Intraoperative Prediction of Coronary Graft Failure Based on Transit Time Flow Measurement: A PRELIMINARY STUDY
Abstract
:1. Introduction
2. Materials and Methods
Statistical Analysis
3. Results
Study Limitations
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ATP | adenosine triphosphate |
CABG | coronary artery bypass graft |
CAD | coronary artery disease |
CBFR | coronary bypass flow reserve |
CFR | coronary flow reserve |
CPB | cardiopulmonary bypass |
DF | diastolic filling |
LAD | left anterior descending artery |
LIMA | left internal mammary artery |
MBF | myocardial blood flow |
MGF | mean graft flow |
PET | positron emission tomography |
PI | pulsatility index |
RS SPECT | rest single-photon emission computed tomography |
SPSS | Statistical Package for the Social Sciences |
SS SPECT | stress single-photon emission computed tomography |
TTFM | transit time flow measurement |
References
- Thuijs, D.J.F.M.; Bekker, M.W.A.; Taggart, D.P.; Kappetein, A.P.; Kieser, T.M.; Wendt, D.; Di Giammarco, G.; Trachiotis, G.D.; Puskas, J.D.; Head, S.J. Improving coronary artery bypass grafting: A systematic review and meta-analysis on the impact of adopting transit-time flow measurement. Eur. J. Cardiothorac. Surg. 2019, 56, 654–663. [Google Scholar] [CrossRef] [PubMed]
- Kidambi, A.; Mather, A.N.; Motwani, M.; Swoboda, P.; Uddin, A.; Greenwood, J.P.; Plein, S. The effect of microvascular obstruction and intramyocardial hemorrhage on contractile recovery in reperfused myocardial infarction: Insights from cardiovascular magnetic resonance. J. Cardiovasc. Magn. Reson. 2013, 15, 58. [Google Scholar] [CrossRef] [PubMed]
- Knuuti, J.; Wijns, W.; Saraste, A. 2019 ESC Guidelines for the diagnosis and management of chronic coronary syndromes. Eur. Heart J. 2020, 41, 407–477. [Google Scholar] [CrossRef] [PubMed]
- Tonet, E.; Pompei, G.; Faragasso, E.; Cossu, A.; Pavasini, R.; Passarini, G.; Tebaldi, M.; Campo, G. Coronary Microvascular Dysfunction: PET, CMR and CT Assessment. J. Clin. Med. 2021, 10, 1848. [Google Scholar] [CrossRef] [PubMed]
- Amin, S.; Werner, R.S.; Madsen, P.L. Intraoperative Bypass Graft Flow Measurement with Transit Time Flowmetry: A Clinical Assessment. Ann. Thorac. Surg. 2018, 106, 532–538. [Google Scholar] [CrossRef] [PubMed]
- Takami, Y.; Takagi, Y. Roles of Transit-Time Flow Measurement for Coronary Artery Bypass Surgery. Thorac. Cardiovasc. Surg. 2018, 66, 426–433. [Google Scholar] [PubMed]
- Kieser, T.M.; Rose, S.; Kowalewski, R.; Belenkie, I. Transit-time flow predicts outcomes in coronary artery bypass graft patients: A series of 1000 consecutive arterial grafts. Eur. J. Cardiothorac. Surg. 2010, 38, 155–162. [Google Scholar] [CrossRef] [PubMed]
- Zavadovsky, R.V.; Mochula, A.V.; Boshchenko, A.A.; Vrublevsky, A.V.; Baev, A.E.; Krylov, A.L.; Gulya, M.O.; Nesterov, E.A.; Liga, R.; Gimelli, A. Absolute myocardial blood flows derived by dynamic CZT scan vs invasive fractional flow reserve: Correlation and accuracy. J. Nucl. Cardiol. 2021, 28, 249–259. [Google Scholar] [CrossRef] [PubMed]
- Kato, T.; Veeranna, V.; Shah, N.R. Prognostic Value of Coronary Flow Reserve in Patients with Prior Coronary Artery Bypass Surgery. Circulation 2014, 130, A17329. [Google Scholar]
- Aikawa, T.; Naya, M.; Obara, M. Effects of coronary revascularization on global coronary flow reserve in stable coronary artery disease. Cardiovasc. Res. 2019, 115, 119–129. [Google Scholar] [CrossRef] [PubMed]
- Kieser, T.M.; Taggart, D.P. The use of intraoperative graft assessment in guiding graft revision. Ann. Cardiothorac. Surg. 2018, 7, 652–662. [Google Scholar] [CrossRef] [PubMed]
- Gaudino, M.; Sandner, S.; Di Giammarco, G.; Di Franco, A.; Arai, H.; Asai, T.; Bakaeen, F.; Doenst, T.; Fremes, S.E.; Glineur, D.; et al. The use of intraoperative transit time flow measurement for coronary artery bypass surgery: Systematic review of the evidence and expert opinion statements. Circulation 2021, 144, 1160–1171. [Google Scholar] [CrossRef] [PubMed]
- Vechersky, Y.Y.; Zatolokin, V.V.; Kozlov, B.N. Enhancement of flow measurement for graft verification. Asian Cardiovasc. Thorac. Ann. 2019, 27, 646–651. [Google Scholar] [CrossRef] [PubMed]
- Kieser, T.M. Graft quality verification in coronary artery bypass graft surgery: How, when and why? Curr. Opin. Cardiol. 2017, 32, 722–736. [Google Scholar] [CrossRef] [PubMed]
- Leviner, D.B.; Puskas, J.D.; Taggart, D.P. Transit time flow measurement in arterial grafts. J. Cardiothorac. Surg. 2024, 19, 224. [Google Scholar] [CrossRef] [PubMed]
- Ford, T.J.; Stanley, B.; Sidik, N. 1-Year Outcomes of Angina Management Guided by Invasive Coronary Function Testing (CorMicA). JACC Cardiovasc. Interv. 2020, 13, 33–45. [Google Scholar] [CrossRef] [PubMed]
Variable | n = 78 |
Age, years | 60.0 (53.0, −68.0) |
Female | 28 (35.9%) |
BMI, kg/m2 | 29.8 (25.6, −34.0) |
Hypertension, n (%) | 61 (78.2%) |
Diabetes mellitus, n (%) | 19 (24.3%) |
Dyslipidemia | 58 (74.3%) |
Previous myocardial infarction | 47(60.3%) |
Family history of CVD | 39 (50%) |
Current smoker | 41 (52.6%) |
Previous stroke or TIA | 13 (16.6%) |
Minimum | Maximum | Mean | Std. Deviation | |
---|---|---|---|---|
RS SPECT (mL/min/g) | 0.14 | 1.93 | 0.63 | 0.36 |
SS SPECT (mL/min/g) | 0.12 | 2.45 | 0.9 | 0.44 |
CFR SPECT | 0.35 | 5.52 | 1.59 | 0.73 |
Minimum | Maximum | Mean | Std. Deviation | |
---|---|---|---|---|
MGF (mL/min) | 21 | 102 | 49.62 | 14.33 |
MGF stress (mL/min) | 31 | 198 | 97.79 | 31.44 |
CBFR | 0.64 | 3.50 | 1.97 | 0.43 |
PI | 1.0 | 4.8 | 2.27 | 1.19 |
DF | 1.71 | 89.00 | 68.28 | 11.69 |
Test Result Variable(s) | AUC Area | Asymptotic Sig. * | Asymptotic 95% Confidence Interval | |
---|---|---|---|---|
Lower Bound | Upper Bound | |||
Coronary artery stenosis | 0.39 | 0.24 | 0.21 | 0.57 |
RS SPECT (mL/min/g) | 0.46 | 0.69 | 0.28 | 0.64 |
SS SPECT (mL/min/g) | 0.47 | 0.77 | 0.26 | 0.68 |
CFR SPECT | 0.49 | 0.89 | 0.32 | 0.66 |
MGF (mL/min) | 0.69 | 0.04 | 0.50 | 0.87 |
MGF stress (mL/min) | 0.70 | 0.02 | 0.51 | 0.90 |
CBFR | 0.84 | 0.00 | 0.79 | 0.89 |
PI | 0.48 | 0.82 | 0.30 | 0.65 |
DF (%) | 0.58 | 0.40 | 0.42 | 0.73 |
Criterion | Sensitivity | 95% CI | Specificity | 95% CI |
---|---|---|---|---|
≥0.64 | 100.00 | 98.4–100.0 | 0.00 | 0.0–30.8 |
>1.38 | 92.11 | 87.8–95.3 | 0.00 | 0.0–30.8 |
>1.39 | 92.11 | 87.8–95.3 | 10.00 | 0.3–44.5 |
>1.49 | 88.60 | 83.7–92.4 | 10.00 | 0.3–44.5 |
>1.5 | 88.60 | 83.7–92.4 | 20.00 | 2.5–55.6 |
>1.58 | 85.09 | 79.8–89.4 | 20.00 | 2.5–55.6 |
>1.59 | 85.09 | 79.8–89.4 | 30.00 | 6.7–65.2 |
>1.6 | 82.89 | 77.4–87.5 | 40.00 | 12.2–73.8 |
>1.62 | 82.89 | 77.4–87.5 | 60.00 | 26.2–87.8 |
>1.65 | 82.02 | 76.4–86.8 | 70.00 | 34.8–93.3 |
>1.69 | 82.02 | 76.4–86.8 | 100.00 | 69.2–100.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kozlov, B.N.; Zatolokin, V.V.; Mochula, A.V.; Alisherov, Y.; Panfilov, D.S.; Kamenshchikov, N.O.; Kim, E.B. Intraoperative Prediction of Coronary Graft Failure Based on Transit Time Flow Measurement: A PRELIMINARY STUDY. Diagnostics 2024, 14, 1903. https://doi.org/10.3390/diagnostics14171903
Kozlov BN, Zatolokin VV, Mochula AV, Alisherov Y, Panfilov DS, Kamenshchikov NO, Kim EB. Intraoperative Prediction of Coronary Graft Failure Based on Transit Time Flow Measurement: A PRELIMINARY STUDY. Diagnostics. 2024; 14(17):1903. https://doi.org/10.3390/diagnostics14171903
Chicago/Turabian StyleKozlov, Boris N., Vasily V. Zatolokin, Andrew V. Mochula, Yusufjon Alisherov, Dmitri S. Panfilov, Nikolay O. Kamenshchikov, and Elena B. Kim. 2024. "Intraoperative Prediction of Coronary Graft Failure Based on Transit Time Flow Measurement: A PRELIMINARY STUDY" Diagnostics 14, no. 17: 1903. https://doi.org/10.3390/diagnostics14171903
APA StyleKozlov, B. N., Zatolokin, V. V., Mochula, A. V., Alisherov, Y., Panfilov, D. S., Kamenshchikov, N. O., & Kim, E. B. (2024). Intraoperative Prediction of Coronary Graft Failure Based on Transit Time Flow Measurement: A PRELIMINARY STUDY. Diagnostics, 14(17), 1903. https://doi.org/10.3390/diagnostics14171903