Acute Respiratory Tract Infections (ARTIs) in Children after COVID-19-Related Social Distancing: An Epidemiological Study in a Single Center of Southern Italy
Abstract
:1. Introduction
2. Materials and Methods
- −
- Influenza A (If A), A(H1), A(H3), A(H1)pdm09;
- −
- Influenza B (If B);
- −
- SARS-CoV-2 (SCOV2);
- −
- MERS;
- −
- Parainfluenza 1–4 (PIV1-4);
- −
- Human metapneumovirus (MPV);
- −
- Respiratory syncytial virus (RSV);
- −
- Human rhinovirus (HRV)/enterovirus (EV)(the assay does not distinguish between these two pathogens);
- −
- Adenovirus (ADV);
- −
- Human coronavirus HCoV-HKU1;
- −
- Human coronavirus HCoV-229E;
- −
- Human coronavirus HCoV-OC43;
- −
- Human coronavirus HCoV-NL63.
3. Endpoints
3.1. Primary Endpoint
3.2. Secondary Endpoints
- The incidence of respiratory infections in children.
- The occurrence of coinfections and identification of the most common pathogen involved in coinfections.
- Whether pathogens causing respiratory infections in children exhibited a higher incidence in mono-infections or coinfections.
- Whether there were fluctuations in the peak incidence of viral infections throughout the examined months.
4. Inclusion and Exclusion Criteria
4.1. Inclusion Criteria
- Age range from >1 month to <15 years old.
- Presentation with acute fever (temperature ≥ 38 °C) or at least one respiratory symptom (such as rhinorrhea, nasal congestion, or sore throat);
- Undergoing the BioFire® FilmArray® Respiratory Panel 2.1 Plus test;
- Onset of illness within 3 days before hospitalization.
4.2. Exclusion Criteria
- Individuals with positive results from BioFire® FilmArray® Respiratory Panel 2.1 Plus tests conducted between 48 h after hospitalization and 3 days after discharge from our hospital, indicative of an infection contracted within the hospital rather than in the community.
- Patients hospitalized for another clinical condition.
- Patients with incomplete clinical information
5. Result
5.1. Pathogens’ Prevalence in ARTIs: RSV Is the Most Frequent Virus in Childhood
- −
- RSV (n = 75, 37%);
- −
- HRV/EV (n = 66, 32%)
- −
- Influenza A (n = 41, 20%);
- −
- SCOV2 (n = 17, 8.5%);
- −
- Adenovirus (n = 11, 5.5%);
- −
- Human coronavirus OC43 (n = 9, 4.5%);
- −
- Influenza B (n = 5, 2.5%);
- −
- Human metapneumovirus (n = 4, 2%);
- −
- Parainfluenza virus 1 and 3, (n =4, 2%);
- −
- Parainfluenza virus 4 (n = 2, 1%);
- −
- Human coronavirus NL63 and parainfluenza virus 2 (n =1, 0.5%);
- −
- Human coronavirus HKU1, 229E, and MERS were not detected.
5.2. Incidence of ARTIs in Children: Positive and Negative Rates of BioFire® FilmArray®
5.3. Occurrence of Coinfections and Principal Viruses Involved in Coinfections
5.4. Comparing Coinfection and Mono-Infection Rates for Each Virus Involved in ARTIs
5.5. Epidemiological Contrasts: Autumn (September–November 2022) vs. Winter (December 2022–March 2023)
6. Discussion
7. Limits and Strength of the Study
- -
- The assay used in our study (BioFire® FilmArray® Respiratory Panel 2.1 Plus) does not distinguish between human rhinovirus and enterovirus and does not include the possibility of testing for EV-D68, a significant EV type.
- -
- The sample size, although adequate for our center’s case studies, was relatively small, and the findings primarily pertain to our local population.
- -
- Our study was performed in a small cohort of patients through a retrospective analysis.
- -
- It was not possible to differentiate between superinfection and early coinfection in our study. Consequently, our observed coinfections may represent coinfection, sequential infection, contamination, or cross-reaction.
- -
- Our study was conducted only in our center, and thus, the results are not generalizable to the country.
- -
- On the contrary, our study boasts several strengths:
- -
- Our study underscores the significance of employing BioFire® FilmArray® Respiratory Panel 2.1 Plus in both clinical practice and clinical trials. Notably, our case studies utilized a comprehensive respiratory panel featuring 23 pathogens, surpassing the scope of less recent studies that focused on only 7 viruses.
- -
- We depicted the epidemiological progression of respiratory pathogens within our local context, offering insights that could potentially forecast future trends.
- -
- We documented the viral epidemiological trends during the fall–winter 2022/2023 period in Italy where, notably, only a limited number of studies have undertaken such analyses, as many studies concluded their assessments up until the year 2022.
- -
- Additionally, our findings indicate that, contrary to the prevailing literature, RSV surpasses rhinovirus as the primary pathogen responsible for ARTIs in our region among children, thus emphasizing the importance of RSV’s vaccination in our territory.
- -
- Moreover, we observed that SARS-CoV-2 tends to contribute to coinfections rather than solitary infections in pediatric cases, deviating from the current literature.
8. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Reischl, A.T.; Schreiner, D.; Poplawska, K.; Kidszun, A.; Zepp, F.; Gröndahl, B.; Gehring, S. The clinical impact of PCR-based point-of-care diagnostic in respiratory tract infections in children. J. Clin. Lab. Anal. 2020, 34, e23203. [Google Scholar] [CrossRef] [PubMed]
- Doan, Q.; Enarson, P.; Kissoon, N.; Klassen, T.P.; Johnson, D.W. Rapid viral diagnosis for acute febrile respiratory illness in children in the Emergency Department. Cochrane Database Syst. Rev. 2014, 2014, CD006452. [Google Scholar] [CrossRef]
- Wishaupt, J.O.; van den Berg, E.; van Wijk, T.; van der Ploeg, T.; Versteegh, F.G.; Hartwig, N.G. Paediatric apnoeas are not related to a specific respiratory virus, and parental reports predict hospitalisation. Acta Paediatr. Int. J. Paediatr. 2016, 105, 542–548. [Google Scholar] [CrossRef] [PubMed]
- Brittain-Long, R.; Nord, S.; Olofsson, S.; Westin, J.; Anderson, L.M.; Lindh, M. Multiplex real-time PCR for detection of respiratory tract infections. J. Clin. Virol. 2008, 41, 53–56. [Google Scholar] [CrossRef]
- Dalziel, S.R.; Haskell, L.; O’Brien, S.; Borland, M.L.; Plint, A.C.; Babl, F.E.; Oakley, E. Bronchiolitis. Lancet 2022, 400, 392–406. [Google Scholar] [CrossRef] [PubMed]
- Glezen, W.P.; Clyde, W.A.; Senior, R.J.; Sheaffer, C.I.; Denny, F.W. Group A Streptococci, Mycoplasmas, and Viruses Associated with Acute Pharyngitis. JAMA J. Am. Med. Assoc. 1967, 202, 455–460. [Google Scholar] [CrossRef]
- Loda, F.A.; Clyde, W.A., Jr.; Glezen, W.P.; Senior, R.J.; Sheaffer, C.I.; Denny, F.W., Jr. Studies on the role of viruses, bacteria, and M. pneumoniae as causes of lower respiratory tract infections in children. J. Pediatr. 1968, 72, 161–176. [Google Scholar] [CrossRef]
- Monto, A.S. Acute Respiratory Infection in Children of Developing Countries: Challenge of the 1990s. Clin. Infect. Dis. 1989, 11, 498–505. [Google Scholar] [CrossRef]
- Hall, C.B. Respiratory Syncytial Virus and Parainfluenza Virus. N. Engl. J. Med. 2001, 344, 1917–1928. [Google Scholar] [CrossRef]
- Gunson, R.N.; Collins, T.C.; Carman, W.F. Real-time RT-PCR detection of 12 respiratory viral infections in four triplex reactions. J. Clin. Virol. 2005, 33, 341–344. [Google Scholar] [CrossRef]
- Leber, A.L.; Everhart, K.; Daly, J.A.; Hopper, A.; Harrington, A.; Schreckenberger, P.; McKinley, K.; Jones, M.; Holmberg, K.; Kensinger, B. Multicenter Evaluation of BioFire FilmArray Respiratory Panel 2 for Detection of Viruses and Bacteria in Nasopharyngeal Swab Samples. J. Clin. Microbiol. 2018, 56, 10–1128. [Google Scholar] [CrossRef] [PubMed]
- Kusel, M.M.; de Klerk, N.H.; Holt, P.G.; Kebadze, T.; Johnston, S.L.; Sly, P.D. Role of respiratory viruses in acute upper and lower respiratory tract illness in the first year of life: A birth cohort study. Pediatr. Infect. Dis. J. 2006, 25, 680–686. [Google Scholar] [CrossRef]
- Shi, T.; McLean, K.; Campbell, H.; Nair, H. Aetiological role of common respiratory viruses in acute lower respiratory infections in children under five years: A systematic review and meta-analysis. J. Glob. Health 2015, 5, 010408. [Google Scholar] [CrossRef] [PubMed]
- Juvén, T.; Mertsola, J.; Waris, M.; Leinonen, M.; Meurman, O.; Roivainen, M.; Eskola, J.; Saikku, P.; Ruuskanen, O. Etiology of community-acquired pneumonia in 254 hospitalized children. Pediatr. Infect. Dis. J. 2000, 19, 293–298. [Google Scholar] [CrossRef] [PubMed]
- Yu, J.; Xie, Z.; Zhang, T.; Lu, Y.; Fan, H.; Yang, D.; Bénet, T.; Vanhems, P.; Shen, K.; Huang, F.; et al. Comparison of the prevalence of respiratory viruses in patients with acute respiratory infections at different hospital settings in North China, 2012–2015. BMC Infect. Dis. 2018, 18, 72. [Google Scholar] [CrossRef]
- Wishaupt, J.O.; van der Ploeg, T.; de Groot, R.; Versteegh, F.G.A.; Hartwig, N.G. Single- and multiple viral respiratory infections in children: Disease and management cannot be related to a specific pathogen. BMC Infect. Dis. 2017, 17, 62. [Google Scholar] [CrossRef] [PubMed]
- Cuschieri, S. The STROBE guidelines. Saudi J. Anaesth. 2019, 13, 31. [Google Scholar] [CrossRef] [PubMed]
- Zhu, G.; Xu, D.; Zhang, Y.; Wang, T.; Zhang, L.; Gu, W.; Shen, M. Epidemiological characteristics of four common respiratory viral infections in children. Virol. J. 2021, 18, 10. [Google Scholar] [CrossRef] [PubMed]
- Edderdouri, K.; Kabbaj, H.; Laamara, L.; Lahmouddi, N.; Lamdarsi, O.; Zouaki, A.; El Amin, G.; Zirar, J.; Seffar, M. Contribution of the FilmArray BioFire® Technology in the Diagnosis of Viral Respiratory Infections during the COVID-19 Pandemic at Ibn Sina University Hospital Center in Rabat: Epidemiological Study about 503 Cases. Adv. Virol. 2023, 2023, 2679770. [Google Scholar] [CrossRef]
- Esposito, S.; Mencacci, A.; Cenci, E.; Camilloni, B.; Silvetri, E.; Principi, N. Multiplex platforms for the identification of respiratory pathogens: Are they useful in pediatric clinical practice? Front. Cell. Infect. Microbiol. 2019, 9, 196. [Google Scholar] [CrossRef]
- Ciofi Degli Atti, M.; Rizzo, C.; D’Amore, C.; Ravà, L.; Reale, A.; Barbieri, M.A.; Bernaschi, P.; Russo, C.; Villani, A.; Perno, C.F.; et al. Acute respiratory infection emergency access in a tertiary care children hospital in Italy, prior and after the SARS-CoV-2 emergence. Influenza Other Respir. Viruses 2023, 17, e13102. [Google Scholar] [CrossRef] [PubMed]
- Weidmann, M.D.; Green, D.A.; Berry, G.J.; Wu, F. Assessing respiratory viral exclusion and affinity interactions through co-infection incidence in a pediatric population during the 2022 resurgence of influenza and RSV. Front. Cell. Infect. Microbiol. 2023, 13, 1208235. [Google Scholar] [CrossRef]
- Lin, C.Y.; Hwang, D.; Chiu, N.C.; Weng, L.C.; Liu, H.F.; Mu, J.J.; Liu, C.P.; Chi, H. Increased Detection of Viruses in Children with Respiratory Tract Infection Using PCR. Int. J. Environ. Res. Public Health 2020, 17, 564. [Google Scholar] [CrossRef] [PubMed]
- Stein, R.T.; Bont, L.J.; Zar, H.; Polack, F.P.; Park, C.; Claxton, A.; Borok, G.; Butylkova, Y.; Wegzyn, C. Respiratory syncytial virus hospitalization and mortality: Systematic review and meta-analysis. Pediatr. Pulmonol. 2017, 52, 556–569. [Google Scholar] [CrossRef] [PubMed]
- Ludeke, B.; Fearns, R. The respiratory syncytial virus polymerase can perform RNA synthesis with modified primers and nucleotide analogs. Virology 2020, 540, 66–74. [Google Scholar] [CrossRef] [PubMed]
- Wilson, P.T.; Baiden, F.; Brooks, J.C.; Giessler, K.M.; Apio, G.; Punguyire, D.; Moresky, R.T.; Sylverken, J.; Nyarko-Jectey, K.; Tagbor, H.; et al. Respiratory Pathogens in Children 1 Month to 5 Years of Age Presenting with Undifferentiated Acute Respiratory Distress in 2 District-Level Hospitals in Ghana. J. Pediatr. Infect. Dis. Soc. 2019, 8, 361–364. [Google Scholar] [CrossRef] [PubMed]
- Lei, C.; Yang, L.; Lou, C.T.; Yang, F.; SiTou, K.I.; Hu, H.; Io, K.; Cheok, K.T.; Pan, B.; Ung, C.O.L. Viral etiology and epidemiology of pediatric patients hospitalized for acute respiratory tract infections in Macao: A retrospective study from 2014 to 2017. BMC Infect. Dis. 2021, 21, 306. [Google Scholar] [CrossRef]
- Botti, C.; Micillo, A.; Ricci, G.; Russo, A.; Denisco, A.; Cantile, M.; Scognamiglio, G.; De Rosa, A.; Botti, G. Characterization of respiratory infection viruses in hospitalized children from Naples province in Southern Italy. Exp. Ther. Med. 2018, 15, 4805–4809. [Google Scholar] [CrossRef]
- Maglione, M.; Pascarella, A.; Botti, C.; Ricci, G.; Morelli, F.; Camelia, F.; Micillo, A.; Calì, C.; Savoia, F.; Tipo, V.; et al. Changing Epidemiology of Acute Viral Respiratory Infections in Hospitalized Children: The Post-Lockdown Effect. Children 2022, 9, 1242. [Google Scholar] [CrossRef]
- Peri, F.; Lorenzon, B.; Cason, C.; Amaddeo, A.; Norbedo, S.; Comar, M.; Barbi, E.; Cozzi, G. Urgent Hospitalizations Related to Viral Respiratory Disease in Children during Autumn and Winter Seasons 2022/2023. Viruses 2023, 15, 2425. [Google Scholar] [CrossRef]
- Khomenko, V.E.; Iemets, O.V.; Volosovets, O.P.; Kryvopustov, S.P.; Kryvopustova, M.V.; Mozyrska, O.V. Epidemiology of respiratory pathogens in children with acute respiratory tract infection in Ukraine during 2018–2020 years. Wiadomości Lek. 2021, 74, 1389–1395. [Google Scholar] [CrossRef]
- Chen, Y.-J.; Er, T.-K. Distribution of Viral Respiratory Infections during the COVID-19 Pandemic Using the FilmArray Respiratory Panel. Biomedicines 2022, 10, 2734. [Google Scholar] [CrossRef]
- He, Y.; Lin, G.Y.; Wang, Q.; Cai, X.Y.; Zhang, Y.H.; Lin, C.X.; Lu, C.D.; Lu, X.D. A 3-year prospective study of the epidemiology of acute respiratory viral infections in hospitalized children in Shenzhen, China. Influenza Other Respir. Viruses 2014, 8, 443–451. [Google Scholar] [CrossRef] [PubMed]
- Available online: https://www.salute.gov.it/portale/nuovocoronavirus/dettaglioMaterialiNuovoCoronavirus.jsp?lingua=italiano&id=73&area=nuovoCoronavirus&menu=vuoto (accessed on 3 May 2022).
- de Sousa, I.P., Jr.; Giamberardino, H.I.; Raboni, S.M.; Debur, M.C.; de Lourdes Aguiar Oliveira, M.; Burlandy, F.M.; da Silva, E.E. Simultaneous enterovirus EV-D68 and CVA6 infections causing acute respiratory distress syndrome and hand, foot and mouth disease. Virol. J. 2021, 18, 88. [Google Scholar] [CrossRef] [PubMed]
- Weidmann, M.D.; Berry, G.J.; Green, D.A.; Wu, F. Prevalence and Clinical Disease Severity of Respiratory Coinfections During the Coronavirus Disease 2019 Pandemic. Adv. Mol. Pathol. 2022, 5, 73–84. [Google Scholar] [CrossRef]
- Huang, X.B.; Yuan, L.; Ye, C.X.; Zhu, X.; Lin, C.J.; Zhang, D.M.; He, K.S.; Niu, R.X.; Cao, K.Y.; Xu, L. Epidemiological characteristics of respiratory viruses in patients with acute respiratory infections during 2009–2018 in southern China. Int. J. Infect. Dis. 2020, 98, 21–32. [Google Scholar] [CrossRef] [PubMed]
- Mandelia, Y.; Procop, G.W.; Richter, S.S.; Worley, S.; Liu, W.; Esper, F. Dynamics and predisposition of respiratory viral co-infections in children and adults. Clin. Microbiol. Infect. 2021, 27, 631.e1–631.e6. [Google Scholar] [CrossRef] [PubMed]
- Midgley, C.M.; Haynes, A.K.; Baumgardner, J.L.; Chommanard, C.; Demas, S.W.; Prill, M.M.; Abedi, G.R.; Curns, A.T.; Watson, J.T.; Gerber, S.I. Determining the Seasonality of Respiratory Syncytial Virus in the United States: The Impact of Increased Molecular Testing. J. Infect. Dis. 2017, 216, 345–355. [Google Scholar] [CrossRef] [PubMed]
- Krumbein, H.; Kümmel, L.S.; Fragkou, P.C.; Thölken, C.; Hünerbein, B.L.; Reiter, R.; Papathanasiou, K.A.; Renz, H.; Skevaki, C. Respiratory viral co-infections in patients with COVID-19 and associated outcomes: A systematic review and meta-analysis. Rev. Med. Virol. 2023, 33, e2365. [Google Scholar] [CrossRef]
- Tamerius, J.; Nelson, M.I.; Zhou, S.Z.; Viboud, C.; Miller, M.A.; Alonso, W.J. Global Influenza Seasonality: Reconciling Patterns across Temperate and Tropical Regions. Environ. Health Perspect. 2011, 119, 439–445. [Google Scholar] [CrossRef]
- Lamrani Hanchi, A.; Guennouni, M.; Rachidi, M.; Benhoumich, T.; Bennani, H.; Bourrous, M.; Maoulainine, F.M.R.; Younous, S.; Bouskraoui, M.; Soraa, N. Epidemiology of Respiratory Pathogens in Children with Severe Acute Respiratory Infection and Impact of the Multiplex PCR Film Array Respiratory Panel: A 2-Year Study. Int. J. Microbiol. 2021, 2021, 2276261. [Google Scholar] [CrossRef] [PubMed]
- Sentilhes, A.C.; Choumlivong, K.; Celhay, O.; Sisouk, T.; Phonekeo, D.; Vongphrachanh, P.; Brey, P.; Buchy, P. Respiratory virus infections in hospitalized children and adults in Lao PDR. Influenza Other Respir. Viruses 2013, 7, 1070–1078. [Google Scholar] [CrossRef] [PubMed]
- Varela, F.H.; Scotta, M.C.; Polese-Bonatto, M.; Sartor, I.T.S.; Ferreira, C.F.; Fernandes, I.R.; Zavaglia, G.O.; de Almeida, W.A.F.; Arakaki-Sanchez, D.; Pinto, L.A.; et al. Absence of detection of RSV and influenza during the COVID-19 pandemic in a Brazilian cohort: Likely role of lower transmission in the community. J. Glob. Health 2021, 11, 05007. [Google Scholar] [CrossRef] [PubMed]
- Yeoh, D.K.; Foley, D.A.; Minney-Smith, C.A.; Martin, A.C.; Mace, A.O.; Sikazwe, C.T. The impact of COVID-19 public health measures on detections of influenza and respiratory syncytial virus in children during the 2020 Australian winter. Clin. Infect. Dis. 2020, 28, 2020. [Google Scholar]
- Gov.Uk. Weekly National Influenza and COVID-19 Surveillance Report. 2020. Available online: https://www.gov.uk/government/statistics/national-flu-and-covid-19-surveillance-reports-2022-to-2023-season (accessed on 15 December 2023).
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Falsaperla, R.; Sortino, V.; La Cognata, D.; Barberi, C.; Corsello, G.; Malaventura, C.; Suppiej, A.; Collotta, A.D.; Polizzi, A.; Grassi, P.; et al. Acute Respiratory Tract Infections (ARTIs) in Children after COVID-19-Related Social Distancing: An Epidemiological Study in a Single Center of Southern Italy. Diagnostics 2024, 14, 1341. https://doi.org/10.3390/diagnostics14131341
Falsaperla R, Sortino V, La Cognata D, Barberi C, Corsello G, Malaventura C, Suppiej A, Collotta AD, Polizzi A, Grassi P, et al. Acute Respiratory Tract Infections (ARTIs) in Children after COVID-19-Related Social Distancing: An Epidemiological Study in a Single Center of Southern Italy. Diagnostics. 2024; 14(13):1341. https://doi.org/10.3390/diagnostics14131341
Chicago/Turabian StyleFalsaperla, Raffaele, Vincenzo Sortino, Daria La Cognata, Chiara Barberi, Giovanni Corsello, Cristina Malaventura, Agnese Suppiej, Ausilia Desiree Collotta, Agata Polizzi, Patrizia Grassi, and et al. 2024. "Acute Respiratory Tract Infections (ARTIs) in Children after COVID-19-Related Social Distancing: An Epidemiological Study in a Single Center of Southern Italy" Diagnostics 14, no. 13: 1341. https://doi.org/10.3390/diagnostics14131341
APA StyleFalsaperla, R., Sortino, V., La Cognata, D., Barberi, C., Corsello, G., Malaventura, C., Suppiej, A., Collotta, A. D., Polizzi, A., Grassi, P., & Ruggieri, M. (2024). Acute Respiratory Tract Infections (ARTIs) in Children after COVID-19-Related Social Distancing: An Epidemiological Study in a Single Center of Southern Italy. Diagnostics, 14(13), 1341. https://doi.org/10.3390/diagnostics14131341