Genetic Insights and Neonatal Outcomes in Preeclampsia and Eclampsia: A Detailed Analysis of the RS5707 Genotype
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Participants
2.2. Data Collection
2.3. Genetic Screening and Polymorphism Analysis
2.4. Statistical Analysis
2.5. Ethical Consideration
3. Results
4. Discussion
5. Limitations and Future Research
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bokslag, A.; van Weissenbruch, M.; Mol, B.W.; de Groot, C.J. Preeclampsia; short and long-term consequences for mother and neonate. Early Hum. Dev. 2016, 102, 47–50. [Google Scholar] [CrossRef]
- Karrar, S.A.; Hong, P.L. Preeclampsia. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2024; Available online: https://www.ncbi.nlm.nih.gov/books/NBK570611/ (accessed on 13 March 2024).
- Magley, M.; Hinson, M.R. Eclampsia. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2024; Available online: https://www.ncbi.nlm.nih.gov/books/NBK554392/ (accessed on 14 March 2024).
- Sibai, B.M. Diagnosis, Prevention, and Management of Eclampsia. Obstet. Gynecol. 2005, 105, 402–410. [Google Scholar] [CrossRef]
- Souza, J.P.; Gülmezoglu, A.M.; Vogel, J.; Carroli, G.; Lumbiganon, P.; Qureshi, Z.; Costa, M.J.; Fawole, B.; Mugerwa, Y.; Nafiou, I.; et al. Moving beyond essential interventions for reduction of maternal mortality (the WHO Multicountry Survey on Maternal and Newborn Health): A cross-sectional study. Lancet 2013, 381, 1747–1755. [Google Scholar] [CrossRef] [PubMed]
- O’Connor, H.D.; Hehir, M.P.; Kent, E.M.; Foley, M.E.; Fitzpatrick, C.; Geary, M.P.; Malone, F.D. Eclampsia: Trends in incidence and outcomes over 30 years. Am. J. Perinatol. 2013, 30, 661–664. [Google Scholar] [CrossRef] [PubMed]
- Chaiworapongsa, T.; Chaemsaithong, P.; Yeo, L.; Romero, R. Pre-eclampsia part 1: Current understanding of its pathophysiology. Nat. Rev. Nephrol. 2014, 10, 466–480. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Swain, S.; Ojha, K.N.; Prakash, A.; Bhatia, B.D. Maternal and perinatal mortality due to eclampsia. Indian Pediatr. 1993, 30, 771–773. [Google Scholar] [PubMed]
- Hong, K.; Kim, S.H.; Cha, D.H.; Park, H.J. Defective Uteroplacental Vascular Remodeling in Preeclampsia: Key Molecular Factors Leading to Long Term Cardiovascular Disease. Int. J. Mol. Sci. 2021, 22, 11202. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kanugula, A.K.; Kaur, J.; Batra, J.; Ankireddypalli, A.R.; Velagapudi, R. Renin-Angiotensin System: Updated Understanding and Role in Physiological and Pathophysiological States. Cureus 2023, 15, e40725. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Osol, G.; Mandala, M. Maternal uterine vascular remodeling during pregnancy. Physiology 2009, 24, 58–71. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Irani, R.A.; Xia, Y. Renin angiotensin signaling in normal pregnancy and preeclampsia. Semin. Nephrol. 2011, 31, 47–58. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Benigni, A.; Cassis, P.; Remuzzi, G. Angiotensin II revisited: New roles in inflammation, immunology and aging. EMBO Mol. Med. 2010, 2, 247–257. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Leaños-Miranda, A.; Campos-Galicia, I.; Méndez-Aguilar, F.; Molina-Pérez, C.J.; Ramírez-Valenzuela, K.L.; Sillas-Pardo, L.J.; Uraga-Camacho, N.C.; Navid, C.; Isordia-Salas, I.; Berumen-Lechuga, M.G. Lower circulating angiotensin II levels are related to the severity of preeclampsia and its risk as disclosed by a specific bioassay. Medicine 2018, 97, e12498. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Mocan, O.; Rădulescu, D.; Buzdugan, E.; Cozma, A.; Leucuta, D.C.; Bogdan, S.A.; Procopciuc, L.M. Association between polymorphisms of genes involved in the Renin-Angiotensin-Aldosterone System and the adaptive morphological and functional responses to essential hypertension. Biomed. Rep. 2021, 15, 80. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Garovic, V.D.; Hayman, S.R. Hypertension in pregnancy: An emerging risk factor for cardiovascular disease. Nat. Clin. Pract. Nephrol. 2007, 3, 613–622. [Google Scholar] [CrossRef] [PubMed]
- Smith, G.C.; Pell, J.P.; Walsh, D. Pregnancy complications and maternal risk of ischaemic heart disease: A retrospective cohort study of 129,290 births. Lancet 2001, 357, 2002–2006. [Google Scholar] [CrossRef] [PubMed]
- Parchwani, D.N.; Patel, D.D.; Rawtani, J.; Dikshit, N. Association of Mbo I-RFLP at the Renin Locus (rs2368564) with Essential Hypertension. Indian J. Clin. Biochem. 2016, 31, 431–438. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Fragoso, J.M.; Alvarez-León, E.; Delgadillo-Rodríguez, H.; Arellano-González, M.; López-Pacheco, F.C.; Cruz-Robles, D.; Peña-Duque, M.A.; Pérez-Méndez, O.; Martínez-Ríos, M.A.; Vargas-Alarcón, G. The C4280A (rs5705) gene polymorphism of the renin (REN) gene is associated with the risk of developing coronary artery disease, but not with restenosis after coronary stenting. Exp. Mol. Pathol. 2015, 99, 128–132. [Google Scholar] [CrossRef] [PubMed]
- Mansego, M.L.; Redon, J.; Marin, R.; González-Albert, V.; Martin-Escudero, J.C.; Fabia, M.J.; Fernando, M.; Chaves, F.J. Renin polymorphisms and haplotypes are associated with blood pressure levels and hypertension risk in postmenopausal women. J. Hypertens. 2008, 26, 230–237. [Google Scholar] [CrossRef] [PubMed]
- Shastry, B.S. SNPs: Impact on gene function and phenotype. Methods Mol. Biol. 2009, 578, 3–22. [Google Scholar] [CrossRef] [PubMed]
- Antontseva, E.V.; Degtyareva, A.O.; Korbolina, E.E.; Damarov, I.S.; Merkulova, T.I. Human-genome single nucleotide polymorphisms affecting transcription factor binding and their role in pathogenesis. Vavilovskii Zh. Genet. Selektsii. 2023, 27, 662–675. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Parada-Niño, L.; Castillo-León, L.F.; Morel, A. Preeclampsia, Natural History, Genes, and miRNAs Associated with the Syndrome. J. Pregnancy 2022, 2022, 3851225. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Fox, R.; Kitt, J.; Leeson, P.; Aye, C.Y.L.; Lewandowski, A.J. Preeclampsia: Risk Factors, Diagnosis, Management, and the Cardiovascular Impact on the Offspring. J. Clin. Med. 2019, 8, 1625. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Zierle-Ghosh, A.; Jan, A. Physiology, Body Mass Index. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2024; Available online: https://www.ncbi.nlm.nih.gov/books/NBK535456/ (accessed on 13 March 2024).
- Abraham, T.; Romani, A.M.P. The Relationship between Obesity and Pre-Eclampsia: Incidental Risks and Identification of Potential Biomarkers for Pre-Eclampsia. Cells 2022, 11, 1548. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Lopez-Jaramillo, P.; Barajas, J.; Rueda-Quijano, S.M.; Lopez-Lopez, C.; Felix, C. Obesity and Preeclampsia: Common Pathophysiological Mechanisms. Front. Physiol. 2018, 9, 1838. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Williams, P.J.; Morgan, L. The role of genetics in pre-eclampsia and potential pharmacogenomic interventions. Pharmgenomics Pers. Med. 2012, 5, 37–51. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Tyrmi, J.S.; Kaartokallio, T.; Lokki, A.I.; Jääskeläinen, T.; Kortelainen, E.; Ruotsalainen, S.; Karjalainen, J.; Ripatti, S.; Kivioja, A.; Laisk, T.; et al. Genetic Risk Factors Associated with Preeclampsia and Hypertensive Disorders of Pregnancy. JAMA Cardiol. 2023, 8, 674–683. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Backes, C.H.; Markham, K.; Moorehead, P.; Cordero, L.; Nankervis, C.A.; Giannone, P.J. Maternal preeclampsia and neonatal outcomes. J. Pregnancy 2011, 2011, 214365. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Roberts, J.M.; Escudero, C. The placenta in preeclampsia. Pregnancy Hypertens. 2012, 2, 72–83. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Matyas, M.; Hasmasanu, M.; Silaghi, C.N.; Samasca, G.; Lupan, I.; Orsolya, K.; Zaharie, G. Early Preeclampsia Effect on Preterm Newborns Outcome. J. Clin. Med. 2022, 11, 452. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Cohen, Y.; Gutvirtz, G.; Avnon, T.; Sheiner, E. Chronic Hypertension in Pregnancy and Placenta-Mediated Complications Regardless of Preeclampsia. J. Clin. Med. 2024, 13, 1111. [Google Scholar] [CrossRef]
- Tong, W.; Giussani, D.A. Preeclampsia link to gestational hypoxia. J. Dev. Orig. Health Dis. 2019, 10, 322–333. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Dapkekar, P.; Bhalerao, A.; Kawathalkar, A.; Vijay, N. Risk Factors Associated with Intrauterine Growth Restriction: A Case-Control Study. Cureus 2023, 15, e40178. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- An, H.; Jin, M.; Li, Z.; Zhang, L.; Li, H.; Zhang, Y.; Ye, R.; Li, N. Impact of gestational hypertension and pre-eclampsia on preterm birth in China: A large prospective cohort study. BMJ Open 2022, 12, e058068. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
Control Group | |
Inclusion Criteria | Exclusion Criteria |
|
|
PE/E Group | |
Inclusion Criteria | Exclusion Criteria |
|
|
Variables | Control Group (N = 254) Mean ± SD*/n (%) | PE/E Group (N = 146) Mean ± SD/n (%) | p-Value |
---|---|---|---|
Maternal age (years) | 27.3 ± 5.8 | 29.4 ± 6.3 | <0.0001 * |
Systolic BP (mm Hg) | 119.4 ± 10.8 | 159.4 ± 13.8 | <0.0001 * |
Diastolic BP (mm Hg) | 78.4 ± 12.2 | 109.3 ± 13.1 | <0.0001 * |
Education: | |||
| 39 (15.35%) | 16 (10.95%) | 0.219 |
| 62 (24.04%) | 41 (28.08%) | 0.372 |
| 146 (57.48%) | 82 (56.16%) | 0.797 |
| 7 (2.75%) | 7 (4.79%) | 0.285 |
Marital Status: | |||
| 168 (66.14%) | 84 (57.53%) | 0.086 |
| 69 (27.16%) | 51 (34.93%) | 0.103 |
| 17 (6.69%) | 11 (7.53%) | 0.751 |
Occupation: | |||
| 111 (43.70%) | 51 (34.39%) | 0.068 |
| 91 (35.82%) | 54 (36.98%) | 0.816 |
| 52 (20.47%) | 41 (28.08%) | 0.083 |
Parity | |||
| 108 (42.51%) | 71 (48.63%) | 0.236 |
| 146 (57.48%) | 75 (51.36%) | 0.236 |
Before pregnancy BMI * (kg/m2) | |||
| 25 (9.84%) | 5 (3.42%) | <0.0001 * |
| 174 (68.50%) | 38 (26.03%) | <0.0001 * |
| 35 (13.78%) | 50 (34.25%) | <0.0001 * |
| 20 (7.87%) | 53 (36.30%) | <0.0001 * |
Stress during pregnancy | |||
| 101 (39.37%) | 36 (24.65%) | 0.005 * |
| 76 (29.92%) | 48 (38.37%) | 0.084 |
| 77 (29.96%) | 62 (42.46%) | 0.011 * |
Characteristics | rs5707 | |||
---|---|---|---|---|
AA n (%) | AC n (%) | CC n (%) | ||
Maternal | Control group (N = 254) | 136 (53.54%) | 108 (42.51%) | 10 (3.93%) |
PE/E Group (N = 146) | 103 (70.54%) | 36 (24.65%) | 7 (4.79%) | |
OR (95% CI) | 0.4812 (0.3121 to 0.7418) | 2.2603 (1.4396 to 3.5488) | 0.8138 (0.303 to 2.186) | |
p-Value | 0.0009 | 0.0004 | 0.682 | |
Z Statistic | 3.312 | 3.543 | 0.409 | |
Fetal | Control group (N = 254) | 126 (49.60%) | 107 (42.12%) | 21 (8.26%) |
PE/E Group (N = 146) | 98 (67.12%) | 33 (22.60%) | 15 (10.34%) | |
OR (95% CI) | 0.4821 (0.3155 to 0.7367) | 2.4925 (1.572 to 3.9519) | 0.7871 (0.3923 to 1.5792) | |
p-Value | 0.0007 | 0.0001 | 0.5005 | |
Z Statistic | 3.373 | 3.884 | 0.674 |
rs5707 Genotype | Control Group | PE/E Group | OR (95% CI) | p-Value | ||
---|---|---|---|---|---|---|
BMI < 24 kg/m2 (N = 199) n (%) | BMI ≥ 24 kg/m2 (N = 55) n (%) | BMI < 24 kg/m2 (N = 43) n (%) | BMI ≥ 24 kg/m2 n (%) | |||
AA | 120 (60.30%) | 16 (29.09%) | 20 (46.51%) | 50 (48.54%) | 18.75 (8.9858 to 39.1241) | <0.0001 |
AC | 65 (32.66%) | 32 (58.18%) | 18 (41.86%) | 45 (43.69%) | 5.0781 (2.5437 to 10.1379) | <0.0001 |
CC | 14 (7.04%) | 7 (12.73%) | 5 (11.63%) | 8 (7.77%) | 3.2000 (0.7587 to 13.4974) | 0.113 |
rs5707 Genotype | Apgar Score (Mean ± SD) | Birth Weight (Mean ± SD) | Gestational Weeks | |||
---|---|---|---|---|---|---|
Control Group | PE/E Group | Control Group | PE/E Group | Control Group | PE/E Group | |
AA | 8.5 ± 1.1 | 7.8 ± 1.2 | 3211 ± 403 g | 2932 ± 457 g | 39.2 ± 1.1 | 37.5 ± 1.8 |
p-Value | <0.0001 | <0.0001 | <0.0001 | |||
AC | 8.3 ± 1.2 | 7.6 ± 1.4 | 3099 ± 391 g | 2853 ± 503 g | 39.0 ± 1.2 | 37.2 ± 2.0 |
p-Value | 0.005 | 0.003 | <0.0001 | |||
CC | 8.2 ± 1.1 | 7.4 ± 1.5 | 3050 ± 429 g | 2803 ± 396 g | 38.8 ± 1.3 | 37.0 ± 2.1 |
p-Value | 0.0732 | 0.0878 | 0.0032 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Socol, F.G.; Bernad, E.S.; Craina, M.; Abu-Awwad, S.-A.; Bernad, B.-C.; Socol, I.D.; Farcas, S.S.; Abu-Awwad, A.; Andreescu, N.I. Genetic Insights and Neonatal Outcomes in Preeclampsia and Eclampsia: A Detailed Analysis of the RS5707 Genotype. Diagnostics 2024, 14, 1366. https://doi.org/10.3390/diagnostics14131366
Socol FG, Bernad ES, Craina M, Abu-Awwad S-A, Bernad B-C, Socol ID, Farcas SS, Abu-Awwad A, Andreescu NI. Genetic Insights and Neonatal Outcomes in Preeclampsia and Eclampsia: A Detailed Analysis of the RS5707 Genotype. Diagnostics. 2024; 14(13):1366. https://doi.org/10.3390/diagnostics14131366
Chicago/Turabian StyleSocol, Flavius George, Elena Silvia Bernad, Marius Craina, Simona-Alina Abu-Awwad, Brenda-Cristiana Bernad, Ioana Denisa Socol, Simona Sorina Farcas, Ahmed Abu-Awwad, and Nicoleta Ioana Andreescu. 2024. "Genetic Insights and Neonatal Outcomes in Preeclampsia and Eclampsia: A Detailed Analysis of the RS5707 Genotype" Diagnostics 14, no. 13: 1366. https://doi.org/10.3390/diagnostics14131366
APA StyleSocol, F. G., Bernad, E. S., Craina, M., Abu-Awwad, S. -A., Bernad, B. -C., Socol, I. D., Farcas, S. S., Abu-Awwad, A., & Andreescu, N. I. (2024). Genetic Insights and Neonatal Outcomes in Preeclampsia and Eclampsia: A Detailed Analysis of the RS5707 Genotype. Diagnostics, 14(13), 1366. https://doi.org/10.3390/diagnostics14131366