Vitamin D Metabolism Parameters and Cytokine Profile in COVID-19 Patients with Bolus Cholecalciferol Supplementation
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Study Limitations
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kaufman, H.W.; Niles, J.K.; Kroll, M.H.; Bi, C.; Holick, M.F. SARS-CoV-2 positivity rates associated with circulating 25-hydroxyvitamin D levels. PLoS ONE 2020, 15, e0239252. [Google Scholar] [CrossRef] [PubMed]
- Karonova, T.L.; Golovatyuk, K.A.; Aquino, A.D.; Kalinina, O.V.; Chernikova, A.T.; Zaikova, E.K.; Lebedev, D.A.; Bykova, E.S.; Golovkin, A.S. Vitamin D Status and Immune Response in Hospitalized Patients with Moderate and Severe COVID-19. Pharmaceuticals 2022, 15, 305. [Google Scholar] [CrossRef] [PubMed]
- Kaya, M.O.; Pamukçu, E.; Yakar, B. The role of vitamin D deficiency on COVID-19: A systematic review and meta-analysis of observational studies. Epidemiol. Health 2021, 43, e2021074. [Google Scholar] [CrossRef]
- Karonova, T.L.; Andreeva, A.T.; Golovatyuk, K.A.; Bykova, E.S.; Skibo, I.I.; Grineva, E.N.; Shlyakhto, E.V. SARS-CoV-2 morbidity depending on vitamin D status. Probl. Endocrinol. 2021, 67, 20–28. [Google Scholar] [CrossRef] [PubMed]
- Zaazouee, M.S.; Abdalalaziz, A.M.; Elhady, M.M.; Ali, O.A.; Abdelbari, T.M.; Hasan, S.M.; Almadhoon, H.W.; Ahmed, A.Y.; Fassad, A.S.; Elgendy, R.; et al. Hospital and laboratory outcomes of patients with COVID-19 who received vitamin D supplementation: A systematic review and meta-analysis of randomized controlled trials. Naunyn-Schmiedeberg’s Arch. Pharmacol. 2022, 396, 607–620. [Google Scholar] [CrossRef] [PubMed]
- Ling, S.F.; Broad, E.; Murphy, R.; Pappachan, J.M.; Pardesi-Newton, S.; Kong, M.F.; Jude, E.B. High-Dose Cholecalciferol Booster Therapy is Associated with a Reduced Risk of Mortality in Patients with COVID-19: A Cross-Sectional Multi-Centre Observational Study. Nutrients 2020, 12, 3799. [Google Scholar] [CrossRef] [PubMed]
- Annweiler, G.; Corvaisier, M.; Gautier, J.; Dubée, V.; Legrand, E.; Sacco, G.; Annweiler, C. Vitamin D Supplementation Associated to Better Survival in Hospitalized Frail Elderly COVID-19 Patients: The GERIA-COVID Quasi-Experimental Study. Nutrients 2020, 12, 3377. [Google Scholar] [CrossRef] [PubMed]
- Kudlay, D.; Kofiadi, I.; Khaitov, M. Peculiarities of the T Cell Immune Response in COVID-19. Vaccines 2022, 10, 242. [Google Scholar] [CrossRef] [PubMed]
- Pike, J.W.; Meyer, M.B.; Lee, S.-M.; Onal, M.; Benkusky, N.A. The vitamin D receptor: Contemporary genomic approaches reveal new basic and translational insights. J. Clin. Investig. 2017, 127, 1146–1154. [Google Scholar] [CrossRef]
- Cantorna, M.T.; Snyder, L.; Lin, Y.-D.; Yang, L. Vitamin D and 1,25(OH)2D Regulation of T cells. Nutrients 2015, 7, 3011–3021. [Google Scholar] [CrossRef]
- van Etten, E.; Mathieu, C. Immunoregulation by 1,25-dihydroxyvitamin D3: Basic concepts. J. Steroid Biochem. Mol. Biol. 2005, 97, 93–101. [Google Scholar] [CrossRef]
- Prietl, B.; Treiber, G.; Pieber, T.R.; Amrein, K. Vitamin D and Immune Function. Nutrients 2013, 5, 2502–2521. [Google Scholar] [CrossRef] [PubMed]
- Telcian, A.G.; Zdrenghea, M.T.; Edwards, M.R.; Laza-Stanca, V.; Mallia, P.; Johnston, S.L.; Stanciu, L.A. Vitamin D increases the antiviral activity of bronchial epithelial cells in vitro. Antivir. Res. 2017, 137, 93–101. [Google Scholar] [CrossRef] [PubMed]
- Kreutz, M.; Andreesen, R.; Krause, S.W.; Szabo, A.; Ritz, E.; Reichel, H. 1,25-dihydroxyvitamin D3 production and vitamin D3 receptor expression are developmentally regulated during differentiation of human monocytes into macrophages. Blood 1993, 82, 1300–1307. [Google Scholar] [CrossRef] [PubMed]
- Barlow, P.G.; Svoboda, P.; Mackellar, A.; Nash, A.A.; York, I.A.; Pohl, J.; Davidson, D.J.; Donis, R.O. Antiviral activity and increased host defense against influenza infection elicited by the human cathelicidin LL-37. PLoS ONE 2011, 6, e25333. [Google Scholar] [CrossRef] [PubMed]
- Zelzer, S.; Goessler, W.; Herrmann, M. Measurement of vitamin D metabolites by mass spectrometry, an analytical challenge. J. Lab. Precis. Med. 2018, 3, 99. [Google Scholar] [CrossRef]
- Kozlov, V.A.; Tikhonova, E.P.; Savchenko, A.A.; Kudryavtsev, I.V.; Andronova, N.V.; Anisimova, E.N.; Golovkin, A.S.; Demina, D.V.; Zdzitovetsky, D.E.; Kalinina, Y.S.; et al. Clinical Immunology—A Practical Guide for Infectious Disease Specialists; Polikor: Krasnoyarsk, Russia, 2021; 563p, (In Russian). [Google Scholar] [CrossRef]
- Karonova, T.L.; Golovatyuk, K.A.; Kudryavtsev, I.V.; Chernikova, A.T.; Mikhaylova, A.A.; Aquino, A.D.; Lagutina, D.I.; Zaikova, E.K.; Kalinina, O.V.; Golovkin, A.S.; et al. Effect of Cholecalciferol Supplementation on the Clinical Features and Inflammatory Markers in Hospitalized COVID-19 Patients: A Randomized, Open-Label, Single-Center Study. Nutrients 2022, 14, 2602. [Google Scholar] [CrossRef] [PubMed]
- Kudlay, D.; Svistunov, A.; Satyshev, O. COVID-19 Vaccines: An Updated Overview of Different Platforms. Bioengineering 2022, 9, 714. [Google Scholar] [CrossRef] [PubMed]
- Steroid Conversion Calculator. Available online: https://www.mdcalc.com/calc/2040/steroid-conversion-calculator (accessed on 15 August 2023).
- Povaliaeva, A.; Bogdanov, V.; Pigarova, E.; Dzeranova, L.; Katamadze, N.; Malysheva, N.; Ioutsi, V.; Nikankina, L.; Rozhinskaya, L.; Mokrysheva, N. Impaired Vitamin D Metabolism in Hospitalized COVID-19 Patients. Pharmaceuticals 2022, 15, 906. [Google Scholar] [CrossRef]
- Skversky, A.L.; Kumar, J.; Abramowitz, M.K.; Kaskel, F.J.; Melamed, M.L. Association of glucocorticoid use and low 25-hydroxyvitamin D levels: Results from the National Health and Nutrition Examination Survey (NHANES): 2001–2006. J. Clin. Endocrinol. Metab. 2011, 96, 3838–3845. [Google Scholar] [CrossRef]
- Dhawan, P.; Christakos, S. Novel regulation of 25-hydroxyvitamin D3 24-hydroxylase (24(OH)ase) transcription by glucocorticoids: Cooperative effects of the glucocorticoid receptor, C/EBPβ, and the Vitamin D receptor in 24(OH)ase transcription. J. Cell. Biochem. 2010, 110, 1314–1323. [Google Scholar] [CrossRef] [PubMed]
- Akeno, N.; Matsunuma, A.; Maeda, T.; Kawane, T.; Horiuchi, N. Regulation of vitamin D-1alpha-hydroxylase and -24-hydroxylase expression by dexamethasone in mouse kidney. J. Endocrinol. 2000, 164, 339–348. [Google Scholar] [CrossRef] [PubMed]
- Chapuy, M.C.; Chapuy, P.; Meunier, P.J. Calcium and vitamin D supplements: Effects on calcium metabolism in elderly people. Am. J. Clin. Nutr. 1987, 46, 324–328. [Google Scholar] [CrossRef] [PubMed]
- Barger-Lux, M.J.; Heaney, R.P.; Dowell, S.; Chen, T.C.; Holick, M.F. Vitamin D and its Major Metabolites: Serum Levels after Graded Oral Dosing in Healthy Men. Osteoporos. Int. 1998, 8, 222–230. [Google Scholar] [CrossRef] [PubMed]
- Seamans, K.M.; Cashman, K.D. Existing and potentially novel functional markers of vitamin D status: A systematic review. Am. J. Clin. Nutr. 2009, 89, 1997S–2008S. [Google Scholar] [CrossRef] [PubMed]
- Torres, M.; Casado, G.; Vigón, L.; Rodríguez-Mora, S.; Mateos, E.; Ramos-Martín, F.; López-Wolf, D.; Sanz-Moreno, J.; Ryan-Murua, P.; Taboada-Martínez, M.L.; et al. Changes in the immune response against SARS-CoV-2 in individuals with severe COVID-19 treated with high dose of vitamin D. Biomed Pharmacother. 2022, 150, 112965. [Google Scholar] [CrossRef] [PubMed]
- Sharif-Askari, F.S.; Hafezi, S.; Sharif-Askari, N.S.; Alsayed, H.A.H.; Mdkhana, B.; Selvakumar, B.; Temsah, M.-H.; Saddik, B.; Al Anouti, F.; Halwani, R. Vitamin D modulates systemic inflammation in patients with severe COVID-19. Life Sci. 2022, 307, 120909. [Google Scholar] [CrossRef] [PubMed]
- Fernandes, A.L.; Murai, I.H.; Reis, B.Z.; Sales, L.P.; Santos, M.D.; Pinto, A.J.; Goessler, K.F.; Duran, C.S.C.; Silva, C.B.R.; Franco, A.S.; et al. Effect of a single high dose of vitamin D3 on cytokines, chemokines, and growth factor in patients with moderate to severe COVID-19. Am. J. Clin. Nutr. 2023, 115, 790–798. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Martins, A.J.; Lau, W.W.; Rachmaninoff, N.; Chen, J.; Imberti, L.; Mostaghimi, D.; Fink, D.L.; Burbelo, P.D.; Dobbs, K.; et al. Time-resolved systems immunology reveals a late juncture linked to fatal COVID-19. Cell 2021, 184, 1836–1857.e22. [Google Scholar] [CrossRef]
- Brattsand, R.; Linden, M. Cytokine modulation by glucocorticoids: Mechanisms and actions in cellular studies. Aliment. Pharmacol. Ther. 1996, 10, 81–90. [Google Scholar] [CrossRef]
- Beck, I.M.; Van Crombruggen, K.; Holtappels, G.; Daubeuf, F.; Frossard, N.; Bachert, C.; De Bosscher, K. Differential cytokine profiles upon comparing selective versus classic glucocorticoid receptor modulation in human peripheral blood mononuclear cells and inferior turbinate tissue. PLoS ONE 2015, 10, e0123068. [Google Scholar] [CrossRef] [PubMed]
Parameter | Group 1 (n = 22) | Group 2 (n = 22) | p |
---|---|---|---|
Age, years, Me + IQR [25; 75] | 58.5 [55.5; 66.8] | 65 [56.3; 70] | 0.39 |
Gender, females, n (%) | 11 (50) | 12 (54.5) | 0.78 |
BMI, kg/m2, Me + IQR [25; 75] | 28.6 [24.7; 33.2] | 29.5 [27.2; 33.1] | 0.5 |
Admission day (from the first manifestation), Me + IQR [25; 75] | 7 [3; 10] | 8 [6; 9] | 0.44 |
Lung involvement, %, Me + IQR [25; 75] | 35.5 [20; 45.8] | 37.5 [16.3; 49.5] | 0.76 |
Days of hospitalization, Me + IQR [25; 75] | 16 [12; 20] | 15 [14; 22] | 0.86 |
C-reactive protein (1st day), mg/L | 28.7 [19.4; 31.9] | 36.7 [17.5; 83.8] | 0.23 |
C-reactive protein (9th day), mg/L | 3.0 [0.7; 7.7] | 5.6 [1.3; 14.9] | 0.11 |
Parameter | Group 1 (n = 22) | Group 2 (n = 22) | p |
---|---|---|---|
25(OH)D (1st day), ng/mL, Me + IQR [25; 75] | 17.1 [9.83; 24.9] | 12.9 [8.2; 17.4] | 0.19 |
25(OH)D (1st day), n (%) | 0.13 | ||
Normal | 5 (22.7) | 2 (9) | |
Insufficiency | 1 (4.5) | 0 (0) | |
Deficiency | 16 (72.7) | 20 (91) | |
25(OH)D, ng/mL (9th day), Me + IQR [25; 75] | 24.5 [18.9; 34.2] | 9.15 [6.38; 13.3] | <0.001 |
25(OH)D, ng/mL (9th day), n (%) | <0.001 | ||
Normal | 8 (36.4) | 2 (9) | |
Insufficiency | 7 (31.8) | 0 (0) | |
Deficiency | 7 (31.8) | 20 (91) | |
Δ25(OH)D, % | 45.8 [16.9; 98.4] | −17.9 [−27.9; 0] | <0.001 |
1,25(OH)2D (1st day), pg/mL, Me + IQR [25; 75] | 1158 [649; 1455] | 1127 [665; 1390] | 0.71 |
1,25(OH)2D (9th day), pg/mL, Me + IQR [25; 75] | 1333 [1111; 1779] | 1506 [1137; 1750] | 0.96 |
Δ1,25(OH)2 D, % | 18.6 [3.12; 39.3] | 13.0 [4.48; 28.3] | 0.74 |
Parameter | Group 1 (n = 22) | Group 2 (n = 22) | p |
---|---|---|---|
GCS therapy before admission, n (%) | 0 (0) | 1 (4.5) | 0.34 |
GCS therapy during hospitalization, n (%) | 21 (95.5) | 21 (95.5) | 1.0 |
Dexamethasone therapy, n (%) | 18 (81.8) | 19 (86.4) | 0.7 |
Prednisolone therapy, n (%) | 6 (27.2) | 2 (9) | 0.13 |
Methylprednisolone therapy, n (%) | 3 (13.6) | 1 (4.5) | 0.31 |
Total GCS dose (equivalent to dexamethasone) by the 9th day of hospitalization, mg, Me + IQR [25; 75] | 120 [45; 152] | 146 [78; 195] | 0.32 |
Parameter | Group 1a (n = 16) | p1 | Group 2a (n = 15) | p2 | p* | p# | ||
---|---|---|---|---|---|---|---|---|
1st Day | 9th Day | 1st Day | 9th Day | |||||
TNFα, pg/mL | 6.71 [6.20; 9.64] | 5.86 [4.85; 08.07] | 0.08 | 7.11 [5.48; 8.49] | 5.79 [4.29; 7.09] | 0.01 | 0.49 | 0.66 |
IFNγ, pg/mL | 65.1 [45.0; 77.2] | 54.9 [45.0; 74.0] | 0.56 | 56.4 [48.1; 80.7] | 62.2 [44.3; 73.3] | 0.54 | 0.76 | 0.87 |
GM-CSF, pg/mL | 15.7 [14.2; 18.6] | 17.0 [15.5; 20.6] | 0.12 | 13.5 [9.45; 24.6] | 18.4 [14.4; 21.5] | 0.17 | 0.59 | 0.95 |
IL-1b, pg/mL | 2.27 [1.92; 2.70] | 2.22 [1.96; 2.41] | 0.98 | 2.00 [ 1.58; 2.32] | 1.79 [1.58; 2.00] | 0.26 | 0.15 | 0.04 |
IL-2, pg/mL | 2.73 [2.28; 3.41] | 3.04 [2.56; 3.64] | 0.30 | 2.13 [1.77; 2.94] | 2.48 [1.82; 03.04] | 0.46 | 0.29 | 0.18 |
IL-4, pg/mL | 26.0 [16.3; 39.9] | 26.7 [23.5; 34.3] | 0.23 | 16.3 [11.4; 26.3] | 17.0 [13.5; 28.8] | 0.66 | 0.25 | 0.09 |
IL-5, pg/mL | 2.70 [2.22; 3.73] | 3.34 [2.16; 4.10] | 0.39 | 3.13 [02.06; 3.39] | 2.65 [2.44; 3.44] | 0.97 | 0.71 | 0.52 |
IL-6, pg/mL | 0.880 [0.482; 2.01] | 0.231 [0.183; 0.741] | 0.02 | 1.3 [0.554; 3.49] | 0.207 [0.183; 1.07] | 0.02 | 0.76 | 0.33 |
IL-8, pg/mL | 3.70 [2.56; 6.40] | 1.43 [0.901; 1.70] | <0.001 | 3.22 [2.57; 3.73] | 1.05 [1.02; 1.61] | <0.001 | 0.19 | 0.82 |
IL-10, pg/mL | 17.6 [10.9; 24.8] | 14.4 [11.6; 18.2] | 0.17 | 12.4 [6.81; 19.3] | 10.1 [6.04; 13.4] | 0.04 | 0.23 | 0.15 |
IL-12 (p70), pg/mL | 2.07 [1.72; 3.14] | 2.52 [2.02; 3.07] | 0.33 | 1.92 [1.57; 3.16] | 2.07 [1.21; 3.59] | 0.61 | 0.72 | 0.71 |
IL-17A, pg/mL | 7.46 [5.61; 9.37] | 7.80 [7.25; 10.3] | 0.12 | 8.76 [5.41; 12.2] | 9.44 [6.43; 12.2] | 0.79 | 0.79 | 0.74 |
IL-21, pg/mL | 4.11 [3.48; 4.83] | 3.92 [3.53; 4.64] | 0.85 | 3.92 [3.63; 5.54] | 3.92 [3.63; 5.26] | 0.37 | 0.63 | 0.90 |
IL-23, pg/mL | 261 [186; 361] | 294 [188; 363] | 0.02 | 211 [175; 320] | 258 [221; 284] | 0.59 | 0.22 | 0.14 |
MIP-3a, pg/mL | 17.8 [15.3; 22.7] | 16.9 [15.0; 19.8] | 0.68 | 17.0 [14.0; 18.9] | 14.9 [12.7; 17.2] | 0.01 | 0.12 | 0.19 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Karonova, T.L.; Mikhaylova, A.A.; Golovatyuk, K.A.; Chernikova, A.T.; Korobova, Z.R.; Liubimova, N.E.; Starshinova, A.A.; Kudlay, D.A.; Totolian, A.A.; Shlyakhto, E.V. Vitamin D Metabolism Parameters and Cytokine Profile in COVID-19 Patients with Bolus Cholecalciferol Supplementation. Diagnostics 2024, 14, 1408. https://doi.org/10.3390/diagnostics14131408
Karonova TL, Mikhaylova AA, Golovatyuk KA, Chernikova AT, Korobova ZR, Liubimova NE, Starshinova AA, Kudlay DA, Totolian AA, Shlyakhto EV. Vitamin D Metabolism Parameters and Cytokine Profile in COVID-19 Patients with Bolus Cholecalciferol Supplementation. Diagnostics. 2024; 14(13):1408. https://doi.org/10.3390/diagnostics14131408
Chicago/Turabian StyleKaronova, Tatiana L., Arina A. Mikhaylova, Ksenia A. Golovatyuk, Alena T. Chernikova, Zoia R. Korobova, Natalia E. Liubimova, Anna A. Starshinova, Dmitry A. Kudlay, Areg A. Totolian, and Evgeny V. Shlyakhto. 2024. "Vitamin D Metabolism Parameters and Cytokine Profile in COVID-19 Patients with Bolus Cholecalciferol Supplementation" Diagnostics 14, no. 13: 1408. https://doi.org/10.3390/diagnostics14131408
APA StyleKaronova, T. L., Mikhaylova, A. A., Golovatyuk, K. A., Chernikova, A. T., Korobova, Z. R., Liubimova, N. E., Starshinova, A. A., Kudlay, D. A., Totolian, A. A., & Shlyakhto, E. V. (2024). Vitamin D Metabolism Parameters and Cytokine Profile in COVID-19 Patients with Bolus Cholecalciferol Supplementation. Diagnostics, 14(13), 1408. https://doi.org/10.3390/diagnostics14131408