The Role of Artificial Intelligence in Early Diagnosis and Molecular Classification of Head and Neck Skin Cancers: A Multidisciplinary Approach
Abstract
:1. Introduction
2. Literature Search and Selection
- Publications that discussed the role of artificial intelligence in the diagnosis of skin cancers, specifically in the head and neck region.
- Studies that covered both radiological and pathological perspectives of skin cancer diagnosis.
- Articles published in English within the last two decades, given the rapid advancements in AI and its applications in medical imaging and diagnostics.
- Studies that focused solely on non-skin cancers.
- Articles that did not provide substantial information on the use of AI in diagnosis.
- Publications in languages other than English.
3. Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Scarabello, A.; Muti, P. Epidemiology and prevention of cutaneous tumors. In Skin Cancer: A Practical Approach; Springer: Berlin/Heidelberg, Germany, 2013; pp. 17–28. [Google Scholar]
- Guy, G.P., Jr.; Thomas, C.C.; Thompson, T.; Watson, M.; Massetti, G.M.; Richardson, L.C. Vital signs: Melanoma incidence and mortality trends and projections—United States, 1982–2030. MMWR Morb. Mortal Wkly. Rep. 2015, 64, 591–596. [Google Scholar] [PubMed]
- Ciuciulete, A.-R.; Stepan, A.E.; Andreiana, B.C.; Simionescu, C.E. Non-melanoma skin cancer: Statistical associations between clinical parameters. Curr. Health Sci. J. 2022, 48, 110. [Google Scholar]
- Netscher, D.T.; Leong, M.; Orengo, I.; Yang, D.; Berg, C.; Krishnan, B. Cutaneous malignancies: Melanoma and nonmelanoma types. Plast. Reconstr. Surg. 2011, 127, 37e–56e. [Google Scholar] [CrossRef] [PubMed]
- Nakayama, M.; Tabuchi, K.; Nakamura, Y.; Hara, A. Basal cell carcinoma of the head and neck. J. Ski. Cancer 2011, 2011, 496910. [Google Scholar] [CrossRef] [PubMed]
- Thieu, K.; Ruiz, M.E.; Owens, D.M. Cells of origin and tumor-initiating cells for nonmelanoma skin cancers. Cancer Lett. 2013, 338, 82–88. [Google Scholar] [CrossRef] [PubMed]
- Marks, R. An overview of skin cancers. Cancer 1995, 75, 607–612. [Google Scholar] [CrossRef] [PubMed]
- Shashanka, R.; Smitha, B. Head and neck melanoma. Int. Sch. Res. Not. 2012, 2012, 948302. [Google Scholar] [CrossRef] [PubMed]
- Kwa, R.E.; Campana, K.; Moy, R.L. Biology of cutaneous squamous cell carcinoma. J. Am. Acad. Dermatol. 1992, 26, 1–26. [Google Scholar] [CrossRef]
- Ouyang, Y.-H. Skin cancer of the head and neck. Semin. Plast. Surg. 2010, 24, 117–126. [Google Scholar] [CrossRef]
- Reichrath, J.; Leiter, U.; Eigentler, T.; Garbe, C. Epidemiology of skin cancer. Sunlight Vitam. D Ski. Cancer 2014, 810, 120–140. [Google Scholar]
- Johnson, T.M.; Rowe, D.E.; Nelson, B.R.; Swanson, N.A. Squamous cell carcinoma of the skin (excluding lip and oral mucosa). J. Am. Acad. Dermatol. 1992, 26, 467–484. [Google Scholar] [CrossRef] [PubMed]
- Buzzell, R.A. Effects of solar radiation on the skin. Otolaryngol. Clin. N. Am. 1993, 26, 1–11. [Google Scholar] [CrossRef]
- Lázár, P.; Molnár, E.T.; Bende, B.; Vass, G.; Baltás, E.; Paczona, R.; Varga, E.; Piffkó, J.; Kemény, L.; Oláh, J. Challenges in the complex management of neglected cutaneous melanomas in the head and neck area: A single center experience. J. Clin. Med. 2023, 12, 1910. [Google Scholar] [CrossRef] [PubMed]
- Apalla, Z.; Nashan, D.; Weller, R.B.; Castellsagué, X. Skin cancer: Epidemiology, disease burden, pathophysiology, diagnosis, and therapeutic approaches. Dermatol. Ther. 2017, 7, 5–19. [Google Scholar] [CrossRef]
- Shumrick, K.A.; Coldiron, B. Genetic syndromes associated with skin cancer. Otolaryngol. Clin. N. Am. 1993, 26, 117–137. [Google Scholar] [CrossRef]
- Kim, R.Y.; Ward, B.B.; Zide, M.F. Head and Neck Skin Cancer. In Peterson’s Principles of Oral and Maxillofacial Surgery; Springer: Berlin/Heidelberg, Germany, 2022; pp. 1081–1113. [Google Scholar]
- Alam, M.; Ratner, D. Cutaneous squamous-cell carcinoma. N. Engl. J. Med. 2001, 344, 975–983. [Google Scholar] [CrossRef] [PubMed]
- Padgett, J.K.; Hendrix, J.D. Cutaneous malignancies and their management. Otolaryngol. Clin. N. Am. 2001, 34, 523–553. [Google Scholar] [CrossRef] [PubMed]
- Kocaaslan, F.N.D.; Alakus, A.C.; Sacak, B.; Celebiler, O. Evaluation of residual tumors and recurrence rates of malignant melanoma and non-melanoma skin cancer of head and neck region. Marmara Med. J. 2019, 32, 107–111. [Google Scholar] [CrossRef]
- Langley, R.; Barnhill, R.; Mihm, M.; Fitzpatrick, T.; Sober, A. Neoplasms: Cutaneous melanoma. Fitzpatrick’s Dermatol. Gen. Med. 2003, 1, 917–947. [Google Scholar]
- Pampena, R.; Kyrgidis, A.; Lallas, A.; Moscarella, E.; Argenziano, G.; Longo, C. A meta-analysis of nevus-associated melanoma: Prevalence and practical implications. J. Am. Acad. Dermatol. 2017, 77, 938–945.e934. [Google Scholar] [CrossRef]
- Pralong, P.; Bathelier, E.; Dalle, S.; Poulalhon, N.; Debarbieux, S.; Thomas, L. Dermoscopy of lentigo maligna melanoma: Report of 125 cases. Br. J. Dermatol. 2012, 167, 280–287. [Google Scholar] [CrossRef] [PubMed]
- Dinnes, J.; di Ruffano, L.F.; Takwoingi, Y.; Cheung, S.T.; Nathan, P.; Matin, R.N.; Chuchu, N.; Chan, S.A.; Durack, A.; Bayliss, S.E. Ultrasound, CT, MRI, or PET-CT for staging and re-staging of adults with cutaneous melanoma. Cochrane Database Syst. Rev. 2019, 2019, CD012806. [Google Scholar] [CrossRef]
- Gandhi, S.A.; Kampp, J. Skin cancer epidemiology, detection, and management. Med. Clin. 2015, 99, 1323–1335. [Google Scholar] [CrossRef]
- Wolner, Z.J.; Yélamos, O.; Liopyris, K.; Rogers, T.; Marchetti, M.A.; Marghoob, A.A. Enhancing skin cancer diagnosis with dermoscopy. Dermatol. Clin. 2017, 35, 417–437. [Google Scholar] [CrossRef]
- Kraft, S.; Granter, S.R. Molecular pathology of skin neoplasms of the head and neck. Arch. Pathol. Lab. Med. 2014, 138, 759–787. [Google Scholar] [CrossRef] [PubMed]
- Tímár, J.; Ladányi, A. Molecular pathology of skin melanoma: Epidemiology, differential diagnostics, prognosis and therapy prediction. Int. J. Mol. Sci. 2022, 23, 5384. [Google Scholar] [CrossRef] [PubMed]
- Bhatt, K.D.; Tambe, S.A.; Jerajani, H.R.; Dhurat, R.S. Utility of high-frequency ultrasonography in the diagnosis of benign and malignant skin tumors. Indian J. Dermatol. Venereol. Leprol. 2017, 83, 162. [Google Scholar]
- Tamas, T.; Dinu, C.; Lenghel, M.; Băciuț, G.; Bran, S.; Stoia, S.; Băciuț, M. The role of ultrasonography in head and neck Non-Melanoma Skin Cancer approach: An update with a review of the literature. Med. Ultrason. 2021, 23, 83–88. [Google Scholar] [CrossRef] [PubMed]
- Myslicka, M.; Kawala-Sterniuk, A.; Bryniarska, A.; Sudol, A.; Podpora, M.; Gasz, R.; Martinek, R.; Kahankova Vilimkova, R.; Vilimek, D.; Pelc, M. Review of the application of the most current sophisticated image processing methods for the skin cancer diagnostics purposes. Arch. Dermatol. Res. 2024, 316, 99. [Google Scholar] [CrossRef]
- Catalano, O.; Roldán, F.A.; Varelli, C.; Bard, R.; Corvino, A.; Wortsman, X. Skin cancer: Findings and role of high-resolution ultrasound. J. Ultrasound 2019, 22, 423–431. [Google Scholar] [CrossRef]
- Wortsman, X. Sonography of facial cutaneous basal cell carcinoma. J. Ultrasound. Med. 2013, 32, 567–572. [Google Scholar] [CrossRef]
- Bobadilla, F.; Wortsman, X.; Munoz, C.; Segovia, L.; Espinoza, M.; Jemec, G.B. Pre-surgical high resolution ultrasound of facial basal cell carcinoma: Correlation with histology. Cancer Imaging 2008, 8, 163. [Google Scholar] [CrossRef] [PubMed]
- MacFarlane, D.; Shah, K.; Wysong, A.; Wortsman, X.; Humphreys, T.R. The role of imaging in the management of patients with nonmelanoma skin cancer: Diagnostic modalities and applications. J. Am. Acad. Dermatol. 2017, 76, 579–588. [Google Scholar] [CrossRef]
- Catalano, O.; Setola, S.V.; Vallone, P.; Raso, M.M.; D’Errico, A.G. Sonography for locoregional staging and follow-up of cutaneous melanoma: How we do it. J. Ultrasound Med. 2010, 29, 791–802. [Google Scholar] [CrossRef] [PubMed]
- Smith, L.; MacNeil, S. State of the art in non-invasive imaging of cutaneous melanoma. Ski. Res. Technol. 2011, 17, 257–269. [Google Scholar] [CrossRef]
- Lanka, B.; Turner, M.; Orton, C.; Carrington, B.M. Cross-sectional imaging in non-melanoma skin cancer of the head and neck. Clin. Radiol. 2005, 60, 869–877. [Google Scholar] [CrossRef] [PubMed]
- Rajabi-Estarabadi, A.; Bittar, J.M.; Zheng, C.; Nascimento, V.; Camacho, I.; Feun, L.G.; Nasiriavanaki, M.; Kunz, M.; Nouri, K. Optical coherence tomography imaging of melanoma skin cancer. Lasers Med. Sci. 2019, 34, 411–420. [Google Scholar] [CrossRef]
- Senan, E.M.; Jadhav, M.E. Classification of dermoscopy images for early detection of skin cancer—A review. Int. J. Comput. Appl. 2019, 975, 8887. [Google Scholar]
- Godoy, S.E.; Hayat, M.M.; Ramirez, D.A.; Myers, S.A.; Padilla, R.S.; Krishna, S. Detection theory for accurate and non-invasive skin cancer diagnosis using dynamic thermal imaging. Biomed. Opt. Express 2017, 8, 2301–2323. [Google Scholar] [CrossRef]
- Haroon, A.; Shafi, S.; Rao, B.K. Using reflectance confocal microscopy in skin cancer diagnosis. Dermatol. Clin. 2017, 35, 457–464. [Google Scholar] [CrossRef]
- Onega, T.; Barnhill, R.L.; Piepkorn, M.W.; Longton, G.M.; Elder, D.E.; Weinstock, M.A.; Knezevich, S.R.; Reisch, L.M.; Carney, P.A.; Nelson, H.D. Accuracy of digital pathologic analysis vs traditional microscopy in the interpretation of melanocytic lesions. JAMA Dermatol. 2018, 154, 1159–1166. [Google Scholar] [CrossRef] [PubMed]
- Goyal, M.; Knackstedt, T.; Yan, S.; Hassanpour, S. Artificial intelligence-based image classification methods for diagnosis of skin cancer: Challenges and opportunities. Comput. Biol. Med. 2020, 127, 104065. [Google Scholar] [CrossRef]
- Gillies, R.J.; Schabath, M.B. Radiomics improves cancer screening and early detection. Cancer Epidemiol. Biomark. Prev. 2020, 29, 2556–2567. [Google Scholar] [CrossRef]
- Attallah, O.; Sharkas, M. Intelligent dermatologist tool for classifying multiple skin cancer subtypes by incorporating manifold radiomics features categories. Contrast Media Mol. Imaging 2021, 2021, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Ferlay, J.; Colombet, M.; Soerjomataram, I.; Parkin, D.M.; Piñeros, M.; Znaor, A.; Bray, F. Cancer statistics for the year 2020: An overview. Int. J. Cancer 2021, 149, 778–789. [Google Scholar] [CrossRef]
- Leiter, U.; Keim, U.; Garbe, C. Epidemiology of skin cancer: Update 2019. Sunlight Vitam. D Ski. Cancer 2020, 1268, 123–139. [Google Scholar]
- Housman, T.S.; Feldman, S.R.; Williford, P.M.; Fleischer Jr, A.B.; Goldman, N.D.; Acostamadiedo, J.M.; Chen, G.J. Skin cancer is among the most costly of all cancers to treat for the Medicare population. J. Am. Acad. Dermatol. 2003, 48, 425–429. [Google Scholar] [CrossRef]
- Rajpurkar, P.; Chen, E.; Banerjee, O.; Topol, E.J. AI in health and medicine. Nat. Med. 2022, 28, 31–38. [Google Scholar] [CrossRef] [PubMed]
- Zhang, P.; Kamel Boulos, M.N. Generative AI in medicine and healthcare: Promises, opportunities and challenges. Future Internet 2023, 15, 286. [Google Scholar] [CrossRef]
- Takiddin, A.; Schneider, J.; Yang, Y.; Abd-Alrazaq, A.; Househ, M. Artificial intelligence for skin cancer detection: Scoping review. J. Med. Internet Res. 2021, 23, e22934. [Google Scholar] [CrossRef]
- Fu’adah, Y.N.; Pratiwi, N.C.; Pramudito, M.A.; Ibrahim, N. Convolutional neural network (CNN) for automatic skin cancer classification system. In Proceedings of the IOP Conference Series: Materials Science and Engineering, Purbalingga, Indonesia, 2–3 September 2020; p. 012005. [Google Scholar]
- Luchini, C.; Pea, A.; Scarpa, A. Artificial intelligence in oncology: Current applications and future perspectives. Br. J. Cancer 2022, 126, 4–9. [Google Scholar] [CrossRef] [PubMed]
- Panda, S.; Padhi, S.; Gupta, V.; Suri, J.S.; Saxena, S. Application and constraints of AI in radiomics and radiogenomics (RnR) studies of neuro-oncology. In Radiomics and Radiogenomics in Neuro-Oncology; Elsevier: Amsterdam, The Netherlands, 2024; pp. 267–300. [Google Scholar]
- Huang, S.; Yang, J.; Fong, S.; Zhao, Q. Artificial intelligence in cancer diagnosis and prognosis: Opportunities and challenges. Cancer Lett. 2020, 471, 61–71. [Google Scholar] [CrossRef] [PubMed]
- Ali, A.A.; Al-Marzouqi, H. Melanoma detection using regular convolutional neural networks. In Proceedings of the 2017 International Conference on Electrical and Computing Technologies and Applications (ICECTA), Ras Al Khaimah, United Arab Emirates, 21–23 November 2017; pp. 1–5. [Google Scholar]
- Nasr-Esfahani, E.; Samavi, S.; Karimi, N.; Soroushmehr, S.M.R.; Jafari, M.H.; Ward, K.; Najarian, K. Melanoma detection by analysis of clinical images using convolutional neural network. In Proceedings of the 2016 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Orlando, FL, USA, 16–20 August 2016; pp. 1373–1376. [Google Scholar]
- Dorj, U.-O.; Lee, K.-K.; Choi, J.-Y.; Lee, M. The skin cancer classification using deep convolutional neural network. Multimed. Tools Appl. 2018, 77, 9909–9924. [Google Scholar] [CrossRef]
- Esteva, A.; Kuprel, B.; Novoa, R.A.; Ko, J.; Swetter, S.M.; Blau, H.M.; Thrun, S. Dermatologist-level classification of skin cancer with deep neural networks. Nature 2017, 542, 115–118. [Google Scholar] [CrossRef] [PubMed]
- Mendes, D.B.; da Silva, N.C. Skin lesions classification using convolutional neural networks in clinical images. arXiv 2018, arXiv:1812.02316. [Google Scholar]
- Harangi, B.; Baran, A.; Hajdu, A. Classification of skin lesions using an ensemble of deep neural networks. In Proceedings of the 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Honolulu, HI, USA, 18–21 July 2018; pp. 2575–2578. [Google Scholar]
- Mandache, D.; Dalimier, E.; Durkin, J.; Boceara, C.; Olivo-Marin, J.-C.; Meas-Yedid, V. Basal cell carcinoma detection in full field OCT images using convolutional neural networks. In Proceedings of the 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018), Washington, DC, USA, 4–7 April 2018; pp. 784–787. [Google Scholar]
- Hasan, M.; Barman, S.D.; Islam, S.; Reza, A.W. Skin cancer detection using convolutional neural network. In Proceedings of the Proceedings of the 2019 5th International Conference on Computing and Artificial Intelligence, Las Vegas, NV, USA, 26–29 January 2019; pp. 254–258. [Google Scholar]
- Kanimozhi, T.; Murthi, A. Computer aided melanoma skin cancer detection using artificial neural network classifier. Singaporean J. Sci. Res. (SJSR) J. Sel. Areas Microelectron. (JSAM) 2016, 8, 35–42. [Google Scholar]
- Mahmoud, M.K.A.; Al-Jumaily, A.; Takruri, M. The automatic identification of melanoma by wavelet and curvelet analysis: Study based on neural network classification. In Proceedings of the 2011 11th International Conference on Hybrid Intelligent Systems (HIS), Melacca, Malaysia, 5–8 December 2011; pp. 680–685. [Google Scholar]
- Rashid, H.; Tanveer, M.A.; Khan, H.A. Skin lesion classification using GAN based data augmentation. In Proceedings of the 2019 41St Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Berlin, Germany, 23–27 July 2019; pp. 916–919. [Google Scholar]
- Bisla, D.; Choromanska, A.; Berman, R.S.; Stein, J.A.; Polsky, D. Towards automated melanoma detection with deep learning: Data purification and augmentation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, Long Beach, CA, USA, 16–17 June 2019; pp. 2720–2728. [Google Scholar]
- Marosán-Vilimszky, P.; Szalai, K.; Horváth, A.; Csabai, D.; Füzesi, K.; Csány, G.; Gyöngy, M. Automated skin lesion classification on ultrasound images. Diagnostics 2021, 11, 1207. [Google Scholar] [CrossRef] [PubMed]
- Karampinis, E.; Toli, O.; Georgopoulou, K.-E.; Kampra, E.; Spyridonidou, C.; Roussaki Schulze, A.-V.; Zafiriou, E. Can Artificial Intelligence “Hold” a Dermoscope?—The Evaluation of an Artificial Intelligence Chatbot to Translate the Dermoscopic Language. Diagnostics 2024, 14, 1165. [Google Scholar] [CrossRef] [PubMed]
- Shortliffe, E.H.; Sepúlveda, M.J. Clinical decision support in the era of artificial intelligence. JAMA 2018, 320, 2199–2200. [Google Scholar] [CrossRef]
- Mahmood, H.; Shaban, M.; Indave, B.; Santos-Silva, A.; Rajpoot, N.; Khurram, S. Use of artificial intelligence in diagnosis of head and neck precancerous and cancerous lesions: A systematic review. Oral Oncol. 2020, 110, 104885. [Google Scholar] [CrossRef]
- Kelly, C.J.; Karthikesalingam, A.; Suleyman, M.; Corrado, G.; King, D. Key challenges for delivering clinical impact with artificial intelligence. BMC Med. 2019, 17, 195. [Google Scholar] [CrossRef] [PubMed]
- Bera, K.; Schalper, K.A.; Rimm, D.L.; Velcheti, V.; Madabhushi, A. Artificial intelligence in digital pathology—New tools for diagnosis and precision oncology. Nat. Rev. Clin. Oncol. 2019, 16, 703–715. [Google Scholar] [CrossRef] [PubMed]
- Saco, A.; Ramírez, J.; Rakislova, N.; Mira, A.; Ordi, J. Validation of whole-slide imaging for histolopathogical diagnosis: Current state. Pathobiology 2016, 83, 89–98. [Google Scholar] [CrossRef] [PubMed]
- En el Diagnóstico, M.I. Immunohistochemical markers in the differential diagnosis of melanoma and nevus in humans. Int. J. Morphol. 2021, 39, 1509–1515. [Google Scholar]
- Dass, S.E.; Huizenga, T.; Farshchian, M.; Mehregan, D.R. Comparison of SOX-10, HMB-45, and melan-A in benign melanocytic lesions. Clin. Cosmet. Investig. Dermatol. 2021, 14, 1419–1425. [Google Scholar] [CrossRef] [PubMed]
- Cives, M.; Mannavola, F.; Lospalluti, L.; Sergi, M.C.; Cazzato, G.; Filoni, E.; Cavallo, F.; Giudice, G.; Stucci, L.S.; Porta, C. Non-melanoma skin cancers: Biological and clinical features. Int. J. Mol. Sci. 2020, 21, 5394. [Google Scholar] [CrossRef] [PubMed]
- Sunjaya, A.P.; Sunjaya, A.F.; Tan, S.T. The use of BEREP4 immunohistochemistry staining for detection of basal cell carcinoma. J. Ski. Cancer 2017, 2017, 2692604. [Google Scholar] [CrossRef]
- Dinehart, M.S.; Dinehart, S.M.; Sukpraprut-Braaten, S.; High, W.A. Immunohistochemistry utilization in the diagnosis of melanoma. J. Cutan. Pathol. 2020, 47, 446–450. [Google Scholar] [CrossRef]
- Van Herck, Y.; Antoranz, A.; Andhari, M.D.; Milli, G.; Bechter, O.; De Smet, F.; Bosisio, F.M. Multiplexed immunohistochemistry and digital pathology as the foundation for next-generation pathology in melanoma: Methodological comparison and future clinical applications. Front. Oncol. 2021, 11, 636681. [Google Scholar] [CrossRef]
Diagnosis Method | Description | Advantages | Limitations |
---|---|---|---|
Visual Examination | Dermatologists examine skin visually for suspicious moles or lesions. | Non-invasive, quick, and accessible | Subjective potential for human error |
Dermatoscopy | A handheld device (dermatoscope) magnifies and illuminates the skin. | Provides more detail than visual examination | Requires training, interpretation can still be subjective |
Biopsy | Removal of a sample of skin tissue for laboratory analysis. | Definitive diagnosis | Invasive, may cause scarring, time-consuming |
Histopathology | Microscopic examination of biopsied tissue by a pathologist. | Detailed analysis, can determine cancer type and stage | Requires biopsy, time-consuming |
Molecular Pathology | Analysis of genetic and molecular markers in the skin tissue. | Can provide information on genetic mutations and prognosis | Requires specialized equipment, expensive |
High-Frequency Ultrasound | Uses sound waves to create images of skin layers. | Non-invasive, real-time imaging | Limited penetration depth, operator-dependent |
Reflectance Confocal Microscopy | Provides high-resolution images of the skin’s epidermis and upper dermis. | Non-invasive, can be used in vivo | Expensive, requires specialized training |
Optical Technique | Uses light to detect skin abnormalities. | Non-invasive, real-time results | Limited depth penetration, affected by skin pigmentation |
Photodynamic-Based Technique | Uses photosensitizing agents and light to detect and treat cancer. | Can target specific cancer cells, minimally invasive | Requires specialized agents, can cause skin sensitivity |
Thermal Imaging Technique | Detects heat patterns and blood flow in tissues. | Non-invasive, can detect abnormal blood flow | Limited by resolution, affected by external temperature |
Spectroscopy | Measures the interaction of light with tissue to identify abnormalities. | Non-invasive, can provide molecular information | Requires specialized equipment, interpretation complexity |
Multispectral Imaging Technique | Uses multiple wavelengths of light to capture detailed images. | Provides comprehensive data, can identify different tissues | Requires complex analysis, expensive |
Computed Tomography (Ct) | Uses X-rays to create detailed cross-sectional images of the body. | High-resolution images, useful for advanced cases | High radiation dose, expensive |
Magnetic Resonance Imaging (Mri) | Uses magnetic fields and radio waves to create detailed images. | No radiation, excellent soft tissue contrast | Expensive, time-consuming, and requires patient cooperation |
Digital Pathology | Digitization of pathology slides for AI-assisted analysis and sharing. | Enables remote consultations, enhances collaboration | Requires infrastructure for digitization and data storage |
AI-Based Image Analysis | AI algorithms analyze images of skin lesions to identify malignancies. | High accuracy, can process large volumes of data quickly | Requires large datasets for training, potential biases |
Radiomics | Extracts quantitative features from radiographic images for analysis. | Can identify patterns not visible to the naked eye | Requires advanced software and expertise |
AI Model | Types of Skin Cancer Detected | Description |
---|---|---|
CNN | Melanoma, Basal Cell Carcinoma, Squamous Cell Carcinoma | CNNs are widely used for image recognition tasks. In skin cancer detection, they analyze dermoscopic images to identify malignant lesions. |
ResNet | Melanoma, Basal Cell Carcinoma, Squamous Cell Carcinoma | ResNet is known for its deep layers and ability to overcome the vanishing gradient problem, making it effective for detailed image analysis in detecting skin cancer. |
Inception Network | Melanoma, Basal Cell Carcinoma | Inception Networks (e.g., Inception-v3) utilize multiple convolutional filters at different scales, enhancing the model’s ability to detect various skin cancer types from images. |
Mobilenet | Melanoma, Basal Cell Carcinoma | MobileNet is optimized for mobile and embedded vision applications, making it suitable for portable skin cancer detection tools. |
Densenet (Densely Connected Networks) | Melanoma, Basal Cell Carcinoma, Squamous Cell Carcinoma | DenseNet connects each layer to every other layer in a feed-forward fashion, improving the flow of information and gradients throughout the network. |
Svm (Support Vector Machine) | Melanoma, Basal Cell Carcinoma | An SVM is a supervised learning model used for classification. In skin cancer detection, it works by finding the hyperplane that best separates different types of skin lesions. |
Random Forest | Melanoma, Basal Cell Carcinoma | Random Forest is an ensemble learning method that constructs multiple decision trees. It is used to improve the accuracy and robustness of skin cancer detection models. |
YOLO (You Only Look Once) | Melanoma | YOLO is a real-time object detection system that processes images quickly, making it suitable for rapid skin cancer screening in clinical settings. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Semerci, Z.M.; Toru, H.S.; Çobankent Aytekin, E.; Tercanlı, H.; Chiorean, D.M.; Albayrak, Y.; Cotoi, O.S. The Role of Artificial Intelligence in Early Diagnosis and Molecular Classification of Head and Neck Skin Cancers: A Multidisciplinary Approach. Diagnostics 2024, 14, 1477. https://doi.org/10.3390/diagnostics14141477
Semerci ZM, Toru HS, Çobankent Aytekin E, Tercanlı H, Chiorean DM, Albayrak Y, Cotoi OS. The Role of Artificial Intelligence in Early Diagnosis and Molecular Classification of Head and Neck Skin Cancers: A Multidisciplinary Approach. Diagnostics. 2024; 14(14):1477. https://doi.org/10.3390/diagnostics14141477
Chicago/Turabian StyleSemerci, Zeliha Merve, Havva Serap Toru, Esra Çobankent Aytekin, Hümeyra Tercanlı, Diana Maria Chiorean, Yalçın Albayrak, and Ovidiu Simion Cotoi. 2024. "The Role of Artificial Intelligence in Early Diagnosis and Molecular Classification of Head and Neck Skin Cancers: A Multidisciplinary Approach" Diagnostics 14, no. 14: 1477. https://doi.org/10.3390/diagnostics14141477
APA StyleSemerci, Z. M., Toru, H. S., Çobankent Aytekin, E., Tercanlı, H., Chiorean, D. M., Albayrak, Y., & Cotoi, O. S. (2024). The Role of Artificial Intelligence in Early Diagnosis and Molecular Classification of Head and Neck Skin Cancers: A Multidisciplinary Approach. Diagnostics, 14(14), 1477. https://doi.org/10.3390/diagnostics14141477