutrophil distribution pattern obtained using the CELL-DYN SAPPHIRE hematology analyzer for the diagnosis of myelodysplastic syndrome. Int. J. Hematol. 2011, 94, 169–177. [Google Scholar] [CrossRef]
- Shestakova, A.; Nael, A.; Nora, V.; Rezk, S.; Zhao, X. Automated leukocyte parameters are useful in the assessment of myelodysplastic syndromes. Cytometry B Clin. Cytom. 2021, 100, 299–311. [Google Scholar] [CrossRef]
Mean | SD | CV | Mean | SD | CV | Mean | SD | CV | |
---|---|---|---|---|---|---|---|---|---|
Neu X | 322 | 1.1 | 0.35 | 375 | 2.7 | 0.75 | 367 | 3.8 | 1.0 |
Neu Y | 458 | 3.9 | 0.85 | 393 | 2.8 | 0.72 | 392 | 1.9 | 0.48 |
Neu Z | 1931 | 6.2 | 0.32 | 1963 | 7.5 | 0.39 | 1806 | 11.1 | 0.61 |
Lym X | 94 | 1.97 | 2.0 | 83 | 0.77 | 0.92 | 87 | 1.2 | 1.37 |
Lym Y | 596 | 8.5 | 1.43 | 611 | 8.5 | 1.39 | 578 | 6.6 | 1.14 |
Lym Z | 979 | 10.1 | 1.1 | 971 | 4.4 | 0.45 | 957 | 8.8 | 0.92 |
Mon X | 214 | 4.5 | 1.9 | 185 | 2.5 | 1.35 | 201 | 1.9 | 0.95 |
Mon Y | 869 | 20 | 2.3 | 904 | 13.8 | 1.53 | 843 | 10.7 | 1.27 |
Mon Z | 1364 | 18.7 | 1.33 | 1333 | 14.7 | 1.1 | 1351 | 9.9 | 0.73 |
IPF | 7.3 | 0.54 | 7.4 | 2.5 | 0.16 | 6.4 | 3.75 | 0.2 | 5.3 |
MIC | 0.63 | 0.06 | 10.5 | 0.65 | 0.05 | 8.1 | 21.8 | 0.19 | 0.88 |
MAC | 6.9 | 0.15 | 2.1 | 2.7 | 0.11 | 4.2 | 1.21 | 0.08 | 7.1 |
HPER | 0.52 | 0.04 | 8.07 | 1.33 | 0.04 | 3.6 | 1.78 | 0.78 | 4.4 |
HPO | 0.86 | 0.08 | 9.8 | 0.13 | 0.04 | 3.5 | 3.2 | 0.09 | 2.9 |
RDW | 33.8 | 0.38 | 1.12 | 39.8 | 0.19 | 0.48 | 52.9 | 0.23 | 0.44 |
HDW | 23.04 | 0.21 | 0.94 | 20 | 0.29 | 1.45 | 40.4 | 0.33 | 0.82 |
Healthy | Macrocytic | Cytopenia | MDS | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Median | IQR | Median | IQR | p-Value | Median | IQR | p-Value | Median | IQR | |
WBC | 6.57 | 4.93–8.77 | 9.00 | 4.5–11.7 | 0.0092 | 3.25 | 2.38–4.01 | 0.018 | 3.98 | 2.9–4.95 |
RBC | 4.65 | 4.22–5.22 | 3.28 | 3.08–4.02 | 0.4678 | 3.74 | 3.24–4.15 | 0.03 | 3.47 | 2.99–3.88 |
Hb | 134 | 125–155 | 103 | 79–111 | 0.3103 | 102 | 99–128 | 0.067 | 99 | 96–119 |
MCV | 92.3 | 87.0–95.5 | 103.4 | 99.8–113.8 | 0.0004 | 93.7 | 86.1–100.0 | 0.001 | 97.8 | 90.2–105.1 |
MCH | 28.9 | 28.5–31.3 | 31.9 | 30.5–35.1 | 0.0049 | 29.9 | 28.7–30.3 | 0.188 | 28.9 | 27.5–29.8 |
MCHC | 312 | 310–322 | 306 | 295–318 | 1 | 318 | 314–333 | 0.178 | 316 | 313–330 |
RDW | 44.2 | 41.0–48.1 | 52.5 | 49.1–63.5 | 0.2227 | 48.2 | 42.3–53.7 | 54.7 | 48.9–59.4 | |
Platelets | 266 | 190–352 | 253 | 148–375 | 0.0001 | 85 | 32–148 | 0.001 | 119 | 62–191 |
IPF | 4.1 | 2.0–6.4 | 5.4 | 2.9–9.8 | <0.0001 | 7.5 | 3.6–13.2 | 0.0001 | 14.4 | 4.0–23.8 |
MIC | 0.78 | 0.3–1.8 | 1.14 | 0.3–1.5 | 0.0045 | 1.15 | 0.99–4.1 | 0.04 | 1.55 | 1.0–3.2 |
MAC | 3.4 | 2.3–4.8 | 10.9 | 7.8–21.2 | 0.028 | 5.8 | 3–7.8 | 0.001 | 9.8 | 3.1–18 |
HYPER | 1.7 | 0.8–3.6 | 2.9 | 0.7–4.2 | 0.1301 | 0.94 | 0.45–1.6 | 0.02 | 2.03 | 0.7–3.5 |
HYPO | 0.1 | 0–0.2 | 0.6 | 0.2–1.7 | 0.0169 | 0.87 | 0.2–1.5 | 0.08 | 0.79 | 0.1–1.1 |
HDW | 19.1 | 15.9–23.8 | 23.9 | 16.2–38 | 0.08 | 22.9 | 19.1–26.9 | 0.03 | 25.2 | 18.1–29.0 |
Neu X | 332 | 303–369 | 355 | 317–374 | <0.0001 | 350 | 290–388 | 0.0001 | 279 | 195–305 |
Neu Y | 382 | 3663–407 | 413 | 362–433 | 0.0009 | 436 | 405–475 | <0.0001 | 362 | 299–403 |
Neu Z | 1951 | 1873–2061 | 1869 | 1702–1987 | <0.0001 | 1849 | 1780–1981 | <0.0001 | 1604 | 1378–1771 |
Lym X | 90 | 86–94 | 90 | 84–97 | 0.278 | 95 | 89–100 | 0.1153 | 92 | 86–96 |
Lym Y | 592 | 565–624 | 594 | 569–626 | 0.0005 | 634 | 600–659 | 0.7947 | 640 | 578–675 |
Lym Z | 1021 | 1002–1042 | 1011 | 966–1033 | 0.5938 | 1031 | 999–1057 | 0.2119 | 1019 | 933–1051 |
Mon X | 197 | 190–208 | 208 | 196–222 | 0.7304 | 208 | 191–222 | 0.7389 | 206 | 188–226 |
Mon Y | 858 | 827–906 | 881 | 834–941 | 0.0025 | 940 | 855–979 | 0.3556 | 968 | 865–1039 |
Mon Z | 1387 | 1339–1451 | 1413 | 1354–1441 | 0.3447 | 1401 | 1332–1445 | 0.8932 | 1398 | 1338–1420 |
Neut | 3.62 | 2.38–5.69 | 5.95 | 1.46–7.02 | <0.0001 | 2.22 | 1.45–3.03 | 0.05 | 1.83 | 1.45–3.39 |
Lymph | 2.27 | 1.45–3.14 | 1.99 | 0.83–2.4 | 0.04 | 1.59 | 1.18–2.22 | 0.212 | 1.51 | 0.99–2.18 |
Mono | 0.44 | 0.31–0.64 | 0.9 | 0.23–0.99 | 0.001 | 0.52 | 0.38–0.73 | 0.03 | 0.39 | 0.19–0.68 |
AUC | 95% CI | Cut off | Sensitivity % | Specificity % | |
---|---|---|---|---|---|
Neu X | 0.836 | 0.728–0.944 | <330 au | 80.5 | 81.3 |
Neu Y | 0.825 | 0.705–0.944 | <375 au | 58.9 | 96.0 |
Neu Z | 0.841 | 0.731–0.951 | <1700 au | 83.1 | 80.8 |
IPF | 0.787 | 0.642–0.933 | >10.5% | 72.1 | 80.9 |
MAC | 0.798 | 0.714–0.878 | >9.8% | 50.8 | 86.1 |
RDW | 0.765 | 0.677–0.855 | >55 fL | 70.8 | 79.2 |
OR | 95%CI | p Value | Cut off | |
---|---|---|---|---|
Neu X | 19.23 | 2.00–185.26 | 0.01 | <330 au |
Neu Y | 39.65 | 2.91–538.99 | 0.006 | <375 au |
AUC (95% CI) | 0.88 (0.79–0.95) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Urrechaga, E.; Fernández, M.; Aguirre, U. Complete Blood Counts and Research Parameters in the Detection of Myelodysplastic Syndromes. Diagnostics 2024, 14, 1322. https://doi.org/10.3390/diagnostics14131322
Urrechaga E, Fernández M, Aguirre U. Complete Blood Counts and Research Parameters in the Detection of Myelodysplastic Syndromes. Diagnostics. 2024; 14(13):1322. https://doi.org/10.3390/diagnostics14131322
Chicago/Turabian StyleUrrechaga, Eloísa, Mónica Fernández, and Urko Aguirre. 2024. "Complete Blood Counts and Research Parameters in the Detection of Myelodysplastic Syndromes" Diagnostics 14, no. 13: 1322. https://doi.org/10.3390/diagnostics14131322
APA StyleUrrechaga, E., Fernández, M., & Aguirre, U. (2024). Complete Blood Counts and Research Parameters in the Detection of Myelodysplastic Syndromes. Diagnostics, 14(13), 1322. https://doi.org/10.3390/diagnostics14131322