Integrating Genetic Alterations and Histopathological Features for Enhanced Risk Stratification in Non-Muscle-Invasive Bladder Cancer
Abstract
:1. Introduction
2. Materials and Methods
2.1. Cohort Description
2.2. Histopathological Features and IHC Markers
2.3. Sample Collection and Preparation for NGS Analysis
2.4. Variant Calling and Data Analysis
2.5. Statistics
3. Results
3.1. Histopathological Parameters and IHC Markers
3.2. Association between Genetic Alterations and TNM Stage and WHO04/16 Grade
3.3. Association between Genetic Alterations and MAI and IHC Markers
3.4. Interaction Analysis of Genetic Alterations
3.5. Genetic Alteration Landscape
3.6. Analysis of Stage Progression and Tumor Recurrence
3.7. Pathway Analysis
3.8. Mutational Signature and APOBEC Enrichment Analysis
3.9. Separate Analysis of Ta and T1 Tumors
3.10. Association between BCG Immunotherapy and Genetic Alterations
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gluck, G.; Hortopan, M.; Stănculeanu, D.; Chiriță, M.; Stoica, R.; Sinescu, I. Comparative study of conventional urothelial carcinoma, squamous differentiation carcinoma and pure squamous carcinoma in patients with invasive bladder tumors. J. Med. Life 2014, 7, 211–214. [Google Scholar] [PubMed]
- Grabe-Heyne, K.; Henne, C.; Mariappan, P.; Geiges, G.; Pohlmann, J.; Pollock, R.F. Intermediate and high-risk non-muscle-invasive bladder cancer: An overview of epidemiology, burden, and unmet needs. Front. Oncol. 2023, 13, 1170124. [Google Scholar] [CrossRef] [PubMed]
- Kamat, A.M.; Hahn, N.M.; Efstathiou, J.A.; Lerner, S.P.; Malmström, P.-U.; Choi, W.; Guo, C.C.; Lotan, Y.; Kassouf, W. Bladder cancer. Lancet 2016, 388, 2796–2810. [Google Scholar] [CrossRef] [PubMed]
- Svatek, R.S.; Hollenbeck, B.K.; Holmäng, S.; Lee, R.; Kim, S.P.; Stenzl, A.; Lotan, Y. The economics of bladder cancer: Costs and considerations of caring for this disease. Eur. Urol. 2014, 66, 253–262. [Google Scholar] [CrossRef] [PubMed]
- Babjuk, M.; Burger, M.; Capoun, O.; Cohen, D.; Compérat, E.M.; Escrig, J.L.D.; Gontero, P.; Liedberg, F.; Masson-Lecomte, A.; Mostafid, A.H. European Association of Urology guidelines on non–muscle-invasive bladder cancer (Ta, T1, and carcinoma in situ). Eur. Urol. 2022, 81, 75–94. [Google Scholar] [CrossRef]
- Jiang, S.; Redelman-Sidi, G. BCG in bladder cancer immunotherapy. Cancers 2022, 14, 3073. [Google Scholar] [CrossRef]
- Alexandrov, L.B.; Nik-Zainal, S.; Wedge, D.C.; Aparicio, S.A.; Behjati, S.; Biankin, A.V.; Bignell, G.R.; Bolli, N.; Borg, A.; Børresen-Dale, A.-L.; et al. Signatures of mutational processes in human cancer. Nature 2013, 500, 415–421. [Google Scholar] [CrossRef]
- Yu, S.H.; Kim, S.S.; Lee, H.; Kim, S.; Kang, T.W. Somatic Mutation of the Non-Muscle-Invasive Bladder Cancer Associated with Early Recurrence. Diagnostics 2023, 13, 3201. [Google Scholar] [CrossRef]
- Hurst, C.D.; Cheng, G.; Platt, F.M.; Castro, M.A.A.; Marzouka, N.S.; Eriksson, P.; Black, E.V.I.; Alder, O.; Lawson, A.R.J.; Lindskrog, S.V.; et al. Stage-stratified molecular profiling of non-muscle-invasive bladder cancer enhances biological, clinical, and therapeutic insight. Cell Rep. Med. 2021, 2, 100472. [Google Scholar] [CrossRef]
- Minoli, M.; Kiener, M.; Thalmann, G.N.; Kruithof-de Julio, M.; Seiler, R. Evolution of Urothelial Bladder Cancer in the Context of Molecular Classifications. Int. J. Mol. Sci. 2020, 21, 5670. [Google Scholar] [CrossRef]
- Di Martino, E.; Tomlinson, D.C.; Williams, S.V.; Knowles, M.A. A place for precision medicine in bladder cancer: Targeting the FGFRs. Future Oncol. 2016, 12, 2243–2263. [Google Scholar] [CrossRef] [PubMed]
- van Rhijn, B.W.; Lurkin, I.; Radvanyi, F.; Kirkels, W.J.; van der Kwast, T.H.; Zwarthoff, E.C. The fibroblast growth factor receptor 3 (FGFR3) mutation is a strong indicator of superficial bladder cancer with low recurrence rate. Cancer Res. 2001, 61, 1265–1268. [Google Scholar] [PubMed]
- Hernandez, S.; Lopez-Knowles, E.; Lloreta, J.; Kogevinas, M.; Amoros, A.; Tardon, A.; Carrato, A.; Serra, C.; Malats, N.; Real, F.X. Prospective study of FGFR3 mutations as a prognostic factor in nonmuscle invasive urothelial bladder carcinomas. J. Clin. Oncol. 2006, 24, 3664–3671. [Google Scholar] [CrossRef]
- Knowles, M.A. FGFR3–a Central Player in Bladder Cancer Pathogenesis? Bladder Cancer 2020, 6, 403–423. [Google Scholar] [CrossRef]
- Tomlinson, D.C.; Knowles, M.A. Altered splicing of FGFR1 is associated with high tumor grade and stage and leads to increased sensitivity to FGF1 in bladder cancer. Am. J. Pathol. 2010, 177, 2379–2386. [Google Scholar] [CrossRef] [PubMed]
- Sanguedolce, F.; Zanelli, M.; Palicelli, A.; Bisagni, A.; Zizzo, M.; Ascani, S.; Pedicillo, M.C.; Cormio, A.; Falagario, U.G.; Carrieri, G.; et al. HER2 Expression in Bladder Cancer: A Focused View on Its Diagnostic, Prognostic, and Predictive Role. Int. J. Mol. Sci. 2023, 24, 3720. [Google Scholar] [CrossRef] [PubMed]
- Pietzak, E.J.; Bagrodia, A.; Cha, E.K.; Drill, E.N.; Iyer, G.; Isharwal, S.; Ostrovnaya, I.; Baez, P.; Li, Q.; Berger, M.F.; et al. Next-generation Sequencing of Nonmuscle Invasive Bladder Cancer Reveals Potential Biomarkers and Rational Therapeutic Targets. Eur. Urol. 2017, 72, 952–959. [Google Scholar] [CrossRef]
- Cormio, L.; Sanguedolce, F.; Cormio, A.; Massenio, P.; Pedicillo, M.C.; Cagiano, S.; Calò, G.; Pagliarulo, V.; Carrieri, G.; Bufo, P. Human epidermal growth factor receptor 2 expression is more important than Bacillus Calmette Guerin treatment in predicting the outcome of T1G3 bladder cancer. Oncotarget 2017, 8, 25433. [Google Scholar] [CrossRef]
- Hedegaard, J.; Lamy, P.; Nordentoft, I.; Algaba, F.; Hoyer, S.; Ulhoi, B.P.; Vang, S.; Reinert, T.; Hermann, G.G.; Mogensen, K.; et al. Comprehensive Transcriptional Analysis of Early-Stage Urothelial Carcinoma. Cancer Cell 2016, 30, 27–42. [Google Scholar] [CrossRef]
- Lindskrog, S.V.; Prip, F.; Lamy, P.; Taber, A.; Groeneveld, C.S.; Birkenkamp-Demtroder, K.; Jensen, J.B.; Strandgaard, T.; Nordentoft, I.; Christensen, E.; et al. An integrated multi-omics analysis identifies prognostic molecular subtypes of non-muscle-invasive bladder cancer. Nat. Commun. 2021, 12, 2301. [Google Scholar] [CrossRef]
- Li, H.L.; Dong, L.L.; Jin, M.J.; Li, Q.Y.; Wang, X.; Jia, M.Q.; Song, J.; Zhang, S.Y.; Yuan, S. A Review of the Regulatory Mechanisms of N-Myc on Cell Cycle. Molecules 2023, 28, 1141. [Google Scholar] [CrossRef] [PubMed]
- Kluth, M.; Hitzschke, M.; Lennartz, M.; Blessin, N.C.; Sauter, G.; Plage, H.; Klatte, T.; Schlomm, T.; Marx, A.H.; Rink, M.; et al. MYC amplifications are a common event in urothelial bladder carcinomas associated with an aggressive tumor phenotype. Am. J. Clin. Pathol. 2023, 160, S91–S92. [Google Scholar] [CrossRef]
- Watters, A.; Latif, Z.; Forsyth, A.; Dunn, I.; Underwood, M.; Grigor, K.; Bartlett, J. Genetic aberrations of c-myc and CCND1 in the development of invasive bladder cancer. Br. J. Cancer 2002, 87, 654–658. [Google Scholar] [CrossRef] [PubMed]
- Liu, R.; Shi, P.; Wang, Z.; Yuan, C.; Cui, H. Molecular mechanisms of MYCN dysregulation in cancers. Front. Oncol. 2021, 10, 625332. [Google Scholar] [CrossRef]
- Fong, M.H.Y.; Feng, M.; McConkey, D.J.; Choi, W. Update on bladder cancer molecular subtypes. Transl. Androl. Urol. 2020, 9, 2881. [Google Scholar] [CrossRef]
- van Rhijn, B.W.; van der Kwast, T.H.; Vis, A.N.; Kirkels, W.J.; Boeve, E.R.; Jobsis, A.C.; Zwarthoff, E.C. FGFR3 and P53 characterize alternative genetic pathways in the pathogenesis of urothelial cell carcinoma. Cancer Res. 2004, 64, 1911–1914. [Google Scholar] [CrossRef]
- Marvalim, C.; Datta, A.; Lee, S.C. Role of p53 in breast cancer progression: An insight into p53 targeted therapy. Theranostics 2023, 13, 1421–1442. [Google Scholar] [CrossRef]
- Hurst, C.; Rosenberg, J.; Knowles, M. SnapShot: Bladder Cancer. Cancer Cell 2018, 34, 350-350.e1. [Google Scholar] [CrossRef]
- Duenas, M.; Martínez-Fernández, M.; García-Escudero, R.; Villacampa, F.; Marqués, M.; Saiz-Ladera, C.; Duarte, J.; Martínez, V.; Gómez, M.J.; Martín, M.L.; et al. PIK3CA gene alterations in bladder cancer are frequent and associate with reduced recurrence in non-muscle invasive tumors. Mol. Carcinog. 2015, 54, 566–576. [Google Scholar] [CrossRef]
- Kompier, L.C.; Lurkin, I.; van der Aa, M.N.; van Rhijn, B.W.; van der Kwast, T.H.; Zwarthoff, E.C. FGFR3, HRAS, KRAS, NRAS and PIK3CA mutations in bladder cancer and their potential as biomarkers for surveillance and therapy. PLoS ONE 2010, 5, e13821. [Google Scholar] [CrossRef]
- Hurst, C.D.; Knowles, M.A. Mutational landscape of non-muscle-invasive bladder cancer. Urol. Oncol. 2022, 40, 295–303. [Google Scholar] [CrossRef] [PubMed]
- Kvikstad, V.; Lillesand, M.; Gudlaugsson, E.; Mangrud, O.M.; Rewcastle, E.; Skaland, I.; Baak, J.P.; Janssen, E.A. Proliferation and immunohistochemistry for p53, CD25 and CK20 in predicting prognosis of non-muscle invasive papillary urothelial carcinomas. PLoS ONE 2024, 19, e0297141. [Google Scholar] [CrossRef]
- Li, J.; Dong, T.; Wu, Z.; Zhu, D.; Gu, H. The effects of MYC on tumor immunity and immunotherapy. Cell Death Discov. 2023, 9, 103. [Google Scholar] [CrossRef] [PubMed]
- Jin, Y.; Qiu, X.; He, Z.; Wang, J.; Sa, R.; Chen, L. ERBB2 as a prognostic biomarker correlates with immune infiltrates in papillary thyroid cancer. Front. Genet. 2022, 13, 966365. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Jiang, Y.; Jin, H.; Wang, C. ERBB2 promoter demethylation and immune cell infiltration promote a poor prognosis for cancer patients. Front. Oncol. 2022, 12, 1012138. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.-J.; Xu, X.-Q.; Zhang, Y.-C.; Hu, P.-C.; Yang, W.-X. Establishment of a prognostic model related to tregs and natural killer cells infiltration in bladder cancer. World J. Clin. Cases 2023, 11, 3444–3456. [Google Scholar] [CrossRef]
- Garczyk, S.; Bischoff, F.; Schneider, U.; Golz, R.; von Rundstedt, F.C.; Knuchel, R.; Degener, S. Intratumoral heterogeneity of surrogate molecular subtypes in urothelial carcinoma in situ of the urinary bladder: Implications for prognostic stratification of high-risk non-muscle-invasive bladder cancer. Virchows Arch. 2021, 479, 325–335. [Google Scholar] [CrossRef]
- Lillesand, M.; Kvikstad, V.; Mangrud, O.M.; Gudlaugsson, E.; van Diermen-Hidle, B.; Skaland, I.; Baak, J.P.A.; Janssen, E.A.M. Mitotic activity index and CD25+ lymphocytes predict risk of stage progression in non-muscle invasive bladder cancer. PLoS ONE 2020, 15, e0233676. [Google Scholar] [CrossRef]
- Mangrud, O.M.; Gudlaugsson, E.; Skaland, I.; Tasdemir, I.; Dalen, I.; van Diermen, B.; Baak, J.P.; Janssen, E.A. Prognostic comparison of proliferation markers and World Health Organization 1973/2004 grades in urothelial carcinomas of the urinary bladder. Hum. Pathol. 2014, 45, 1496–1503. [Google Scholar] [CrossRef]
- Moch, H.; Cubilla, A.L.; Humphrey, P.A.; Reuter, V.E.; Ulbright, T.M. The 2016 WHO classification of tumours of the urinary system and male genital organs—Part A: Renal, penile, and testicular tumours. Eur. Urol. 2016, 70, 93–105. [Google Scholar] [CrossRef]
- Epstein, J.I.; Amin, M.B.; Reuter, V.R.; Mostofi, F.K.; Committee, B.C.C. The World Health Organization/International Society of Urological Pathology consensus classification of urothelial (transitional cell) neoplasms of the urinary bladder. Am. J. Surg. Pathol. 1998, 22, 1435–1448. [Google Scholar] [CrossRef] [PubMed]
- Aeffner, F.; Zarella, M.D.; Buchbinder, N.; Bui, M.M.; Goodman, M.R.; Hartman, D.J.; Lujan, G.M.; Molani, M.A.; Parwani, A.V.; Lillard, K.; et al. Introduction to Digital Image Analysis in Whole-slide Imaging: A White Paper from the Digital Pathology Association. J. Pathol. Inform. 2019, 10, 9. [Google Scholar] [CrossRef] [PubMed]
- Mayakonda, A.; Lin, D.-C.; Assenov, Y.; Plass, C.; Koeffler, H.P. Maftools: Efficient and comprehensive analysis of somatic variants in cancer. Genome Res. 2018, 28, 1747–1756. [Google Scholar] [CrossRef] [PubMed]
- Cerami, E.; Gao, J.; Dogrusoz, U.; Gross, B.E.; Sumer, S.O.; Aksoy, B.A.; Jacobsen, A.; Byrne, C.J.; Heuer, M.L.; Larsson, E.; et al. The cBio cancer genomics portal: An open platform for exploring multidimensional cancer genomics data. Cancer Discov. 2012, 2, 401–404. [Google Scholar] [CrossRef]
- Gu, Z.; Eils, R.; Schlesner, M. Complex heatmaps reveal patterns and correlations in multidimensional genomic data. Bioinformatics 2016, 32, 2847–2849. [Google Scholar] [CrossRef]
- Roberts, S.A.; Lawrence, M.S.; Klimczak, L.J.; Grimm, S.A.; Fargo, D.; Stojanov, P.; Kiezun, A.; Kryukov, G.V.; Carter, S.L.; Saksena, G.; et al. An APOBEC cytidine deaminase mutagenesis pattern is widespread in human cancers. Nat. Genet. 2013, 45, 970–976. [Google Scholar] [CrossRef]
- Ascione, C.M.; Napolitano, F.; Esposito, D.; Servetto, A.; Belli, S.; Santaniello, A.; Scagliarini, S.; Crocetto, F.; Bianco, R.; Formisano, L. Role of FGFR3 in bladder cancer: Treatment landscape and future challenges. Cancer Treat. Rev. 2023, 115, 102530. [Google Scholar] [CrossRef]
- di Martino, E.; Tomlinson, D.C.; Knowles, M.A. A decade of FGF receptor research in bladder cancer: Past, present, and future challenges. Adv. Urol. 2012, 2012, 429213. [Google Scholar] [CrossRef]
- Wang, J.; Su, W.; Zhang, T.; Zhang, S.; Lei, H.; Ma, F.; Shi, M.; Shi, W.; Xie, X.; Di, C. Aberrant Cyclin D1 splicing in cancer: From molecular mechanism to therapeutic modulation. Cell Death Dis. 2023, 14, 244. [Google Scholar] [CrossRef]
- Karakaya, Y.A.; Oral, E. Correlation of cyclin D1, HER2, and AMACR expressions with histologic grade in bladder urothelial carcinomas. Indian J. Pathol. Microbiol. 2021, 64, 84–90. [Google Scholar] [CrossRef]
- Ding, W.; Tong, S.; Gou, Y.; Sun, C.; Wang, H.; Chen, Z.; Tan, J.; Xu, K.; Xia, G.; Ding, Q. Human epidermal growth factor receptor 2: A significant indicator for predicting progression in non-muscle-invasive bladder cancer especially in high-risk groups. World J. Urol. 2015, 33, 1951–1957. [Google Scholar] [CrossRef] [PubMed]
- Kardoust Parizi, M.; Margulis, V.; Lotan, Y.; Mori, K.; Shariat, S.F. Fibroblast growth factor receptor: A systematic review and meta-analysis of prognostic value and therapeutic options in patients with urothelial bladder carcinoma. Urol. Oncol. 2021, 39, 409–421. [Google Scholar] [CrossRef] [PubMed]
- Ruiz-Pérez, M.V.; Henley, A.B.; Arsenian-Henriksson, M. The MYCN protein in health and disease. Genes 2017, 8, 113. [Google Scholar] [CrossRef] [PubMed]
- Mohanty, S.K.; Lobo, A.; Mishra, S.K.; Cheng, L. Precision medicine in bladder cancer: Present challenges and future directions. J. Pers. Med. 2023, 13, 756. [Google Scholar] [CrossRef] [PubMed]
- Sikic, D.; Taubert, H.; Breyer, J.; Eckstein, M.; Weyerer, V.; Keck, B.; Kubon, J.; Otto, W.; Worst, T.S.; Kriegmair, M.C.; et al. The Prognostic Value of FGFR3 Expression in Patients with T1 Non-Muscle Invasive Bladder Cancer. Cancer Manag. Res. 2021, 13, 6567–6578. [Google Scholar] [CrossRef]
- Schwarzova, L.; Varchulova Novakova, Z.; Danisovic, L.; Ziaran, S. Molecular classification of urothelial bladder carcinoma. Mol. Biol. Rep. 2023, 50, 7867–7877. [Google Scholar] [CrossRef]
- Langle, Y.V.; Belgorosky, D.; Prack McCormick, B.; Sahores, A.; Gongora, A.; Baldi, A.; Lanari, C.; Lamb, C.; Eiján, A.M. FGFR3 down-regulation is involved in bacillus Calmette-Guérin induced bladder tumor growth inhibition. J. Urol. 2016, 195, 188–197. [Google Scholar] [CrossRef]
- Foth, M.; Ismail, N.F.B.; Kung, J.S.C.; Tomlinson, D.; Knowles, M.A.; Eriksson, P.; Sjödahl, G.; Salmond, J.M.; Sansom, O.J.; Iwata, T. FGFR3 mutation increases bladder tumourigenesis by suppressing acute inflammation. J. Pathol. 2018, 246, 331–343. [Google Scholar] [CrossRef]
- Ferrall-Fairbanks, M.C.; Kimmel, G.J.; Black, M.; Bravo, R.; Deac, O.; Martinez, P.; Myers, M.; Nazari, F.; Osojnik, A.; Subramanian, H. Modeling adaptive therapy in non-muscle invasive bladder cancer. bioRxiv 2019, 826438. [Google Scholar] [CrossRef]
- Bacon, J.V.W.; Muller, D.C.; Ritch, E.; Annala, M.; Dugas, S.G.; Herberts, C.; Vandekerkhove, G.; Seifert, H.; Zellweger, T.; Black, P.C.; et al. Somatic Features of Response and Relapse in Non-muscle-invasive Bladder Cancer Treated with Bacillus Calmette-Guerin Immunotherapy. Eur. Urol. Oncol. 2022, 5, 677–686. [Google Scholar] [CrossRef]
- Young, F.P.; Becker, T.M.; Nimir, M.; Opperman, T.; Chua, W.; Balakrishnar, B.; de Souza, P.; Ma, Y. Biomarkers of Castrate Resistance in Prostate Cancer: Androgen Receptor Amplification and T877A Mutation Detection by Multiplex Droplet Digital PCR. J. Clin. Med. 2022, 11, 257. [Google Scholar] [CrossRef] [PubMed]
- Lombard, A.P.; Mudryj, M. The emerging role of the androgen receptor in bladder cancer. Endocr. Relat. Cancer 2015, 22, R265–R277. [Google Scholar] [CrossRef] [PubMed]
- Besançon, M.; Gris, T.; Joncas, F.-H.; Picard, V.; Bergeron, A.; Fradet, Y.; Toren, P. Combining antiandrogens with immunotherapy for bladder cancer treatment. Eur. Urol. Open Sci. 2022, 43, 35–44. [Google Scholar] [CrossRef] [PubMed]
- Mizushima, T.; Jiang, G.; Kawahara, T.; Li, P.; Han, B.; Inoue, S.; Ide, H.; Kato, I.; Jalalizadeh, M.; Miyagi, E. Androgen receptor signaling reduces the efficacy of bacillus Calmette-Guérin therapy for bladder cancer via modulating Rab27b-induced exocytosis. Mol. Cancer Ther. 2020, 19, 1930–1942. [Google Scholar] [CrossRef] [PubMed]
- Al-Hogbani, M.; Gilbert, S.; Lodde, M.; Fradet, Y.; Toren, P. Does 5-alpha reductase inhibitor use improve the efficacy of intravesical bacille calmette-guérin (BCG) for non-muscle invasive bladder cancer? Bladder Cancer 2020, 6, 63–69. [Google Scholar] [CrossRef]
- Zangouei, A.S.; Barjasteh, A.H.; Rahimi, H.R.; Mojarrad, M.; Moghbeli, M. Role of tyrosine kinases in bladder cancer progression: An overview. Cell Commun. Signal. 2020, 18, 127. [Google Scholar] [CrossRef]
- Garje, R.; An, J.; Obeidat, M.; Kumar, K.; Yasin, H.A.; Zakharia, Y. Fibroblast Growth Factor Receptor (FGFR) Inhibitors in Urothelial Cancer. Oncologist 2020, 25, e1711–e1719. [Google Scholar] [CrossRef]
- Xiao, J.F.; Caliri, A.W.; Duex, J.E.; Theodorescu, D. Targetable Pathways in Advanced Bladder Cancer: FGFR Signaling. Cancers 2021, 13, 4891. [Google Scholar] [CrossRef]
- Shin, J.W.; Kim, S.; Ha, S.; Choi, B.; Kim, S.; Im, S.A.; Yoon, T.Y.; Chung, J. The HER2 S310F Mutant Can Form an Active Heterodimer with the EGFR, Which Can Be Inhibited by Cetuximab but Not by Trastuzumab as well as Pertuzumab. Biomolecules 2019, 9, 629. [Google Scholar] [CrossRef]
- Albarran, V.; Rosero, D.I.; Chamorro, J.; Pozas, J.; San Roman, M.; Barrill, A.M.; Alia, V.; Sotoca, P.; Guerrero, P.; Calvo, J.C.; et al. Her-2 Targeted Therapy in Advanced Urothelial Cancer: From Monoclonal Antibodies to Antibody-Drug Conjugates. Int. J. Mol. Sci. 2022, 23, 12659. [Google Scholar] [CrossRef]
- Wang, J.; Mikse, O.; Liao, R.G.; Li, Y.; Tan, L.; Janne, P.A.; Gray, N.S.; Wong, K.K.; Hammerman, P.S. Ligand-associated ERBB2/3 activation confers acquired resistance to FGFR inhibition in FGFR3-dependent cancer cells. Oncogene 2015, 34, 2167–2177. [Google Scholar] [CrossRef] [PubMed]
- Bader, A.G.; Kang, S.; Vogt, P.K. Cancer-specific mutations in PIK3CA are oncogenic in vivo. Proc. Natl. Acad. Sci. USA 2006, 103, 1475–1479. [Google Scholar] [CrossRef] [PubMed]
- Hyman, D.M.; Tran, B.; Paz-Ares, L.; Machiels, J.P.; Schellens, J.H.; Bedard, P.L.; Campone, M.; Cassier, P.A.; Sarantopoulos, J.; Vaishampayan, U.; et al. Combined PIK3CA and FGFR Inhibition with Alpelisib and Infigratinib in Patients with PIK3CA-Mutant Solid Tumors, with or without FGFR Alterations. JCO Precis. Oncol. 2019, 3, 1–13. [Google Scholar] [CrossRef]
- Shi, M.-J.; Meng, X.-Y.; Lamy, P.; Banday, A.R.; Yang, J.; Moreno-Vega, A.; Chen, C.-L.; Dyrskjøt, L.; Bernard-Pierrot, I.; Prokunina-Olsson, L.; et al. APOBEC-mediated mutagenesis as a likely cause of FGFR3 S249C mutation over-representation in bladder cancer. Eur. Urol. 2019, 76, 9–13. [Google Scholar] [CrossRef] [PubMed]
- Robertson, A.G.; Kim, J.; Al-Ahmadie, H.; Bellmunt, J.; Guo, G.; Cherniack, A.D.; Hinoue, T.; Laird, P.W.; Hoadley, K.A.; Akbani, R.; et al. Comprehensive molecular characterization of muscle-invasive bladder cancer. Cell 2017, 171, 540–556. [Google Scholar] [CrossRef]
- Shi, R.; Wang, X.; Wu, Y.; Xu, B.; Zhao, T.; Trapp, C.; Wang, X.; Unger, K.; Zhou, C.; Lu, S.; et al. APOBEC-mediated mutagenesis is a favorable predictor of prognosis and immunotherapy for bladder cancer patients: Evidence from pan-cancer analysis and multiple databases. Theranostics 2022, 12, 4181–4199. [Google Scholar] [CrossRef]
- Rao, N.; Starrett, G.J.; Piaskowski, M.L.; Butler, K.E.; Golubeva, Y.; Yan, W.; Lawrence, S.M.; Dean, M.; Garcia-Closas, M.; Baris, D.; et al. Analysis of several common APOBEC-type mutations in bladder tumors suggests links to viral infection. Cancer Prev. Res. 2023, 16, 561–570. [Google Scholar] [CrossRef]
- Bol, M.G.; Baak, J.P.; Rep, S.; Marx, W.L.; Kruse, A.J.; Bos, S.D.; Kisman, O.; Voorhorst, F.J. Prognostic value of proliferative activity and nuclear morphometry for progression in TaT1 urothelial cell carcinomas of the urinary bladder. Urology 2002, 60, 1124–1130. [Google Scholar] [CrossRef]
NGS Data Analysis | Number of Patients |
---|---|
Patients diagnosed with TaT1 tumor | 349 |
Patient samples that were missing: | 45 |
- Absence of patient samples in the archive | 19 |
- Insufficient material for NGS analysis | 26 |
Patient samples did not fulfill QC requirements | 17 |
Patient samples included for NGS data analysis: | 287 |
- No mutations | 17 |
- SNVs | 169 |
- CNVs | 32 |
- Both SNVs and CNVs | 69 |
Patient samples for stage progression analysis | 287 |
Patient samples included for tumor recurrence analysis | 277 |
Histopathological Parameters | Stage Progression | HR | Tumor Recurrence | HR | |||
---|---|---|---|---|---|---|---|
N Events (%) | p-Value | 95% CI | N Events (%) | p-Value | 95% CI | ||
Age | <72 | 5/144 (3) | 0.004 | 4.0 (1.5–10.9) | 68/139 (49) | 0.005 | 1.6 (1.2–2.2) |
>72 | 16/143 (11) | 77/138 (56) | |||||
Sex | Male | 18/209 (9) | 0.165 | 0.4 (0.1–1.5) | 103/201 (51) | 0.766 | 1.0 (0.7–1.4) |
Female | 3/78 (4) | 42/76 (55) | |||||
Stage | Ta | 8/227 (3) | <0.001 | 7.1 (3.0–17.1) | 118/222 (53) | 0.917 | 0.9 (0.7–1.6) |
T1 | 13/60 (22) | 27/55 (49) | |||||
WHO04 | Low | 5/175 (3) | <0.001 | 5.6 (2.1–15.4) | 92/169 (54) | 0.865 | 1.0 (0.7–1.5) |
High | 16/112 (14) | 53/108 (49) | |||||
Multifocality | No | 7/170 (4) | 0.013 | 3.1 (1.2–8.0) | 72/164 (44) | <0.001 | 1.8 (1.3–2.5) |
Yes | 11/90 (12) | 56/87 (64) | |||||
CIS | No | 16/264 (6) | 0.002 | 4.2 (1.6–11.6) | 135/255 (53) | 0.801 | 0.9 (0.5–1.8) |
Yes | 5/23 (12) | 10/22 (45) | |||||
BCG | No | 11/208 (5) | 0.033 | 2.5 (1.04–5.8) | 93/198 (47) | 0.002 | 1.7 (1.2–2.4) |
Yes | 10/79 (13) | 52/79 (66) | |||||
MAI | ≤15 | 6/225 (3) | <0.001 | 11.6 (4.5–29.8) | 110/218 (50) | 0.107 | 1.4 (0.9–2.0) |
>15 | 15/58 (26) | 34/55 (62) | |||||
CK20 | Negative | 6/144 (4) | 0.081 | 2.3 (0.9–6.1) | 71/136 (52) | 0.388 | 1.2 (0.8–1.6) |
Positive | 13/138 (9) | 71/136 (52) | |||||
CD25 | <1.3 | 4/141 (3) | 0.004 | 4.3 (1.5–12.9) | 73/137 (53) | 0.949 | 1.0 (0.7–1.4) |
≥1.3 | 17/140 (12) | 71/134 (53) | |||||
p53 | <15 | 10/226 (4) | <0.001 | 4.6 (1.9–11.0) | 116/218 (53) | 0.789 | 0.9 (0.6–1.5) |
≥15 | 10/54 (18) | 26/52 (50) |
TNM Stage | Genes | Comp. | n Altered | Ref. | n Altered | p-Value | OR | OR Low | OR High | FDR |
---|---|---|---|---|---|---|---|---|---|---|
WHO Grade | Group | Comp. Group (%) | Group | Ref. Group (%) | ||||||
Stage | FGFR3 | Ta | 163/217 (75) | T1 | 17/53 (32) | <0.001 | 6.34 | 3.18 | 13.08 | <0.001 |
PIK3CA | Ta | 83/217 (38) | T1 | 9/53 (17) | 0.003 | 3.02 | 1.36 | 7.40 | 0.018 | |
ERBB2 | T1 | 16/53 (30) | Ta | 18/217 (8) | <0.001 | 4.74 | 2.06 | 10.88 | <0.001 | |
Grade | FGFR3 | Low | 143/171 (84) | High | 37/99 (37) | <0.001 | 8.47 | 4.64 | 15.85 | <0.001 |
ERBB2 | High | 26/99 (26) | Low | 8/171 (5) | <0.001 | 7.20 | 2.99 | 19.31 | <0.001 | |
FGFR1 | High | 9/99 (9) | Low | 0/171 (0) | <0.001 | Inf | 3.63 | Inf | <0.001 | |
CCND1 | High | 15/99 (15) | Low | 7/171 (4) | 0.002 | 4.16 | 1.53 | 12.55 | 0.009 |
IHC | Gene | Comp. | n Altered | Ref. | n Altered | p-Value | OR | OR Low | OR High | FDR |
---|---|---|---|---|---|---|---|---|---|---|
Group | Comp. Group (%) | Group | Ref. Group (%) | |||||||
CK20 | FGFR3 | Low | 108/136 (79) | High | 71/129 (55) | <0.001 | 3.14 | 1.78 | 5.64 | <0.001 |
ERBB2 | High | 24/129 (19) | Low | 8/136 (6) | 0.002 | 3.64 | 1.50 | 9.78 | 0.017 | |
p53 | FGFR3 | Low | 161/214 (75) | High | 18/49 (37) | <0.001 | 5.19 | 2.58 | 10.74 | <0.001 |
FGFR1 | High | 5/49 (10) | Low | 2/214 (14) | 0.003 | 11.87 | 1.87 | 128.61 | 0.023 | |
ERBB2 | High | 12/49 (24) | Low | 19/214 (9) | 0.005 | 3.31 | 1.34 | 7.91 | 0.026 | |
CCND1 | High | 9/49 (18) | Low | 12/214 (6) | 0.007 | 3.76 | 1.31 | 10.49 | 0.026 | |
MAI | FGFR3 | Low | 158/214 (74) | High | 20/52 (38) | <0.001 | 4.48 | 2.28 | 9.01 | <0.001 |
ERBB2 | High | 19/52 (37) | Low | 14/214 (7) | <0.001 | 8.13 | 3.49 | 19.42 | <0.001 | |
MYC | High | 8/52 (15) | Low | 2/214 (1) | <0.001 | 18.95 | 3.62 | 188.86 | <0.001 | |
ERBB3 | High | 6/52 (12) | Low | 2/214 (1) | 0.001 | 13.63 | 2.34 | 142.47 | 0.004 |
Sig. | n | SBS Sig. | Mutational Process | Cosine Sim. | Gene | p-Value | OR | OR Low | OR High | FDR |
---|---|---|---|---|---|---|---|---|---|---|
1 | 28 | 15 | Defective DNA MMR | 0.710 | FGFR3 | 0.002 | 10.99 | 1.73 | 459.96 | 0.017 |
2 | 29 | 2 | APOBEC (C > T) | 0.856 | PIK3CA | <0.001 | 65.40 | 10.34 | 2692.31 | <0.001 |
3 | 15 | 1 | Spontaneous deamination | 0.614 | EGFR | <0.001 | 38.14 | 4.89 | 460.43 | 0.002 |
of 5-metylcytosine | KRAS | 0.008 | 5.62 | 1.36 | 20.60 | 0.047 | ||||
4 | 30 | 4 | Smoking | 0.483 | HRAS | <0.001 | 7.10 | 2.19 | 22.47 | 0.004 |
5 | 63 | 3 | Defective DNA-DSB repair | 0.231 | FGFR3 | <0.001 | Inf | 8.64 | Inf | <0.001 |
6 | 19 | 7 | UV exposure | 0.801 | ERBB2 | <0.001 | 9.07 | 2.58 | 30.57 | 0.003 |
7 | 31 | 16 | Unknown | 0.565 | No association | |||||
8 | 23 | 25 | Unknown | 0.393 | PIK3CA | 0.006 | 3.48 | 1.31 | 9.94 | 0.037 |
Stage | Genes | Comp. | n Altered | Ref. | n Altered | p-Value | OR | OR Low | OR High | FDR |
---|---|---|---|---|---|---|---|---|---|---|
Group | Comp. Group (%) | Group | Ref. Group (%) | |||||||
Ta | FGFR3 | LG | 137/164 (84) | HG | 26/53 (49) | <0.001 | 5.22 | 2.52 | 10.96 | <0.001 |
FGFR1 | HG | 6/53 (11) | LG | 0/164 (0) | <0.001 | Inf | 3.90 | Inf | 0.001 | |
ERBB2 | HG | 11/53 (21) | LG | 7/164 (4) | 0.001 | 5.81 | 1.92 | 18.85 | 0.003 | |
CCND1 | HG | 9/53 (17) | LG | 7/164 (4) | 0.005 | 4.55 | 1.42 | 15.26 | 0.016 | |
T1 | FGFR3 | LG | 6/7 (86) | HG | 11/46 (24) | 0.003 | 17.87 | 1.87 | 897.20 | 0.02 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lillesand, M.; Kvikstad, V.; Gudlaugsson, E.; Skaland, I.; Slewa Johannessen, A.; Nigatu Tesfahun, A.; Sperstad, S.V.; Janssen, E.A.M.; Austdal, M. Integrating Genetic Alterations and Histopathological Features for Enhanced Risk Stratification in Non-Muscle-Invasive Bladder Cancer. Diagnostics 2024, 14, 2137. https://doi.org/10.3390/diagnostics14192137
Lillesand M, Kvikstad V, Gudlaugsson E, Skaland I, Slewa Johannessen A, Nigatu Tesfahun A, Sperstad SV, Janssen EAM, Austdal M. Integrating Genetic Alterations and Histopathological Features for Enhanced Risk Stratification in Non-Muscle-Invasive Bladder Cancer. Diagnostics. 2024; 14(19):2137. https://doi.org/10.3390/diagnostics14192137
Chicago/Turabian StyleLillesand, Melinda, Vebjørn Kvikstad, Einar Gudlaugsson, Ivar Skaland, Aida Slewa Johannessen, Almaz Nigatu Tesfahun, Sigmund Vegard Sperstad, Emiel A. M. Janssen, and Marie Austdal. 2024. "Integrating Genetic Alterations and Histopathological Features for Enhanced Risk Stratification in Non-Muscle-Invasive Bladder Cancer" Diagnostics 14, no. 19: 2137. https://doi.org/10.3390/diagnostics14192137
APA StyleLillesand, M., Kvikstad, V., Gudlaugsson, E., Skaland, I., Slewa Johannessen, A., Nigatu Tesfahun, A., Sperstad, S. V., Janssen, E. A. M., & Austdal, M. (2024). Integrating Genetic Alterations and Histopathological Features for Enhanced Risk Stratification in Non-Muscle-Invasive Bladder Cancer. Diagnostics, 14(19), 2137. https://doi.org/10.3390/diagnostics14192137