What Is the Trajectory of Recovery in the Early Postoperative Period after the Big 3 Shoulder Surgeries? Comparative Analysis Using 3 Previous Prospective Studies
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Participants
2.2. Outcome Measures
2.3. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Best, M.J.; Aziz, K.T.; Wilckens, J.H.; McFarland, E.G.; Srikumaran, U. Increasing incidence of primary reverse and anatomic total shoulder arthroplasty in the United States. J. Shoulder Elb. Surg. 2021, 30, 1159–1166. [Google Scholar] [CrossRef] [PubMed]
- Kunze, K.N.; Krivicich, L.M.; Brusalis, C.; Taylor, S.A.; Gulotta, L.V.; Dines, J.S.; Fu, M.C. Pathogenesis, Evaluation, and Management of Osteolysis After Total Shoulder Arthroplasty. Clin. Shoulder Elb. 2022, 25, 244–254. [Google Scholar] [CrossRef] [PubMed]
- Cho, C.H.; Bae, K.C.; Kim, D.H. Patients who have undergone rotator cuff repair experience around 75% functional recovery at 6 months after surgery. Knee Surg. Sports Traumatol. Arthrosc. 2021, 29, 2220–2227. [Google Scholar] [CrossRef] [PubMed]
- Cho, C.H.; Song, K.S.; Hwang, I.; Coats-Thomas, M.S.; Warner, J.J.P. Changes in Psychological Status and Health-Related Quality of Life Following Total Shoulder Arthroplasty. J. Bone Jt. Surg. 2017, 99, 1030–1035. [Google Scholar] [CrossRef] [PubMed]
- Cho, C.H.; Song, K.S.; Hwang, I.; Warner, J.J. Does Rotator Cuff Repair Improve Psychologic Status and Quality of Life in Patients With Rotator Cuff Tear? Clin. Orthop. Relat. Res. 2015, 473, 3494–3500. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.; Kim, D.H.; Kim, S.G.; Cho, C.H. Does reverse shoulder arthroplasty improve emotional status and quality of life in patients with rotator cuff insufficiency? Prospective sequential follow-up study. J. Shoulder Elb. Surg. 2023, 32, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Green, A.; Loyd, K.; Molino, J.; Evangelista, P.; Gallacher, S.; Adkins, J. Long-term functional and structural outcome of rotator cuff repair in patients 60 years old or less. JSES Int. 2023, 7, 58–66. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.S.; Rhee, Y.G.; Oh, J.H.; Yoo, J.C.; Noh, K.C.; Shin, S.J. Clinical and Radiologic Outcomes of Small Glenoid Baseplate in Reverse Total Shoulder Arthroplasty: A Prospective Multicenter Study. Clin. Orthop. Surg. 2022, 14, 119–127. [Google Scholar] [CrossRef] [PubMed]
- Lee, G.W.; Kim, J.Y.; Lee, H.W.; Yoon, J.H.; Noh, K.C. Clinical and Anatomical Outcomes of Arthroscopic Repair of Large Rotator Cuff Tears with Allograft Patch Augmentation: A Prospective, Single-Blinded, Randomized Controlled Trial with a Long-term Follow-up. Clin. Orthop. Surg. 2022, 14, 263–271. [Google Scholar] [CrossRef]
- Li, T.; Duey, A.H.; White, C.A.; Pujari, A.; Patel, A.V.; Zaidat, B.; Williams, C.S.; Williams, A.; Cirino, C.M.; Shukla, D.; et al. Evaluating the effects of age on the long-term functional outcomes following anatomic total shoulder arthroplasty. Clin. Shoulder Elb. 2023, 26, 231–237. [Google Scholar] [CrossRef] [PubMed]
- Grubhofer, F.; Muniz Martinez, A.R.; Ernstbrunner, L.; Haberli, J.; Selig, M.E.; Yi, K.; Warner, J.J.P. Speed of recovery of the most commonly performed shoulder surgeries. JSES Int. 2021, 5, 776–781. [Google Scholar] [CrossRef] [PubMed]
- Friedman, R.J.; Schoch, B.S.; Eichinger, J.K.; Neel, G.B.; Boettcher, M.L.; Flurin, P.H.; Wright, T.W.; Zuckerman, J.D.; Roche, C. Comparison of Reverse and Anatomic Total Shoulder Arthroplasty in Patients With an Intact Rotator Cuff and No Previous Surgery. J. Am. Acad. Orthop. Surg. 2022, 30, 941–948. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.; Kim, C.H.; Kim, M.; Lee, W.; Jeon, I.H.; Lee, K.W.; Koh, K.H. Is reverse total shoulder arthroplasty (rTSA) more advantageous than anatomic TSA (aTSA) for osteoarthritis with intact cuff tendon? A systematic review and meta-analysis. J. Orthop. Traumatol. 2022, 23, 3. [Google Scholar] [CrossRef] [PubMed]
- Nazzal, E.M.; Reddy, R.P.; Como, M.; Rai, A.; Greiner, J.J.; Fox, M.A.; Lin, A. Reverse shoulder arthroplasty with preservation of the rotator cuff for primary glenohumeral osteoarthritis has similar outcomes to anatomic total shoulder arthroplasty and reverse shoulder arthroplasty for cuff arthropathy. J. Shoulder Elbow. Surg. 2023, 32, S60–S68. [Google Scholar] [CrossRef] [PubMed]
- Kurowicki, J.; Berglund, D.D.; Momoh, E.; Disla, S.; Horn, B.; Giveans, M.R.; Levy, J.C. Speed of recovery after arthroscopic rotator cuff repair. J. Shoulder Elbow. Surg. 2017, 26, 1271–1277. [Google Scholar] [CrossRef] [PubMed]
- Levy, J.C.; Everding, N.G.; Gil, C.C., Jr.; Stephens, S.; Giveans, M.R. Speed of recovery after shoulder arthroplasty: A comparison of reverse and anatomic total shoulder arthroplasty. J. Shoulder Elbow. Surg. 2014, 23, 1872–1881. [Google Scholar] [CrossRef] [PubMed]
- Hughes, A.; Even, T.; Narvani, A.A.; Atoun, E.; Van Tongel, A.; Sforza, G.; Levy, O. Pattern and time phase of shoulder function and power recovery after arthroscopic rotator cuff repair. J. Shoulder Elbow. Surg. 2012, 21, 1299–1303. [Google Scholar] [CrossRef] [PubMed]
- Cabarcas, B.C.; Gowd, A.K.; Liu, J.N.; Cvetanovich, G.L.; Erickson, B.J.; Romeo, A.A.; Verma, N.N. Establishing maximum medical improvement following reverse total shoulder arthroplasty for rotator cuff deficiency. J. Shoulder Elbow. Surg. 2018, 27, 1721–1731. [Google Scholar] [CrossRef] [PubMed]
- Puzzitiello, R.N.; Agarwalla, A.; Liu, J.N.; Cvetanovich, G.L.; Romeo, A.A.; Forsythe, B.; Verma, N.N. Establishing maximal medical improvement after anatomic total shoulder arthroplasty. J. Shoulder Elbow. Surg. 2018, 27, 1711–1720. [Google Scholar] [CrossRef] [PubMed]
- Zuke, W.A.; Leroux, T.S.; Gregory, B.P.; Black, A.; Forsythe, B.; Romeo, A.A.; Verma, N.N. Establishing Maximal Medical Improvement After Arthroscopic Rotator Cuff Repair. Am. J. Sports Med. 2018, 46, 1000–1007. [Google Scholar] [CrossRef] [PubMed]
Variables | RCR a (n = 47) | ATSR b (n = 46) | RTSR c (n = 50) | Total (n = 143) | p-Value | Post Hoc Test |
---|---|---|---|---|---|---|
Age (year) | 57.1 ± 7.5 | 65.5 ± 10.0 | 73.7 ± 5.9 | 65.6 ± 10.4 | <0.001 * | a < b < c |
Duration of symptoms | 24.8 ± 35.7 | 91.4 ± 116.5 | 20.8 ± 21.0 | 44.8 ± 76.8 | <0.001 * | a, c < b |
Sex (male:female) | 20:27 | 27:19 | 15:35 | 62:81 | 0.018 * | |
Involved side (right:left) | 32:15 | 32:14 | 30:20 | 94:49 | 0.564 |
Group | Before Surgery | After Surgery | p Value | Post Hoc Test | η2 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
At 3 Months | At 6 Months | At 12 Months | |||||||||||
M ± SD | 95% CI | M ± SD | 95% CI | M ± SD | 95% CI | M ± SD | 95% CI | ||||||
VAS pain score | RCR a | 6.7 ± 1.6 | 6.3–7.4 | 4.3 ± 2.0 | 3.7–5.2 | 2.9 ± 2.1 | 2.1–3.8 | 1.3 ± 1.4 | 0.8–1.9 | Group-by-time interaction | <0.001 * | a < b, c | 0.063 |
ATSR b | 6.2 ± 2.2 | 5.5–6.8 | 1.8 ± 2.5 | 1.0–2.5 | 1.2 ± 1.7 | 0.7–1.7 | 1.2 ± 2.1 | 0.6–1.8 | |||||
RTSR c | 6.6 ± 2.1 | 6.0–7.2 | 2.6 ± 1.1 | 2.3–2.9 | 2.0 ± 1.3 | 1.6–2.3 | 1.5 ± 1.2 | 1.1–1.8 | |||||
ADL score | RCR a | 15.6 ± 7.3 | 12.7–18.0 | 19.2 ± 5.9 | 17.1–21.6 | 22.3 ± 4.9 | 20.1–23.9 | 25.5 ± 3.5 | 23.8–26.6 | Group-by-time interaction | <0.001 * | c < a, b | 0.108 |
ATSR b | 11.0 ± 5.6 | 9.4–12.7 | 20.9 ± 6.9 | 18.9–23.0 | 24.2 ± 6.3 | 22.4–26.1 | 25.3 ± 5.3 | 23.7–26.8 | |||||
RTSR c | 7.0 ± 5.1 | 5.6–8.4 | 19.3 ± 3.9 | 18.2–20.4 | 21.8 ± 4.2 | 20.6–23.0 | 23.2 ± 4.2 | 22.0–24.4 | |||||
ASES score | RCR a | 42.4 ± 16.5 | 34.9–48.0 | 60.2 ± 16.3 | 54.0–66.4 | 72.5 ± 13.5 | 66.4–77.2 | 86.2 ± 10.9 | 81.4–89.2 | Group-by-time interaction | <0.001 * | a, c < b | 0.089 |
ATSR b | 37.4 ± 15.9 | 32.7–42.1 | 76.1 ± 20.0 | 70.1–82.0 | 84.3 ± 18.0 | 79.0–89.7 | 86.0 ± 18.1 | 80.6–91.4 | |||||
RTSR c | 28.5 ± 15.6 | 24.0–32.9 | 69.3 ± 10.5 | 66.3–72.3 | 76.5 ± 12.6 | 72.9–80.1 | 81.3 ± 12.1 | 77.9–84.7 |
VAS Pain Score | ADL Score | ASES Score | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
PO 3 mo | PO 6 mo | PO 12 mo | PO 3 mo | PO 6 mo | PO 12 mo | PO 3 mo | PO 6 mo | PO 12 mo | ||
RCR vs. ATSR | M ± SD | 2.4 vs. 4.4 | 3.8 vs. 5.0 | 5.4 vs. 5.0 | 3.6 vs. 9.9 | 6.7 vs. 13.2 | 9.9 vs. 14.3 | 17.9 vs. 38.7 | 30.1 vs. 46.9 | 43.8 vs. 48.6 |
95% CI | 1.8–3.4 vs. 3.4–4.7 | 2.9–4.6 vs. 4.0–5.3 | 4.8–6.1 vs. 4.5–5.8 | 0.5–7.3 vs. 10.7–14.0 | 3.9–10.0 vs. 13.1–16.5 | 7.9–11.9 vs. 14.6–17.7 | 11.1–27.8 vs. 36.1–45.6 | 23.3–37.7 vs. 43.2–52.8 | 38.9–48.6 vs. 48.2–57.5 | |
p-value | 0.005 * | 0.046 * | 0.418 | 0.003 * | 0.001 * | 0.007 * | 0.001 * | 0.002 * | 0.301 | |
Cohen’s d | −0.654 | −0.450 | −0.170 | −0.676 | −0.754 | −0.572 | −0.786 | −0.715 | −0.216 | |
RCR vs. RTSR | M ± SD | 2.4 vs. 4.0 | 3.8 vs. 4.6 | 5.4 vs. 5.1 | 3.6 vs. 12.3 | 6.7 vs. 14.8 | 9.9 vs. 16.2 | 17.9 vs. 40.8 | 30.1 vs. 48.0 | 43.8 vs. 52.8 |
95% CI | 1.8–3.4 vs. 3.5–5.3 | 2.9–4.6 vs. 4.1–5.8 | 4.8–6.1 vs. 4.0–6.0 | 0.5–7.3 vs. 7.5–12.3 | 3.9–10.0 vs. 10.9–15.5 | 7.9–11.9 vs. 11.8–16.7 | 11.1–27.8 vs. 31.4–45.9 | 23.3–37.7 vs. 39.7–54.1 | 38.9–48.6 vs. 40.4–56.8 | |
p-value | 0.005 * | 0.086 | 0.550 | <0.001 * | <0.001 * | <0.001 * | <0.001 * | <0.001 * | 0.008 * | |
Cohen’s d | −0.629 | −0.379 | −0.122 | −1.091 | −1.054 | −1.011 | −1.056 | −0.928 | −0.553 | |
ATSR vs. RTSR | M ± SD | 4.4 vs. 4.0 | 5.0 vs. 4.6 | 5.0 vs. 5.1 | 9.9 vs. 12.3 | 13.2 vs. 14.8 | 14.3 vs. 16.2 | 38.7 vs. 40.8 | 46.9 vs. 48.0 | 48.6 vs. 52.8 |
95% CI | 3.4–4.7 vs. 3.5–5.3 | 4.0–5.3 vs. 4.1–5.8 | 4.5–5.8 vs. 4.0–6.0 | 10.7–14.0 vs. 7.5–12.3 | 13.1–16.5 vs. 10.9–15.5 | 14.6–17.7 vs. 11.8–16.7 | 36.1–45.6 vs. 31.4–45.9 | 43.2–52.8 vs. 39.7–54.1 | 48.2–57.5 vs. 40.4–56.8 | |
p-value | 0.493 | 0.572 | 0.726 | 0.095 | 0.271 | 0.179 | 0.614 | 0.799 | 0.361 | |
Cohen’s d | 0.141 | 0.116 | −0.072 | −0.350 | −0.226 | −0.227 | −0.105 | −0.053 | −0.187 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, D.-H.; Kim, S.G.; Cho, C.-H. What Is the Trajectory of Recovery in the Early Postoperative Period after the Big 3 Shoulder Surgeries? Comparative Analysis Using 3 Previous Prospective Studies. Diagnostics 2024, 14, 1532. https://doi.org/10.3390/diagnostics14141532
Kim D-H, Kim SG, Cho C-H. What Is the Trajectory of Recovery in the Early Postoperative Period after the Big 3 Shoulder Surgeries? Comparative Analysis Using 3 Previous Prospective Studies. Diagnostics. 2024; 14(14):1532. https://doi.org/10.3390/diagnostics14141532
Chicago/Turabian StyleKim, Du-Han, Soon Gu Kim, and Chul-Hyun Cho. 2024. "What Is the Trajectory of Recovery in the Early Postoperative Period after the Big 3 Shoulder Surgeries? Comparative Analysis Using 3 Previous Prospective Studies" Diagnostics 14, no. 14: 1532. https://doi.org/10.3390/diagnostics14141532
APA StyleKim, D. -H., Kim, S. G., & Cho, C. -H. (2024). What Is the Trajectory of Recovery in the Early Postoperative Period after the Big 3 Shoulder Surgeries? Comparative Analysis Using 3 Previous Prospective Studies. Diagnostics, 14(14), 1532. https://doi.org/10.3390/diagnostics14141532