Machine Learning for Predicting Biologic Agent Efficacy in Ulcerative Colitis: An Analysis for Generalizability and Combination with Computational Models
Abstract
:1. Introduction
2. Machine Learning
- (1)
- ML models can analyze large and diverse datasets and identify intricate patterns that may not be apparent to human clinicians. Personalized predictions allow for tailoring treatments to individual patients and improve clinical outcomes.
- (2)
- ML automates the data analysis and reduces manual effort and time. Predictive models can quickly process vast amounts of information, thereby aiding clinical decision-making.
- (3)
- ML assists clinicians in providing evidence-based predictions. It can complement medical expertise and enhance diagnostic accuracy and treatment planning.
- (4)
- ML models require high-quality data. Inadequate or biased data can result in inaccurate predictions. Data scarcity may limit model performance, especially for rare conditions.
- (5)
- Overfitting occurs when a model learns noise from the training data, leading to poor generalization to new data. Balancing model complexity and generalizability is crucial.
- (6)
- Some ML models (e.g., deep neural networks) lack interpretability. Clinicians must trust and understand ML predictions; improving the interpretability of ML models is thus necessary.
3. Example of Efficacy Prediction Using ML: Vedolizumab and Ustekinumab for Treating UC
- (1)
- Mechanisms of action: Vedolizumab and ustekinumab have different mechanisms of action, which may contribute to the varying responses in patients with refractory CD. This is broadly in line with previous works [18].
- (2)
- Patient heterogeneity: CD is a heterogeneous disease, and the varied patient profiles in the study population may have led to substantial differences in the responses to biologic agents.
- (3)
- Sample size and study design: The study sample size (insufficient statistical power) and design (study duration) possibly undermined the results.
4. Analysis and Discussion
4.1. ML and CMs
4.1.1. Traditional Mathematical Model (CM)
4.1.2. Machine Learning Approach
- (1)
- Ensemble methods:
- Boosting: Boosting algorithms, such as AdaBoost or XGBoost, combine multiple weak ML models, often decision trees, to create a strong ensemble. These models mitigate the errors of their constituent models to improve the overall performance.
- Stacking: Stacking involves training multiple ML models (base learners) and using their predictions as inputs for another model (meta-learner). The meta-learner learns to appropriately combine the base model outputs.
- (2)
- Physics-informed ML:
- By combining ML techniques with domain-specific knowledge, such as fluid dynamics principles, encoded in a CM, ML models can predict turbulence based on data, whereas computational fluid dynamics models provide physical insights. Integrating both approaches can enhance prediction accuracy.
- (3)
- Data preprocessing:
- ML techniques preprocess data before feeding them into CMs.
- ML can manage missing data and perform feature engineering and noise reduction, thereby improving the quality of CM inputs.
- (4)
- Hybrid models:
- Models that blend ML and computational components can be constructed. For example, an artificial neural network (ML) combined with a differential equation solver (CM) can be used to model chemical reactions.
- (5)
- Uncertainty quantification:
- ML models often lack uncertainty estimates.
- ML predictions can be combined with CMs for including uncertainty bounds (e.g., Bayesian models).
- (6)
- Transfer learning:
- An ML model can be trained on a task to then be fine-tuned for a specific computational problem.
- Transfer learning can proceed from an ML model to CM.
4.2. Randomized Clinical Trials and Real-Word Datasets
4.3. Ethnicity Considerations
4.4. Dosage Alternatives
5. Conclusions
Funding
Conflicts of Interest
References
- Weng, W.H. Machine Learning for Clinical Predictive Analytics. In Leveraging Data Science for Global Health; Celi, L., Majumder, M., Ordóñez, P., Osorio, J., Paik, K., Somai, M., Eds.; Springer: Cham, Switzerland, 2020. [Google Scholar] [CrossRef]
- Weissler, E.H.; Naumann, T.; Andersson, T.; Ranganath, R.; Elemento, O.; Luo, Y.; Freitag, D.F.; Benoit, J.; Hughes, M.C.; Khan, F.; et al. The role of machine learning in clinical research: Transforming the future of evidence generation. Trials 2021, 22, 537. [Google Scholar] [CrossRef]
- Rajkomar, A.; Oren, E.; Chen, K.; Dai, A.M.; Hajaj, N.; Hardt, M.; Liu, P.J.; Liu, X.; Marcus, J.; Sun, M.; et al. Scalable and accurate deep learning with electronic health records. NPJ Digit. Med. 2018, 1, 18. [Google Scholar] [CrossRef]
- Mijderwijk, H.J.; Steiger, H.J. Predictive Analytics in Clinical Practice: Advantages and Disadvantages. In Machine Learning in Clinical Neuroscience; Acta Neurochirurgica Supplement; Staartjes, V.E., Regli, L., Serra, C., Eds.; Springer: Cham, Switzerland, 2022; Volume 134. [Google Scholar] [CrossRef]
- Kernbach, J.M.; Staartjes, V.E. Foundations of Machine Learning-Based Clinical Prediction Modeling: Part I—Introduction and General Principles. In Machine Learning in Clinical Neuroscience; Acta Neurochirurgica Supplement; Staartjes, V.E., Regli, L., Serra, C., Eds.; Springer: Cham, Switzerland, 2022; Volume 134. [Google Scholar] [CrossRef]
- Adlung, L.; Cohen, Y.; Mor, U.; Elinav, E. Machine learning in clinical decision making. Med 2021, 2, 642–665. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, X.; Xu, L.; Liu, J.; Ren, P.; Wu, H. The predictive value of machine learning for mortality risk in patients with acute coronary syndromes: A systematic review and meta-analysis. Eur. J. Med. Res. 2023, 28, 451. [Google Scholar] [CrossRef]
- Wang, W.; Kiik, M.; Peek, N.; Curcin, V.; Marshall, I.J.; Rudd, A.G.; Wang, Y.; Douiri, A.; Wolfe, C.D.; Bray, B. A systematic review of machine learning models for predicting outcomes of stroke with structured data. PLoS ONE 2020, 15, e0234722. [Google Scholar] [CrossRef]
- Shamout, F.; Zhu, T.; Clifton, D.A. Machine Learning for Clinical Outcome Prediction. IEEE Rev. Biomed. Eng. 2021, 14, 116–126. [Google Scholar] [CrossRef]
- Peng, J.; Jury, E.C.; Dönnes, P.; Ciurtin, C. Machine Learning Techniques for Personalised Medicine Approaches in Immune-Mediated Chronic Inflammatory Diseases: Applications and Challenges. Front. Pharmacol. 2021, 12, 720694. [Google Scholar] [CrossRef] [PubMed]
- Javaid, A.; Shahab, O.; Adorno, W.; Fernandes, P.; May, E.; Syed, S. Machine Learning Predictive Outcomes Modeling in Inflammatory Bowel Diseases. Inflamm. Bowel Dis. 2022, 28, 819–829. [Google Scholar] [CrossRef]
- Gui, X.; Bazarova, A.; del Amor, R.; Vieth, M.; de Hertogh, G.; Villanacci, V.; Zardo, D.; Parigi, T.L.; Røyset, E.S.; Shivaji, U.N.; et al. PICaSSO Histologic Remission Index (PHRI) in ulcerative colitis: Development of a novel simplified histological score for monitoring mucosal healing and predicting clinical outcomes and its applicability in an artificial intelligence system. Gut 2022, 71, 889–898. [Google Scholar] [CrossRef]
- Pang, W.; Zhang, B.; Jin, L.; Yao, Y.; Han, Q.; Zheng, X. Serological Biomarker-Based Machine Learning Models for Predicting the Relapse of Ulcerative Colitis. J. Inflamm. Res. 2023, 16, 3531–3545. [Google Scholar] [CrossRef]
- Morikubo, H.; Tojima, R.; Maeda, T.; Matsuoka, K.; Matsuura, M.; Miyoshi, J.; Tamura, S.; Hisamatsu, T. Machine learning using clinical data at baseline predicts the medium-term efficacy of ustekinumab in patients with ulcerative colitis. Sci. Rep. 2024, 14, 4386. [Google Scholar] [CrossRef] [PubMed]
- Miyoshi, J.; Maeda, T.; Matsuoka, K.; Saito, D.; Miyoshi, S.; Matsuura, M.; Okamoto, S.; Tamura, S.; Hisamatsu, T. Machine learning using clinical da-ta at baseline predicts the efficacy of vedolizumab at week 22 in patients with ulcerative colitis. Sci. Rep. 2021, 11, 16440. [Google Scholar] [CrossRef] [PubMed]
- Venkatapurapu, S.P.; Iwakiri, R.; Udagawa, E.; Patidar, N.; Qi, Z.; Takayama, R.; Kumar, K.; Sato, Y.; Behar, M.; Offner, P.; et al. A Computational Platform Integrating a Mechanistic Model of Crohn’s Disease for Predicting Temporal Progression of Mucosal Damage and Healing. Adv. Ther. 2022, 39, 3225–3247, Erratum in Adv. Ther. 2023, 40, 721. [Google Scholar] [CrossRef] [PubMed]
- Alric, H.; Amiot, A.; Kirchgesner, J.; Tréton, X.; Allez, M.; Bouhnik, Y.; Beaugerie, L.; Carbonnel, F.; Meyer, A. Vedolizumab clinical decision support tool predicts efficacy of vedolizumab but not ustekinumab in refractory Crohn’s disease. Inflamm. Bowel Dis. 2022, 28, 218–225. [Google Scholar] [CrossRef] [PubMed]
- Sharip, M.T.; Nishad, N.; Pillay, L.; Goordyal, N.; Goerge, S.; Subramanian, S. Ustekinumab or Vedolizumab after Failure of Anti-TNF Agents in Crohn’s Disease: A Review of Comparative Effectiveness Studies. J. Clin. Med. 2024, 13, 2187. [Google Scholar] [CrossRef] [PubMed]
- Navarro, C.L.A.; Damen, J.A.A.; Takada, T.; Nijman, S.W.J.; Dhiman, P.; Ma, J.; Collins, G.S.; Bajpai, R.; Riley, R.D.; Moons, K.G.M.; et al. Risk of bias in studies on prediction models developed using supervised machine learning techniques: Systematic review. BMJ 2021, 375, n2281. [Google Scholar] [CrossRef] [PubMed]
- Pinton, P. Impact of artificial intelligence on prognosis, shared decision-making, and precision medicine for patients with inflammatory bowel disease: A perspective and expert opinion. Ann. Med. 2023, 55, 2300670. [Google Scholar] [CrossRef]
- Agamah, F.E.; Bayjanov, J.R.; Niehues, A.; Njoku, K.F.; Skelton, M.; Mazandu, G.K.; Ederveen, T.H.A.; Mulder, N.; Chimusa, E.R.; Hoen, P.A.C.‘t. Computational approaches for network-based integrative multi-omics analysis. Front. Mol. Biosci. 2022, 9, 967205. [Google Scholar] [CrossRef] [PubMed]
- Pickert, G.; Neufert, C.; Leppkes, M.; Zheng, Y.; Wittkopf, N.; Warntjen, M.; Lehr, H.-A.; Hirth, S.; Weigmann, B.; Wirtz, S.; et al. STAT3 links IL-22 signaling in intestinal epithelial cells to mucosal wound healing. J. Exp. Med. 2009, 206, 1465–1472. [Google Scholar] [CrossRef]
- Schreiber, S.; Aden, K.; Bernardes, J.P.; Conrad, C.; Tran, F.; Höper, H.; Volk, V.; Mishra, N.; Blase, J.I.; Nikolaus, S.; et al. Therapeutic Interleukin-6 Trans-signaling Inhibition by Olamkicept (sgp130Fc) in Patients with Active Inflammatory Bowel Disease. Gastroenterology 2021, 160, 2354–2366. [Google Scholar] [CrossRef]
- Rogers, K.V.; Martin, S.W.; Bhattacharya, I.; Singh, R.S.P.; Nayak, S. A Dynamic Quantitative Systems Pharmacology Model of Inflammatory Bowel Disease: Part 1-Model Framework. Clin. Transl. Sci. 2021, 14, 239–248. [Google Scholar] [CrossRef] [PubMed]
- Gottlieb, Z.S.; Sands, B.E. Personalised Medicine with IL-23 Blockers: Myth or Reality? J. Crohn’s Colitis 2022, 16 (Suppl. S2), ii73–ii94. [Google Scholar] [CrossRef] [PubMed]
- Bretto, E.; Ribaldone, D.G.; Caviglia, G.P.; Saracco, G.M.; Bugianesi, E.; Frara, S. Inflammatory Bowel Disease: Emerging Therapies and Future Treatment Strategies. Biomedicines 2023, 11, 2249. [Google Scholar] [CrossRef] [PubMed]
- Breitwieser, L.; Hesam, A.; de Montigny, J.; Vavourakis, V.; Iosif, A.; Jennings, J.; Kaiser, M.; Manca, M.; Di Meglio, A.; Al-Ars, Z.; et al. BioDynaMo: A modular platform for high-performance agent-based simulation. Bioinformatics 2022, 38, 453–460. [Google Scholar] [CrossRef] [PubMed]
- Boulos, M.N.K.; Zhang, P. Digital Twins: From Personalised Medicine to Precision Public Health. J. Pers. Med. 2021, 11, 745. [Google Scholar] [CrossRef] [PubMed]
- Flöther, F.F. The state of quantum computing applications in health and medicine. Res. Dir. Quantum Technol. 2023, 1, e10. [Google Scholar] [CrossRef]
- Shams, M.; Choudhari, J.; Reyes, K.; Prentzas, S.; Gapizov, A.; Shehryar, A.; Affaf, M.; Grezenko, H.; Gasim, R.W.; Mohsin, S.N.; et al. The Quantum-Medical Nexus: Understanding the Impact of Quantum Technologies on Healthcare. Cureus 2023, 15, e48077. [Google Scholar] [CrossRef] [PubMed]
- Fan, K.; Fan, K.; Cheng, L.; Li, L. Artificial intelligence and machine learning methods in predicting anti-cancer drug combination effects. Briefings Bioinform. 2021, 22, bbab271. [Google Scholar] [CrossRef]
- Wu, L.; Wen, Y.; Leng, D.; Zhang, Q.; Dai, C.; Wang, Z.; Liu, Z.; Yan, B.; Zhang, Y.; Wang, J.; et al. Machine learning methods, databases and tools for drug combination prediction. Briefings Bioinform. 2022, 23, bbab355. [Google Scholar] [CrossRef]
- Dulai, P.S.; Singh, S.; Jairath, V.; Wong, E.; Narula, N. Integrating Evidence to Guide Use of Biologics and Small Molecules for Inflammatory Bowel Diseases. Gastroenterology 2024, 166, 396–408.e2. [Google Scholar] [CrossRef]
- Okamoto, H.; Dirks, N.L.; Rosario, M.; Hori, T.; Hibi, T. Population pharmacokinetics of vedolizumab in Asian and non-Asian patients with ulcerative colitis and Crohn’s disease. Intest. Res. 2021, 19, 95–105. [Google Scholar] [CrossRef] [PubMed]
- Motoya, S.; Watanabe, K.; Ogata, H.; Kanai, T.; Matsui, T.; Suzuki, Y.; Shikamura, M.; Sugiura, K.; Oda, K.; Hori, T.; et al. Vedolizumab in Japanese patients with ulcerative colitis: A Phase 3, randomized, double-blind, placebo-controlled study. PLoS ONE 2019, 14, e0212989, Erratum in PLoS ONE 2019, 14, e0215491. [Google Scholar] [CrossRef]
- Sands, B.E.; Sandborn, W.J.; Panaccione, R.; O’Brien, C.D.; Zhang, H.; Johanns, J.; Marano, C. Ustekinumab as induction and maintenance therapy for ul-cerative colitis. N. Engl. J. Med. 2019, 381, 1201–1214. [Google Scholar] [CrossRef] [PubMed]
- Afif, W.; Arasaradnam, R.P.; Abreu, M.T.; Danese, S.; Sandborn, W.J.; Miao, Y.; Zhang, H.; Panaccione, R.; Hisamatsu, T.; Scherl, E.J.; et al. Efficacy and Safety of Ustekinumab for Ulcerative Colitis Through 4 Years: Final Results of the UNIFI Long-Term Maintenance Study. Am. J. Gastroenterol. 2024, 119, 910–921. [Google Scholar] [CrossRef] [PubMed]
- Hisamatsu, T.; Kim, H.J.; Motoya, S.; Suzuki, Y.; Ohnishi, Y.; Fujii, N.; Matsushima, N.; Zheng, R.; Marano, C.W. Efficacy and safety of ustekinumab in East Asian patients with moderately to severely active ulcerative colitis: A subpopulation analysis of global phase 3 induction and maintenance studies (UNIFI). Intest. Res. 2021, 19, 386–397. [Google Scholar] [CrossRef] [PubMed]
- Adedokun, O.J.; Xu, Z.; Gasink, C.; Jacobstein, D.; Szapary, P.; Johanns, J.; Gao, L.-L.; Davis, H.M.; Hanauer, S.B.; Feagan, B.G.; et al. Pharmacokinetics and Exposure Response Relationships of Ustekinumab in Patients With Crohn’s Disease. Gastroenterology 2018, 154, 1660–1671. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.; Jiang, H.; Chen, Z.; Lu, B.; Li, J.; Shen, X. Genetic association between IL23R rs11209026 and rs10889677 polymorphisms and risk of Crohn’s disease and ulcerative colitis: Evidence from 41 studies. Inflamm. Res. 2020, 69, 87–103. [Google Scholar] [CrossRef]
- Tang, L.; Xu, M. Candidate polymorphisms and susceptibility to inflammatory bowel disease: A systematic review and meta-analysis. Gene 2020, 753, 144814. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Liu, H.; Wang, Y.; Wu, J.; Wang, C.; Liu, K.; Qin, Q. The Polymorphisms of Interleukin-12B Gene and Susceptibility to Inflammatory Bowel Diseases: A Meta-analysis and Trial Sequential Analysis. Immunol. Investig. 2021, 50, 987–1006. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pinton, P. Machine Learning for Predicting Biologic Agent Efficacy in Ulcerative Colitis: An Analysis for Generalizability and Combination with Computational Models. Diagnostics 2024, 14, 1324. https://doi.org/10.3390/diagnostics14131324
Pinton P. Machine Learning for Predicting Biologic Agent Efficacy in Ulcerative Colitis: An Analysis for Generalizability and Combination with Computational Models. Diagnostics. 2024; 14(13):1324. https://doi.org/10.3390/diagnostics14131324
Chicago/Turabian StylePinton, Philippe. 2024. "Machine Learning for Predicting Biologic Agent Efficacy in Ulcerative Colitis: An Analysis for Generalizability and Combination with Computational Models" Diagnostics 14, no. 13: 1324. https://doi.org/10.3390/diagnostics14131324
APA StylePinton, P. (2024). Machine Learning for Predicting Biologic Agent Efficacy in Ulcerative Colitis: An Analysis for Generalizability and Combination with Computational Models. Diagnostics, 14(13), 1324. https://doi.org/10.3390/diagnostics14131324