The Impact of the Dietary Intake of Vitamin B12, Folic Acid, and Vitamin D3 on Homocysteine Levels and the Health-Related Quality of Life of Levodopa-Treated Patients with Parkinson’s Disease—A Pilot Study in Romania
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Ethical Considerations
2.3. Data Collection
2.4. Data Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Up to Date: Clinical Manifestations of Parkinson Disease. Available online: https://www.uptodate.com/contents/clinical-manifestations-of-parkinson-disease (accessed on 16 March 2021).
- Armstrong, M.J.; Okun, M.S. Diagnosis and Treatment of Parkinson Disease: A Review. JAMA 2020, 323, 548–560. [Google Scholar] [CrossRef]
- Murray, L.K.; Jadavji, N.M. The role of one-carbon metabolism and homocysteine in Parkinson’s disease onset, pathology and mechanisms. Nutr. Res. Rev. 2019, 32, 218–230. [Google Scholar] [CrossRef]
- Bostantjopoulou, S.; Katsarou, Z.; Frangia, T.; Hatzizisi, O.; Papazisis, K.; Kyriazis, G.; Kiosseoglou, G.; Kazis, A. Endothelial function markers in parkinsonian patients with hyperhomocysteinemia. J. Clin. Neurosci. 2005, 12, 669–672. [Google Scholar] [CrossRef]
- Setién-Suero, E.; Suárez-Pinilla, M.; Suárez-Pinilla, P.; CrespoFacorro, B.; Ayesa-Arriola, R. Homocysteine and cognition: A systematic review of 111 studies. Neurosci. Biobehav. Rev. 2016, 69, 280–298. [Google Scholar] [CrossRef]
- Dorsey, E.R.; Bloem, B.R. The Parkinson pandemic-A call to action. JAMA Neurol. 2018, 75, 9–10. [Google Scholar] [CrossRef] [PubMed]
- National Institute for Health and Care Excellence: Parkinson’s Disease in Adults—NICE Guidelines. Available online: https://www.nice.org.uk/guidance/ng71 (accessed on 15 May 2024).
- Ahlskog, J.E. Levodopa, homocysteine and Parkinson’s disease: What’s the problem? Park. Relat. Disord. 2023, 109, 105357. [Google Scholar] [CrossRef] [PubMed]
- Religa, D.; Czyzewski, K.; Styczynska, M.; Peplonska, B.; Lokk, J.; Chodakowska-Zebrowska, M.; Stepien, K.; Winblad, B.; Barcikowska, M. Hyperhomocysteinemia and methylenetetrahydrofolate reductase polymorphism in patients with Parkinson’s disease. Neurosci. Lett. 2006, 404, 56–60. [Google Scholar] [CrossRef]
- Schwab, S.M.; Dugan, S.; Riley, M.A. Reciprocal Influence of Mobility and Speech-Language: Advancing Physical Therapy and Speech Therapy Cotreatment and Collaboration for Adults With Neurological Conditions. Phys. Ther. 2021, 101, pzab196. [Google Scholar] [CrossRef] [PubMed]
- Straka, I.; Minár, M.; Gažová, A.; Valkovič, P.; Kyselovič, J. Clinical aspects of adherence to pharmacotherapy in Parkinson disease: A PRISMA-compliant systematic review. Medicine 2018, 97, e10962. [Google Scholar] [CrossRef]
- Paśko, P. Drugs and food interactions: Food–drug interactions among the elderly: Risk assessment and recommendations for patients. In Encyclopedia of Biomedical Gerontology; Academic Press: Oxford, UK, 2020; pp. 107–114. [Google Scholar]
- Liu, Y.; Gou, M.; Guo, X. Features of Plasma Homocysteine, Vitamin B12, and Folate in Parkinson’s Disease: An Updated Meta-Analysis. J. Integr. Neurosci. 2023, 22, 115. [Google Scholar] [CrossRef]
- Agnieszka, W.; Paweł, P.; Małgorzata, K. How to Optimize the Effectiveness and Safety of Parkinson’s Disease Therapy?—A Systematic Review of Drugs Interactions with Food and Dietary Supplements. Curr. Neuropharmacol. 2022, 20, 1427–1447. [Google Scholar] [CrossRef] [PubMed]
- Qiu, F.; Wu, Y.; Cao, H.; Liu, B.; Du, M.; Jiang, H.; Li, S. Changes of Peripheral Nerve Function and Vitamin B12 Level in People With Parkinson’s Disease. Front. Neurol. 2020, 11, 549159. [Google Scholar] [CrossRef] [PubMed]
- dos Santos, E.F.; Busanello, E.N.; Miglioranza, A.; Zanatta, A.; Barchak, A.G.; Vargas, C.R.; Saute, J.; Rosa, C.; Carrion, M.J.; Camargo, D.; et al. Evidence that folic acid deficiency is a major determinant of hyperhomocysteinemia in Parkinson’s disease. Metab. Brain Dis. 2009, 24, 257–269. [Google Scholar] [CrossRef] [PubMed]
- Shen, L. Associations between B Vitamins and Parkinson’s Disease. Nutrients 2015, 7, 7197–7208. [Google Scholar] [CrossRef]
- Murakami, K.; Miyake, Y.; Sasaki, S.; Tanaka, K.; Fukushima, W.; Kiyohara, C.; Tsuboi, Y.; Yamada, T.; Oeda, T.; Miki, T.; et al. Dietary intake of folate, vitamin B6, vitamin B12 and riboflavin and risk of Parkinson’s disease: A case-control study in Japan. Br. J. Nutr. 2010, 104, 757–764. [Google Scholar] [CrossRef] [PubMed]
- Stanger, O.; Fowler, B.; Piertzik, K.; Huemer, M.; Haschke-Becher, E.; Semmler, A.; Linnebank, M. Homocysteine, folate and vitamin B12 in neuropsychiatric diseases: Review and treatment recommendations. Expert Rev. Neurother. 2009, 9, 1393–1412. [Google Scholar] [CrossRef] [PubMed]
- Moghaddasi, M.; Mamarabadi, M.; Aghaii, M. Serum 25-hydroxyvitamin D3 concentration in Iranian patients with Parkinson’s disease. Iran. J. Neurol. 2013, 12, 56–59. [Google Scholar] [PubMed]
- Meamar, R.; Shaabani, P.; Tabibian, S.R.; Aghaye Ghazvini, M.R.; Feizi, A. The effects of uric acid, serum vitamin D3, and their interaction on parkinson’s disease severity. Parkinson’s Dis. 2015, 2015, 463–483. [Google Scholar] [CrossRef] [PubMed]
- Sleeman, I.; Aspray, T.; Lawson, R.; Coleman, S.; Duncan, G.; Khoo, T.K.; Schoenmakers, I.; Rochester, L.; Burn, D.; Yarnall, A. The Role of Vitamin D in Disease Progression in Early Parkinson’s Disease. J. Parkinson’s Dis. 2017, 7, 669–675. [Google Scholar] [CrossRef]
- Luo, X.; Ou, R.; Dutta, R.; Tian, Y.; Xiong, H.; Shang, H. Association between serum Vitamin D levels and Parkinson’s disease: A systematic review and meta-analysis. Front. Neurol. 2018, 9, 909. [Google Scholar] [CrossRef]
- Seshadri, S.; Beiser, A.; Selhub, J.; Jacques, P.F.; Rosenberg, I.H.; D’Agostino, R.B.; Wilson, P.W.; Wolf, P.A. Plasma homocysteine as a risk factor for dementia and Alzheimer’s disease. N. Engl. J. Med. 2002, 346, 476–483. [Google Scholar] [CrossRef] [PubMed]
- Song, I.-U.; Kim, J.-S.; Park, I.-S.; Kim, Y.-D.; Cho, H.-J.; Chung, S.-W.; Lee, K.-S. Clinical significance of homocysteine (hcy) on dementia in Parkinson’s disease (PD). Arch. Gerontol. Geriatr. 2013, 57, 288–291. [Google Scholar] [CrossRef] [PubMed]
- Xie, Y.; Feng, H.; Peng, S.; Xiao, J.; Zhang, J. Association of plasma homocysteine, vitamin B12 and folate levels with cognitive function in Parkinson’s disease: A meta-analysis. Neurosci. Lett. 2017, 636, 190–195. [Google Scholar] [CrossRef] [PubMed]
- O’Suilleabhain, P.E.; Sung, V.; Hernandez, C.; Lacritz, L.; Dewey, R.B., Jr.; Bottiglieri, T.; Diaz-Arrastia, R. Elevated plasma homocysteine level in patients with Parkinson disease: Motor, affective, and cognitive associations. Arch. Neurol. 2004, 61, 865–868. [Google Scholar] [CrossRef] [PubMed]
- Froese, D.S.; Fowler, B.; Baumgartner, M.R. Vitamin B12, folate, and the methionine remethylation cycle-biochemistry, pathways, and regulation. J. Inherit. Metab. Dis. 2019, 42, 673–685. [Google Scholar] [CrossRef] [PubMed]
- Zuhra, K.; Augsburger, F.; Majtan, T.; Szabo, C. Cystathionine-β-Synthase: Molecular Regulation and Pharmacological Inhibition. Biomolecules 2020, 10, 697. [Google Scholar] [CrossRef]
- Wilson, M.P.; Plecko, B.; Mills, P.B.; Clayton, P.T. Disorders affecting vitamin B6 metabolism. J. Inherit. Metab. Dis. 2019, 42, 629–646. [Google Scholar] [CrossRef]
- Müller, T.; Kuhn, W. An Indirect Proof for Levodopa-Induced Vitamin Deficiency in Parkinson’s Disease. Mov. Disord. 2023, 38, 2319–2320. [Google Scholar] [CrossRef] [PubMed]
- Tidman, M.M.; White, D.R.; White, T.A. Impact of a keto diet on symptoms of Parkinson’s disease, biomarkers, depression, anxiety and quality of life: A longitudinal study. Neurodegener. Dis. Manag. 2024, 1–14. [Google Scholar] [CrossRef]
- Goetz, C.G.; Poewe, W.; Rascol, O.; Sampaio, C.; Stebbins, G.T.; Counsell, C.; Giladi, N.; Holloway, R.G.; Moore, C.G.; Wenning, G.K.; et al. Movement disorder society task force report on the Hoehn and Yahr staging scale: Status and recommendations the movement disorder society task force on rating scales for Parkinson’s disease. Mov. Disord. 2004, 19, 1020–1028. [Google Scholar] [CrossRef]
- Subtirelu, M.S.; Turcu-Stiolica, A.; Sintonen, H. Translation and cultural adaptation of 15D quality of life questionnaire from English to Romanian language. Value Health 2019, 22, S731. [Google Scholar] [CrossRef]
- Alanne, S.; Roine, R.P.; Räsänen, P.; Vainiola, T.; Sintonen, H. Estimating the minimum important change in the 15D scores. Qual. Life Res. 2015, 24, 599–606. [Google Scholar] [CrossRef] [PubMed]
- Rekik, A.; Santoro, C.; Poplawska-Domaszewicz, K.; Qamar, M.A.; Batzu, L.; Landolfo, S.; Rota, S.; Falup-Pecurariu, C.; Murasan, I.; Chaudhuri, K.R. Parkinsos’s disease and vitamins: A focus on vitamin 12. J. Neural Transm. 2024, 1–15. [Google Scholar] [CrossRef]
- Paprotny, L.; Wianowska, D.; Izdebska, M.; Celejewska, A.; Szewczak, D.; Solski, J. Analysis of serum homocysteine in the laboratory practice—Comparison of the direct chemiluminescence immunoassay and high performance liquid chromatography coupled with fluorescent detection. Biochem. Med. 2020, 30, 030703. [Google Scholar] [CrossRef] [PubMed]
- Binkley, N.; Sempos, C.T. Vitamin D Standardization Program (VDSP). Standardizing vitamin D assays: The way forward. J. Bone Miner. Res. 2014, 29, 1709–1714. [Google Scholar] [CrossRef] [PubMed]
- Rukhsana, J.; Perrotta, P.L.; Okorodudu, A.O.; Petersen, J.R.; Mohammad, A.A. Fit-for-purpose evaluation of architect i1000SR immunoassay analyzer. Clin. Chim. Acta. 2010, 411, 798–801. [Google Scholar] [CrossRef] [PubMed]
- Zalyalova, Z.A.; Ekusheva, E.V. Vitamin B12 deficiency and Parkinson’s disease. Nevrologiya Neiropsikhiatriya Psikhosomatika = Neurol. Neuropsychiatry Psychosom. 2023, 15, 121–127. [Google Scholar] [CrossRef]
- Kritzinger, C.; Vollstedt, E.-J.; Hückelheim, K.; Lorwin, A.; Graf, J.; Tunc, S.; Klein, C.; Kasten, M. Qualitative characteristics of depression in Parkinson’s patients and controls. Behav. Neurol. 2015, 2015, e961372. [Google Scholar] [CrossRef] [PubMed]
- Triantafyllou, N.I.; Nikolaou, C.; Boufidou, F.; Angelopoulos, E.; Rentzos, M.; Kararizou, E.; Evangelopoulos, M.E.; Vassilopoulos, D. Folate and vitamin B12 levels in levodopa-treated Parkinson’s disease patients: Their relationship to clinical manifestations, mood and cognition. Park. Relat. Disord. 2008, 14, 321–325. [Google Scholar] [CrossRef]
- Du, Y.; Li, Y.; Xu, X.; Li, R.; Zhang, M.; Cui, Y.; Zhang, L.; Wei, Z.; Wang, S.; Tuo, H. Probiotics for constipation and gut microbiota in Parkinson’s disease. Park. Relat. Disord. 2022, 103, 92–97. [Google Scholar] [CrossRef]
- Olanow, C.W.; Obeso, J.A. The significance of defining preclinical or prodromal Parkinson’s disease. Mov. Disord. 2012, 27, 666–669. [Google Scholar] [CrossRef] [PubMed]
- Seppi, K.; Weintraub, D.; Coelho, M.; Perez-Lloret, S.; Fox, S.H.; Katzenschlager, R.; Hametner, E.; Poewe, W.; Rascol, O.; Goetz, C.G.; et al. The Movement Disorder Society Evidence-Based Medicine Review Update: Treatments for the non-motor symptoms of Parkinson’s disease. Mov. Disord. 2011, 26 (Suppl. S3), S42–S80. [Google Scholar] [CrossRef] [PubMed]
- Martinez-Martin, P.; Kurtis, M.M. Health-related quality of life as an outcome variable in Parkinson’s disease. Ther. Adv. Neurol. Disord. 2012, 5, 105–117. [Google Scholar] [CrossRef] [PubMed]
- Tan, S.B.; Williams, A.F.; Kelly, D. Effectiveness of multidisciplinary interventions to improve the quality of life for people with Parkinson’s disease: A systematic review. Int. J. Nurs. Stud. 2014, 51, 166–174. [Google Scholar] [CrossRef] [PubMed]
- Loddo, G.; Calandra-Buonaura, G.; Sambati, L.; Giannini, G.; Cecere, A.; Cortelli, P.; Provini, F. The Treatment of Sleep Disorders in Parkinson’s Disease: From Research to Clinical Practice. Front. Neurol. 2017, 8, 42. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.M.; Koh, S.B. Many Faces of Parkinson’s Disease: Non-Motor Symptoms of Parkinson’s Disease. J. Mov. Disord. 2015, 8, 92–97. [Google Scholar] [CrossRef] [PubMed]
- Honig, H.; Antonini, A.; Martinez-Martin, P.; Forgacs, I.; Faye, G.C.; Fox, T.; Fox, K.; Mancini, F.; Canesi, M.; Odin, P.; et al. Intrajejunal levodopa infusion in Parkinson’s disease: A pilot multicenter study of effects on nonmotor symptoms and quality of life. Mov. Disord. 2009, 24, 1468–1474. [Google Scholar] [CrossRef] [PubMed]
- Gerlach, O.H.; Winogrodzka, A.; Weber, W.E. Clinical problems in the hospitalized Parkinson’s disease patient: Systematic review. Mov. Disord. 2011, 26, 197–208. [Google Scholar] [CrossRef] [PubMed]
- Santos-García, D.; COPPADIS Study Group; Mir, P.; Cubo, E.; Vela, L.; Rodríguez-Oroz, M.C.; Martí, M.J.; Arbelo, J.M.; Infante, J.; Kulisevsky, J.; et al. COPPADIS-2015 (COhort of Patients with PArkinson’s DIsease in Spain, 2015), a global –clinical evaluations, serum biomarkers, genetic studies and neuroimaging—Prospective, multicenter, non-interventional, long-term study on Parkinson’s disease progression. BMC Neurol. 2016, 16, 26. [Google Scholar] [CrossRef]
- Kumar, R.R.; Singh, L.; Thakur, A.; Singh, S.; Kumar, B. Role of Vitamins in Neurodegenerative Diseases: A Review. CNS Neurol. Disord. Drug Targets 2022, 21, 766–773. [Google Scholar] [CrossRef]
- Picillo, M.; Nicoletti, A.; Fetoni, V.; Garavaglia, B.; Barone, P.; Pellecchia, M.T. The relevance of gender in Parkinson’s disease: A review. J. Neurol. 2017, 264, 1583–1607. [Google Scholar] [CrossRef] [PubMed]
- López-Cerdán, A.; Andreu, Z.; Hidalgo, M.R.; Grillo-Risco, R.; Català-Senent, J.F.; Soler-Sáez, I.; Neva-Alejo, A.; Gordillo, F.; de la Iglesia-Vayá, M.; García-García, F. Unveiling sex-based differences in Parkinson’s disease: A comprehensive meta-analysis of transcriptomic studies. Biol. Sex Differ. 2022, 13, 68. [Google Scholar] [CrossRef] [PubMed]
Characteristics | Baseline (n = 24) |
---|---|
Age, years | 71 ± 5.04 |
Gender, male | 13 (54.2%) |
Parkinson’s disease stage | |
II H&I | 9 (37.5%) |
III H&I | 9 (37.5%) |
IV H&I | 6 (25%) |
Comorbidities | |
Obesity | 18 (75%) |
Ischemic heart disease | 8 (33.3%) |
Hypertension | 7 (29.2%) |
Diabetes type 2 | 6 (25%) |
Vitamins Mean ± SD Median (IQR) | Baseline | After 6 Months of Treatment | p-Value |
---|---|---|---|
Homocysteine | 19.98 ± 4.995 19.6 (16.4–23.10) | 16.18 ± 3.73 15.9 (13.60–18.28) | <0.0001 **** |
Vitamin B12 | 352.3 ± 119.1 331.0 (265.5–417) | 345.8 ± 120.9 309.5 (251.8–439.5) | 0.9963 |
Vitamin D | 18.96 ± 7.28 18.4 (14.23–24.16) | 22.68 ± 7.65 21.51 (16.75–29.78) | 0.025 * |
Dimension of Quality of Life | Difference Mean ± SD | Statistical Significance (p-Value) | Clinical Significance |
---|---|---|---|
Mobility | 0.11 ± 0.13 | 0.1444 | much better |
Sleeping | 0.12 ± 0.15 | 0.0994 | much better |
Eating | 0.11 ± 0.15 | 0.1109 | much better |
Speech | 0.15 ± 0.13 | 0.0126 * | much better |
Excretion | 0.11 ± 0.14 | 0.0872 | much better |
Usual activities | 0.14 ± 0.18 | 0.0536 | much better |
Mental function | 0.17 ± 0.17 | 0.0230 * | much better |
Discomfort and symptoms | 0.18 ± 0.19 | 0.0024 ** | much better |
Depression | 0.21 ± 0.15 | 0.0053 ** | much better |
15D score | 0.09 ± 0.05 | 0.0246 * | much better |
Outcomes Changes Mean ± SD | Male (n = 13) | Female (n = 11) | p-Value |
---|---|---|---|
Homocysteine changes | 4.65 ± 3.45 | 3.87 ± 3.05 | 0.392 |
Vitamin B12 changes | 20.46 ± 102.8 | 29.82 ± 134.9 | 1.0 |
Vitamin D changes | 2.44 ± 5.22 | 4.27 ± 9.7 | 1.0 |
Mobility changes | 0.17 ± 0.12 | 0.05 ± 0.11 | 0.063 |
Sleeping changes | 0.12 ± 0.18 | 0.12 ± 0.12 | 0.955 |
Eating changes | 0.11 ± 0.16 | 0.11 ± 0.13 | 1.0 |
Speech changes | 0.13 ± 0.13 | 0.18 ± 0.14 | 0.228 |
Excretion changes | 0.14 ± 0.14 | 0.08 ± 0.13 | 0.361 |
Usual activities changes | 0.14 ± 0.19 | 0.16 ± 0.18 | 0.733 |
Mental changes | 0.19 ± 0.18 | 0.12 ± 0.15 | 0.392 |
Discomfort and symptoms changes | 0.14 ± 0.17 | 0.23 ± 0.21 | 0.277 |
Depression changes | 0.16 ± 0.11 | 0.27 ± 0.17 | 0.150 |
HRQoL changes | 0.09 ± 0.06 | 0.09 ± 0.02 | 1.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Turcu-Stiolica, A.; Naidin, M.-S.; Halmagean, S.; Ionescu, A.M.; Pirici, I. The Impact of the Dietary Intake of Vitamin B12, Folic Acid, and Vitamin D3 on Homocysteine Levels and the Health-Related Quality of Life of Levodopa-Treated Patients with Parkinson’s Disease—A Pilot Study in Romania. Diagnostics 2024, 14, 1609. https://doi.org/10.3390/diagnostics14151609
Turcu-Stiolica A, Naidin M-S, Halmagean S, Ionescu AM, Pirici I. The Impact of the Dietary Intake of Vitamin B12, Folic Acid, and Vitamin D3 on Homocysteine Levels and the Health-Related Quality of Life of Levodopa-Treated Patients with Parkinson’s Disease—A Pilot Study in Romania. Diagnostics. 2024; 14(15):1609. https://doi.org/10.3390/diagnostics14151609
Chicago/Turabian StyleTurcu-Stiolica, Adina, Mihaela-Simona Naidin, Steliana Halmagean, Ana Maria Ionescu, and Ionica Pirici. 2024. "The Impact of the Dietary Intake of Vitamin B12, Folic Acid, and Vitamin D3 on Homocysteine Levels and the Health-Related Quality of Life of Levodopa-Treated Patients with Parkinson’s Disease—A Pilot Study in Romania" Diagnostics 14, no. 15: 1609. https://doi.org/10.3390/diagnostics14151609
APA StyleTurcu-Stiolica, A., Naidin, M. -S., Halmagean, S., Ionescu, A. M., & Pirici, I. (2024). The Impact of the Dietary Intake of Vitamin B12, Folic Acid, and Vitamin D3 on Homocysteine Levels and the Health-Related Quality of Life of Levodopa-Treated Patients with Parkinson’s Disease—A Pilot Study in Romania. Diagnostics, 14(15), 1609. https://doi.org/10.3390/diagnostics14151609