Experimental Measurements of the Length of the Human Colon: A Systematic Review and Meta-Analysis
Abstract
:1. Introduction
2. Materials Methods
2.1. Search Strategy
- 1—((colon or colorect* or colonic*) adj1 (length* or measur* or size* or anatomy*)).ti,ab.
- 2—(“large intestine” adj1 (length* or measur* or size* or anatomy*)).ti,ab.
- 3—(“large bowel” adj1 (length* or measur* or size* or anatomy*)).ti,ab.
- 4—(rat or rats or mouse or mice or swine or porcine or murine or sheep or lambs or pigs or piglets or rabbit or rabbits or cat or cats or dog or dogs or cattle or bovine or monkeys or trout or marmoset $1).ti. and animal experiment/.
- 5—animal experiment/ not (human experiment/ or human/).
- 6—4 or 5.
- 7—1 or 2 or 3
- 8—7 not 6.
2.2. Eligibility Criteria
2.3. Study Selection and Data Extraction
2.4. Quality Assessment of Included Studies
2.5. Meta-Analysis Methods
3. Results
3.1. Search Results
3.2. Quality Assessment of Included Studies
3.3. Demographics of the Included Studies
3.4. Colon Length Assessment Methods
3.4.1. Cadaver Assessment Studies
3.4.2. Intraoperative Assessment
3.4.3. Colonoscopy Assessment Studies
3.4.4. Radiological Barium Enema Assessment Studies
3.4.5. Computed Tomography Colonography Assessment
3.4.6. Magnetic Resonance Imaging and 3D-Transit Assessment
3.5. Meta-Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bharucha, A.E.; Camilleri, M. Physiology of the colon and its measurement. In Shackelford’s Surgery of the Alimentary Tract, 2 Volume Set; Elsevier: Amsterdam, The Netherlands, 2019; pp. 1676–1688. [Google Scholar]
- Sharif, H.; Hoad, C.L.; Abrehart, N.; Gowland, P.A.; Spiller, R.C.; Kirkham, S.; Loganathan, S.; Papadopoulos, M.; Benninga, M.A.; Devadason, D. Colon length in pediatric health and constipation measured using magnetic resonance imaging and three dimensional skeletonization. PLoS ONE 2024, 19, e0296311. [Google Scholar] [CrossRef] [PubMed]
- Hounnou, G.; Destrieux, C.; Desmé, J.; Bertrand, P.; Velut, S. Anatomical study of the length of the human intestine. Surg. Radiol. Anat. 2002, 24, 290–294. [Google Scholar] [CrossRef] [PubMed]
- Raahave, D.; Christensen, E.; Loud, F.B.; Knudsen, L.L. Correlation of bowel symptoms with colonic transit, length, and faecal load in functional faecal retention. Dan. Med. Bull. 2009, 56, 83–88. [Google Scholar] [PubMed]
- Yik, Y.I.; Cook, D.J.; Veysey, D.M.; Tudball, C.F.; Cain, T.M.; Southwell, B.R.; Hutson, J.M. How common is colonic elongation in children with slow-transit constipation or anorectal retention? J. Pediatr. Surg. 2012, 47, 1414–1420. [Google Scholar] [CrossRef]
- Flor, N.; Martinelli, A.; Maconi, G.; Di Pietro, S.; Perillo, N.; Maggi, L. CT colonography evaluation of the relationship between colon anatomy and diverticula. Br. J. Radiol. 2020, 93, 20200670. [Google Scholar] [CrossRef]
- Mark, E.B.; Poulsen, J.L.; Haase, A.M.; Frokjaer, J.B.; Schlageter, V.; Scott, S.M.; Krogh, K.; Drewes, A.M. Assessment of colorectal length using the electromagnetic capsule tracking system: A comparative validation study in healthy subjects. Colorectal Dis. 2017, 19, O350–O357. [Google Scholar] [CrossRef]
- Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G.; The PRISMA Group. Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. Ann. Intern. Med. 2009, 151, 264–269. [Google Scholar] [CrossRef]
- Modesti, P.A.; Reboldi, G.; Cappuccio, F.P.; Agyemang, C.; Remuzzi, G.; Rapi, S.; Perruolo, E.; Parati, G.; ESH Working Group on CV Risk in Low Resource Settings. Panethnic differences in blood pressure in Europe: A systematic review and meta-analysis. PLoS ONE 2016, 11, e0147601. [Google Scholar] [CrossRef]
- Treves, F. Lectures on the anatomy of the intestinal canal and peritoneum in man. Br. Med. J. 1885, 1, 470. [Google Scholar] [CrossRef]
- Underhill, B.M. Intestinal length in man. Br. Med. J. 1955, 2, 1243–1246. [Google Scholar] [CrossRef]
- Saunders, B.P.; Halligan, S.; Jobling, C.; Fukumoto, M.; Moussa, M.E.; Williams, C.B.; Bartram, C.I. Can barium enema indicate when colonoscopy will be difficult? Clin. Radiol. 1995, 50, 318–321. [Google Scholar] [CrossRef] [PubMed]
- Saunders, B.P.; Phillips, R.K.S.; Williams, C.B. Intraoperative measurement of colonic anatomy and attachments with relevance to colonoscopy. Br. J. Surg. 1995, 82, 1491–1493. [Google Scholar] [CrossRef] [PubMed]
- Saunders, B.P.; Fukumoto, M.; Halligan, S.; Jobling, C.; Moussa, M.E.; Bartram, C.I.; Williams, C.B. Why is colonoscopy more difficult in women? Gastrointest. Endosc. 1996, 43, 124–126. [Google Scholar] [CrossRef] [PubMed]
- Rowland, R.S.; Bell, G.D.; Dogramadzi, S.; Allen, C. Colonoscopy aided by magnetic 3D imaging: Is the technique sufficiently sensitive to detect differences between men and women? Med. Biol. Eng. Comput. 1999, 37, 673–679. [Google Scholar] [CrossRef] [PubMed]
- Renehan, A.G.; Painter, J.E.; Bell, G.D.; Rowland, R.S.; O’Dwyer, S.T.; Shalet, S.M. Determination of large bowel length and loop complexity in patients with acromegaly undergoing screening colonoscopy. J. Clin. Endocrinol. Metab. 2005, 62, 323–330. [Google Scholar] [CrossRef] [PubMed]
- Punwani, S.; Halligan, S.; Tolan, D.; Taylor, S.A.; Hawkes, D. Quantitative assessment of colonic movement between prone and supine patient positions during CT colonography. Br. J. Radiol. 2009, 82, 475–481. [Google Scholar] [CrossRef] [PubMed]
- Phillips, M.; Patel, A.; Meredith, P.; Will, O.; Brassett, C. Segmental colonic length and mobility. Ann. R. Coll. Surg. Engl. 2015, 97, 439–444. [Google Scholar] [CrossRef]
- Alazmani, A.; Hood, A.; Jayne, D.; Neville, A.; Culmer, P. Quantitative assessment of colorectal morphology: Implications for robotic colonoscopy. Med. Eng. Phys. 2016, 38, 148–154. [Google Scholar] [CrossRef]
- Bryant, J. Observation upon the growth and length of human intestine. Am. J. Med. Sci. 1924, 167, 499–519. [Google Scholar] [CrossRef]
- Hanson, M.E.; Pickhardt, P.J.; Kim, D.H.; Pfau, P.R. Anatomic factors predictive of incomplete colonoscopy based on findings at CT colonography. Am. J. Roentgenol. 2007, 189, 774–779. [Google Scholar] [CrossRef]
- Duncan, J.E.; McNally, M.P.; Sweeney, W.B.; Gentry, A.B.; Barlow, D.S.; Jensen, D.W.; Cash, B.D. CT colonography predictably overestimates colonic length and distance to polyps compared with optical colonoscopy. Am. J. Roentgenol. 2009, 193, 1291–1295. [Google Scholar] [CrossRef] [PubMed]
- Khashab, M.; Pickhardt, P.J.; Kim, D.H.; Rex, D.K. Colorectal anatomy in adults at CT colonography: Normal distribution and the effect of age, gender, and body mass index. Gastrointest. Endosc. 2009, 69, AB275. [Google Scholar] [CrossRef]
- Eickhoff, A.; Pickhardt, P.J.; Hartmann, D.; Riemann, J.F. Colon anatomy based on CT colonography and fluoroscopy: Impact on looping, straightening and ancillary manoeuvres in colonoscopy. Dig. Liver Dis. 2010, 42, 291–296. [Google Scholar] [CrossRef]
- Sadahiro, S.; Ohmura, T.; Yamada, Y.; Saito, T.; Taki, Y. Analysis of length and surface area of each segment of the large intestine according to age, sex and physique. Surg. Radiol. Anat. 1992, 14, 251–257. [Google Scholar] [CrossRef]
- Ohgo, H.; Imaeda, H.; Yamaoka, M.; Yoneno, K.; Hosoe, N.; Mizukami, T.; Nakamoto, H. Irritable bowel syndrome evaluation using computed tomography colonography. World J. Gastroenterol. 2016, 22, 9394–9399. [Google Scholar] [CrossRef]
- Utano, K.; Nagata, K.; Honda, T.; Kato, T.; Lefor, A.K.; Togashi, K. Bowel habits and gender correlate with colon length measured by CT colonography. Jpn. J. Radiol. 2022, 40, 298–307. [Google Scholar] [CrossRef] [PubMed]
- Sadahiro, S.; Ohmura, T.; Saito, T.; Suzuki, S. Relationship between length and surface-area of each segment of the large intestine and the incidence of colorectal cancer. Cancer 1991, 68, 84–87. [Google Scholar] [CrossRef]
- Bhatnagar, B.N.S.; Sharma, C.L.N.; Gupta, S.N.; Mathur, M.M.; Reddy, D.C.S. Study on the anatomical dimensions of the human sigmoid colon. Clin. Anat. 2004, 17, 236–243. [Google Scholar] [CrossRef]
- Michael, S.A.; Rabi, S. Morphology of Sigmoid Colon in South Indian Population: A Cadaveric Study. J. Clin. Diagn. Res. 2015, 9, AC04–AC07. [Google Scholar] [CrossRef]
- Chapuis, P.H.; Faithfull, G.R.; Dent, O.F. Large bowel segment lengths and the distribution of colorectal cancer. Aust. N. Z. J. Surg. 1982, 52, 385–390. [Google Scholar] [CrossRef]
- Bayeh, A.B.; Abegaz, B.A. The role of sigmoid colon anatomic dimensions in the development of sigmoid volvulus, North-Western Ethiopia. PLoS ONE 2021, 16, e0260708. [Google Scholar] [CrossRef] [PubMed]
- Mirjalili, S.A.; Tarr, G.; Stringer, M.D. The length of the large intestine in children determined by computed tomography scan. Clin. Anat. 2017, 30, 887–893. [Google Scholar] [CrossRef] [PubMed]
- Madiba, T.E.; Haffajee, M.R.; Sikhosana, M.H. Radiological anatomy of the sigmoid colon. Surg. Radiol. Anat. 2008, 30, 409–415. [Google Scholar] [CrossRef] [PubMed]
- Struijs, M.C.; Diamond, I.R.; de Silva, N.; Wales, P.W. Establishing norms for intestinal length in children. J. Pediatr. Surg. 2009, 44, 933–938. [Google Scholar] [CrossRef]
- Alatise, O.I.; Ojo, O.; Nwoha, P.; Omoniyi-Esan, G.; Omonisi, A. The role of the anatomy of the sigmoid colon in developing sigmoid volvulus: A cross-sectional study. Surg. Radiol. Anat. 2013, 35, 249–257. [Google Scholar] [CrossRef]
Author | Year | Location | Study Design | Population | Control or Comparison | Sex | Age, y | Technique (Measurement Tool) |
---|---|---|---|---|---|---|---|---|
Treves, et al. [1] | 1885 | UK | Prospective | 100 adult cadavers | NA | NA | NA | Dissection (unknown) |
Bryant, et al. [2] | 1924 | USA | Prospective | 45 fetal cadavers 37 child cadavers 160 adult cadavers | Comparison among age group and sex | Fetal: M: 25, F: 20 Children: M: 20, F: 17 Adult: M: 94, F: 66 | Children (0.5–17) Adults (20–80) | Dissection (ruler) |
Underhill, et al. [3] | 1955 | UK | Prospective | 100 adult cadavers | NA | M: 65, F: 35 | M: 27–91 F: 33–85 | Dissection (ruler) |
Chapuis, et al. [4] | 1982 | Australia | Retrospective | 50 adult patients 10 cadavers | 10 cadavers | Patients: M: 19, F: 31 | Both sexes: 44 | Barium enema (ruler); dissection (unknown) |
Sadahiro, et al. [5] | 1991 | Japan | Retrospective | 834 patients who underwent barium enema | NA | NA | NA | Barium enema (map measure) |
Sadahiro, et al. [6] | 1992 | Japan | Retrospective | 920 adult patients who underwent barium enema | Comparison between age, sex, and physique | M: 434 F: 486 | M: 57.6 ± 14.3 (17–86) F: 56.1 ± 14.7 (14–92) | Barium enema (map measure) |
Saunders, et al. [7] | 1995 | UK | Retrospective | 48 adult patients who had a difficult colonoscopy and a barium enema | 46 controls with no difficulty of colonoscopy and have a barium enema | Difficult colonoscopy: M: 15, F: 33 No difficult colonoscopy: M: 23, F: 23 | Difficult colonoscopy: 64 (17–76) Patients with no difficult colonoscopy: 62 (23–81) | Barium enema (opisometer mapping wheel) |
Saunders, et al. [8] | 1995 | UK | Prospective | 118 adult laparotomy patients | NA | M: 66, F: 52 | Both sexes: 63 (19–85) | Surgery (unknown) |
Saunders, et al. [9] | 1996 | UK | Retrospective | 345 adult patients | Comparison between M and F | M: 162, F: 183 | M: 51.5 (15–85) F: 50.2 (19–85) | Barium enema (opisometer mapping wheel) |
Rowland, et al. [10] | 1999 | UK | Retrospective | Colonoscopy Group 1: 156 patients no stiffening over tube aid; Group 2: 77 patients stiffening over tube aid | Comparison between M and F | Group 1: M: 76, F: 80 Group 2: M: 40, F: 37 | M: 56.7 ± 15.1 F: 59.4 ± 13.0 | Colonoscopy (computing system) |
Hounnou, et al. [11] | 2002 | France | Prospective | 200 adult cadavers | Comparison between age, weight, and height | M: 100, F: 100 | Both sexes: 76 ± 12 M: 74 ± 12, F: 78 ± 12 | Dissection (tape) |
Bhatnagar, et al. [12] | 2004 | India | Prospective | 51 surgical patients, 19 cadavers | Comparison between patients and cadavers | Patients: M: 27, F: 24 Cadavers: M: 17, F: 2 | Patients: 36.16 ± 12.59 (16–60) Cadavers unknown | Surgery (tape) |
Renehan, et al. [13] | 2005 | UK | Prospective | 25 adult patients with acromegaly 41 adult controls | Non-acromegalic | Acromegaly: M: 56% F: 44% Control non-acromegalic: M: 60% F: 40% | Patients: 56 Control: 60 | Colonoscopy (magnetic endoscopic imaging, MEI) |
Hanson, et al. [14] | 2007 | US | Cross-sectional study | Adult patients CTC, 100 after incomplete colonoscopy, 100 after complete colonoscopy | Patients after complete optical colonoscopy | Incomplete colonoscopy: M: 41, F: 59 Complete colonoscopy: M: 60, F: 40 | Incomplete colonoscopy: 63.4 ± 10.6 Complete optical colonoscopy: 58.2 ± 7.9 | CTC (3D map with an automated centerline) |
Madiba, et al. [15] | 2008 | South Africa | Retrospective | 109 adult patients | Comparison between races | African: M: 16 F: 23 Indian: M: 25 F: 24 White: M: 7 F: 14 | African: 52 (14–92) Indian: 48 (14–83) White: 61 (20–92) | Barium enema (opisometer mapping wheel) |
Duncan, et al. [16] | 2009 | USA | Retrospective | 338 adult patients who undergo CTC and OC | Comparison between different tools (OC and CT) | The majority are men (M-F ratio 1.8:1) | Both sexes: 58 (41–75) | CTC (automated centerline measurement and optical colonoscopy) |
Khashab, et al. [17] | 2009 | USA | Retrospective | 505 adult CTC patients | Comparison between age, sex, and body mass | Adults: M: 239, F: 266 | Both sexes: 56.6 ± 7.3 | CTC (automated centerline) |
Punwani, et al. [18] | 2009 | UK | Retrospective | 20 CTC patients with good colonic distention | Comparison between different imaging position | Adults: M: 10, F: 10 | Both sexes: 54.6 ± 5.9 | CTC (automated centerline) |
Strujis, et al. [19] | 2009 | Canada | Prospective | 108 laparotomy children | Comparison between age, height, and weight | NA | Children from 24 weeks up to 5 years | Surgery (silk suture) |
Eickhoff, et al. [20] | 2010 | USA Germany | Retrospective CTC, prospective OC | Part 1: 100 adult CTC patients Part 2: 100 adult OC patients | Comparison between CT and OC | Part 1: M: 60, F: 40 Part 2: M: 57, F: 43 | Part 1: 58.2 ± 7.9 Part 2: 60.4 ± 8.2 | CTC (automated centerline measurement) and OC |
Alatise, et al. [21] | 2013 | Nigeria | Prospective | 50 adult patients 50 adult cadavers | Comparison between patients and cadavers | Patients: M: 25, F: 25 Cadavers: M: 25, F: 25 | Living: 48.3 ± 1.7 Cadavers: 47.0 ± 2.0 | Surgery (suture) |
Michael, et al. [22] | 2015 | India | Prospective | 31 adult cadavers | Comparison between M and F | M: 62%, F: 38% | (45–93) | Dissection (unknown) |
Phillips, et al. [23] | 2015 | UK | Prospective | 35 adult cadavers | Comparison between M and F | Adults: M:18, F:17 | 84 ± 13.2 | Dissection (tape) |
Alazmani, et al. [24] | 2016 | UK | Retrospective | 24 adult patients | Different imaging position | Adults: M:12, F:12 | 54.8 ± 4.7 (50–56) | CTC (3D, automated centerline) |
Ohgo, et al. [25] | 2016 | Japan | Retrospective | IBS-C: 13 IBS-D: 12 FC: 12 Control: 14 | Healthy controls | Control: M: 6 F: 8 IBS-C: M: 6 F: 7 IBS-D: M: 10 F: 2 FC: M: 7 F: 5 | Control: 64 IBS-D: 60 IBS-C: 61 FC: 70 | CTC and OC (unknown) |
Mark, et al. [26] | 2017 | Denmark | Prospective | Group 1: 25 healthy adults Group 2: 21 healthy adults | Comparison between different methods | Group 1: M: 25 Group 2: M: 10, F: 11 | Group 1: 24 (21–56) Group 2: 38 (25–52) | 3D-Transit (electromagnetic capsule tracking) MRI (semiautomated centerline) |
Mirjalili, et al. [27] | 2017 | New Zealand | Retrospective | 112 children | Comparison between different age groups | M: 51% F: 49% | 33: <2 (1–23 months) 40: 4–6 years (49–65 months) 39: 9–11 years (110–127 months) | CTC (automated centerline) |
Flor, et al. [28] | 2020 | Italy | Retrospective | 144 adult patients without diverticula 323 adult patients with diverticula | Patients without diverticula | M: 177, F: 290 | 67 ± 12 (45–96) | CTC (interactive 3D map with an automated centerline) |
Bayeh, et al. [29] | 2021 | Ethiopia | Prospective | Sigmoid volvulus patients. Group 1: 22 controls; Group 2: 22 elective surgery; Group 3: 22 emergency surgery | Patients who underwent surgery with no history of sigmoid volvulus | M: 56, F: 10 | Group 1: 47.27 Group 2: 55.95 Group 3: 52.23 | Surgery (tape) |
Utano, et al. [30] | 2022 | Japan | Retrospective | 295 adult patients: | Patients with positive fecal immunochemical tests | M: 154, F: 141 | 58.0 ± 11.0 (40–80) | CTC (automated centerline) |
Sharif, et al. [31] | 2024 | UK | Retrospective | 19 healthy children 16 patients with FC | Comparison with healthy controls | Healthy volunteers: M: 8, F: 11 FC: M: 7, F: 9 | Controls: 16 ± 2 FC: 11 ± 3 | MRI (3D skeletonization) |
Study | CC | AC | TC | DC | SC | RC | Total Colon | Technique (Measurement Tool) |
---|---|---|---|---|---|---|---|---|
Treves, et al. [1] | NA | NA | NA | NA | NA | NA | M: 142 (142–198) F: 137 (99.06–198) | Dissection (unknown) |
Bryant, et al. [2] | NA | NA | NA | NA | NA | NA | M: 162 (111–279) F: 137 (101–203) | Dissection (ruler) |
Underhill, et al. [3] | NA | NA | NA | NA | NA | NA | M: 180 (140–198) F: 157 (140–182) | Dissection (ruler) |
Chapuis, et al. [4] | Barium enema: 5.3 Postmortem: 7.5 M: 5.0, F: 5.6 | Barium enema: 17.2 Postmortem: 17.1 M: 16.1, F: 17.9 | Barium enema: 42.9 Postmortem: 54.8 M: 37.4, F: 46.3 | Barium enema: 29.9 Postmortem: 31.5 M: 30.9, F: 29.4 | Barium enema: 27 Postmortem: 23.4 M: 24.9, F: 28.4 | Barium enema: 16.5 Postmortem: 23.9 M: 16.1 F: 16.8 | Barium enema: 139 Postmortem: 158.2 M: 130.4 F: 144.3 | Barium enema (ruler); dissection (unknown) |
Sadahiro, et al. [5] | 4.1 ± 0.8 | 15.7 ± 3.3 | 38.6 ± 8.5 | 18.2 ± 4.4 | 35.2 ± 10.1 | 17.4 ± 1.6 | 129 ± 15.8 | Barium enema (map measure) |
Sadahiro, et al. [6] | M: 4.04 ± 0.89 F: 4.19 ± 0.74 | M: 15.50 ± 3.31 F: 15.93 ± 3.26 | M: 35.44 ± 7.32 F: 41.87 ± 8.48 | M: 18.56 ± 4.18 F: 18.00 ± 4.72 | M: 35.37 ± 10.31 F: 35.22 ± 9.79 | M: 16.96 ± 1.59 F: 17.62 ± 1.69 | M: 125.87 ± 15.4 F: 132.83 ± 15.69 | Barium enema (map measure) |
Saunders, et al. [7] | NA | NA | NA | NA | NA | SC + RC: Patients: 61 Control: 53 | Patients: 157 Control: 140 | Barium enema (opisometer mapping wheel) |
Saunders, et al. [8] | NA | CC + AC: 16.7 (7–30) | 45.6 (25–81) | 18.2 (9–42) | NA | SC + RC: 34 (17–78) | 114.1 (68–159) | Surgery (unknown) |
Saunders, et al. [9] | NA | AC + CC: M: 23 (15–38), F: 23 (11–41) | M: 40 (20–67) F: 48 (19–83) | M: 25 (8–36), F: 23 (11–43) | NA | SC + RC: M: 59 (31–103), F: 23 (22–100) | M: 145 (97–205) F: 155 (108–206) | Barium enema (opisometer mapping wheel) |
Rowland, et al. [10] | NA | NA | M: 38.5 (11.1) F: 41.0 (13.6) | M: 23.7 (4.0) F: 23.2 (5.2) | NA | M: 14.7 (2.0) F: 14.5 (1.5) | NA | Colonoscopy (computing system) |
Hounnou, et al. [11] | NA | NA | NA | NA | NA | NA | M: 166 (80–313) F: 155 (80–214) | Dissection (tape) |
Bhatnagar, et al. [12] | NA | NA | NA | Patients: 46.6 ± 11.2 (25–86) Cadavers: 28 ± 7.6 (18.5–43) | NA | NA | Surgery (tape) | |
Renehan, et al. [13] | NA | NA | NA | NA | Patients: 25.5 (3.2) HC: 22.0 (2.2) | Patients: 15.9 (1.1) HC: 14.5 (1.2) | Patients: 132.9 (22.1) HC: 114.4 (16.1) | Colonoscopy (magnetic endoscopic imaging, MEI) |
Hanson, et al. [14] | NA | NA | Incomplete colonoscopy: 66.3 ± 18.6 Complete colonoscopy: 49.2 ± 10.6 | NA | Incomplete colonoscopy: 66.8 ± 22.2 Complete colonoscopy: 48.7 ± 13.6 | NA | Incomplete colonoscopy: 210.8 ± 38.2 Complete colonoscopy: 167.0 ± 20.8 | CTC (3D map with an automated centerline) |
Madiba, et al. [15] | NA | NA | NA | NA | NA | SC + RC: African: M: 74 (25–88) F: 55 (44–73) Indian: M: 42 (25–65) F: 42 (22–67) White: M: 40 (24–71) F: 45 (24–62) | African: M: 160 (101–195) F: 140 (109–227) Indian: M: 120 (88–175) F: 124 (97–262) White: M: 119 (88–145) F: 132 (92–152) | Barium enema (opisometer mapping wheel) |
Duncan, et al. [16] | NA | NA | NA | NA | NA | NA | CTC: 189 (75–257) OC: 108 (65–150) | CTC (automated centerline measurement and optical colonoscopy) |
Khashab, et al. [17] | 6.7 ± 1.9 (2–14) | 23.1 ± 6.8 (9–62) | 58.3 ± 13.6 (26–103) | 33.0 ± 8.0 (18–75) | 49.0 ± 12.9 (18–91) | 19.5 ± 3.1 (7–28) | Both sexes: 189.5 ± 26.3 (120–299) M: 185.4 ± 26.5 (120–286) F: 193.3 ± 25.6 (135–299) | CTC (automated centerline) |
Punwani, et al. [18] | NA | Prone: M: 30.72 ± 6.67 F: 23.07 ± 5.43 Supine: M: 34.01 ± 9.08 F: 23.68 ± 9.65 | Prone: M: 49.99 ± 5.32 F: 52.86 ± 14.23 Supine: M: 48.08 ± 4.51 F: 54.44 ± 12.76 | Prone: M: 42.93 ± 13.31 F: 30.8 ± 9.21 Supine: M: 42.34 ± 13.07 F: 27.68 ± 8.94 | Prone: M: 46.28 ± 16.08 F: 58.18 ± 11.92 Supine: M: 45.43 ± 13.22 F: 57.08 ± 9.49 | Prone: M: 14.30 ± 3.10 F: 10.83 ± 2.55 Supine: M: 14.09 ± 2.95 F: 10.73 ± 3.21 | Prone: M: 184.2 ± 26.9 F: 175.7 ± 33.3 Supine: M: 183.9 ± 22.6 F: 173.6 ± 32.7 | CTC (automated centerline) |
Strujis, et al. [19] | NA | NA | NA | NA | NA | NA | 24–26 wk: 22.7 ± 2.0 27–29 wk: 24.4 ± 1.2 30–32 wk: 37.7 ± 2.2 33–35 wk: 27.8 ± 1.7 36–38 wk: 40.1 ± 4.3 39–40 wk: 32.7 ± 2.1 0–6 mo: 56.8 ± 2.7 7–12 mo: 57.1 ± 2.2 13–18 mo: 84.8 ± 2.3 19–24 mo: 107.8 ± 4.5 25–36 mo: 95.0 ± 3.4 37–48 mo: 122.5 ± 5.9 49–60 mo: 122.4 ± 5.7 | Surgery (silk suture) |
Eickhoff, et al. [20] | NA | NA | 49.2 ± 10.6 | NA | 48.7 ± 13.6 | NA | CTC: 167.0 ± 20.8 OC: 93.5 ± 15.3 | CTC (automated centerline measurement) and OC |
Alatise, et al. [21] | NA | NA | NA | Patients: 48.9 Cadavers: 50.1 | NA | NA | Surgery (suture) | |
Michael, et al. [22] | NA | NA | NA | NA | Mesenteric border pelvis brim: 15 ± 4.45 Mesentery root: 19.2 ± 6 Antimesenteric border pelvis brim: 22 ± 7.9 Mesentery root: 25 ± 8.7. | NA | NA | Dissection (unknown) |
Phillips, et al. [23] | NA | CC + AC: 20.9 ± 4.7 | 50.2 ± 9.5 | 21.8 ± 5.4 | NA | SC + RC: 38.3 ± 10.5 | M: 133.8 ± 3.7 F: 128.9 ± 2.7 | Dissection (tape) |
Alazmani, et al. [24] | Supine: 21.7 ± 4.2 (20.7) Prone: 19.7 ± 4.0 (20.3) | Supine: 57.2 ± 9.3 (56.6) Prone: 57.3 ± 10.9 (56.9) | Supine: 24.2 ± 7.8 (23.1) Prone: 26.0 ± 7.8 (25.9) | Supine: 50.6 ± 13.9 (51.6) Prone: 49.9 ± 11.7 (48.7) | Supine: 23.4 ± 6.7 (21.7) Prone: 23.1 ± 3.9 (22.7) | Supine: 185.0 ± 18.3 (187.5) Prone: 183.0 ± 16.9 (185.0) | CTC (3D, automated centerline) | |
Ohgo, et al. [25] | NA | NA | IBS-D: 43.1 IBS-C: 57.0 FC: 55.0 C: 49.9 | NA | NA | SC + RC: IBS-D: 55.9 IBS-C: 63.6 FC: 77.4 C: 56.2 | IBS-D: 158.9 IBS-C: 172.0 FC: 188.8 C: 156.5 | CTC and OC (unknown) |
Mark, et al. [26] | NA | CC + AC: MRI: 16.2 ± 3.5 3D-Transit: 22.0 ± 7.5 3D-Transit day 1: 17.5 ± 6.7 3D-Transit day 2: 19.7 ± 6.7 | MRI: 27.8 ± 5.4 3D-Transit: 28.4 ± 4.7 3D-Transit day 1: 35.2 ± 5.4 3D-Transit day 2: 35.6 ± 6.5 | MRI: 23.7 ± 4.1 3D-Transit: 24.0 ± 7.4 3D-Transit day 1: 17.3 ± 3.4 3D-Transit day 2: 16.7 ± 4.9 | NA | SC + RC: MRI: 27.8 ± 11.2 3D-Transit: 24.7 ± 8.7 3D-Transit day 1: 32.3 ± 10.8 3D-Transit day 2: 31.4 ± 9.2 | MRI: 95.4 ± 14.6 3D-Transit: 99.1 ± 17.9 3D-Transit day 1: 102.3 ± 13.3 3D-Transit day 2: 103.5 ± 15.1 | 3D-Transit (electromagnetic capsule tracking) MRI (semiautomated centerline) |
Mirjalili, et al. [27] | NA | CC + AC: 0–2 years: 7.4 ± 3.4 4–6 years: 12.1 ± 3.4 9–11 years: 13.5 ± 2.9 | 0–2 years: 16.4 ± 3.0 4–6 years: 19.8 ± 4.7 9–11 years: 28.0 ± 7.7 | 0–2 years: 9.6 ± 3.6 4–6 years: 14.8 ± 4.5 9–11 years: 21.2 ± 5.0 | 0–2 years: 14.6 ± 6.2 4–6 years: 17.7 ± 7.6 9–11 years: 22.3 ± 7.5 | 0–2 years: 4.4 ± 1.4 4–6 years: 8.7 ± 2.2 9–11 years: 10 ± 2.3 | 0–2 years: 52.3 ± 10.9 4–6 years: 72.9 ± 11.4 9–11 years: 95.1 ± 12.6 | CTC (automated centerline) |
Flor, et al. [28] | Overall: 4 ± 1 Patients: 4 ± 1 HC: 5 ± 1 | Overall: 21 ± 5 Patients: 21 ± 5 HC: 22 ± 6 | Overall: 56 ± 13 Patients: 55 ± 12 HC: 59 ± 14 | Overall: 22 ± 7 Patients: 22 ± 6 HC: 24 ± 8 | Overall: 51 ± 14 Patients: 48 ± 13 HC: 57 ± 16 | Overall: 14 ± 2 Patients: 14 ± 2 HC: 14 ± 2 | Overall: 169 ± 25 Patients: 164 ± 22 HC: 181 ± 27 | CTC (interactive 3D map with an automated centerline) |
Bayeh, et al. [29] | NA | NA | NA | No history of volvulus: 35.91 Non-surgical detorsion of volvulus: 71.07 Emergency surgery for sigmoid volvulus: 80.86 | NA | NA | Surgery (tape) | |
Utano, et al. [30] | NA | NA | NA | NA | NA | NA | Daily defecation 147.4 ± 17.9 Defecation every 2–3 days: 154.7 ± 18.5 Defecation < than/3 days: 158.6 ± 18.3 F:1 54.3 ± 18.1 M: 147.1 ± 18.3 Average: 150.3 ± 18.5 | CTC (automated centerline) |
Sharif, et al. [31] | NA | CC + AC: HC: 19 ± 1 FC: 17 ± 1 | HC: 27 ± 1 FC: 24 ± 2 | HC: 31 ± 2 FC: 26 ± 1 | SC + RC: HC: 20 ± 1 FC: 22 ± 2 | NA | HC: 96 ± 3 FC: 90 ± 5 | MRI (3D skeletonization) |
Values | AC | TC | DC | SC | R | Total |
---|---|---|---|---|---|---|
Number of values | 23 | 32 | 25 | 32 | 20 | 58 |
Minimum | 16.2 | 27.8 | 16.7 | 15.0 | 10.7 | 93.5 |
25% Percentile | 19.7 | 38.5 | 20.3 | 25.9 | 14.1 | 130.1 |
Median | 22.5 | 48.0 | 24.0 | 45.9 | 16.0 | 150.9 |
75% Percentile | 24.6 | 55.0 | 30.3 | 50.1 | 19.0 | 167.0 |
Maximum | 34.0 | 66.3 | 42.9 | 80.9 | 23.9 | 210.8 |
Range | 17.8 | 38.5 | 26.2 | 65.9 | 13.2 | 117.3 |
Mean | 22.8 | 46.6 | 25.8 | 41.4 | 16.8 | 148.3 |
Std. Deviation | 4.4 | 9.6 | 7.0 | 16.2 | 4.0 | 27.1 |
Std. Error of mean | 0.9 | 1.7 | 1.4 | 2.9 | 0.9 | 3.8 |
Coefficient of variation | 19.3% | 20.6% | 27.1% | 39.2% | 23.8% | 18.3% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alqarni, F.; Akbar, T.; Fatani, H.; Kumasaka, S.; Hoad, C.L.; Spiller, R.C.; Taylor, M.A.; Marciani, L. Experimental Measurements of the Length of the Human Colon: A Systematic Review and Meta-Analysis. Diagnostics 2024, 14, 2190. https://doi.org/10.3390/diagnostics14192190
Alqarni F, Akbar T, Fatani H, Kumasaka S, Hoad CL, Spiller RC, Taylor MA, Marciani L. Experimental Measurements of the Length of the Human Colon: A Systematic Review and Meta-Analysis. Diagnostics. 2024; 14(19):2190. https://doi.org/10.3390/diagnostics14192190
Chicago/Turabian StyleAlqarni, Faiz, Tejal Akbar, Hala Fatani, Soma Kumasaka, Caroline L. Hoad, Robin C. Spiller, Moira A. Taylor, and Luca Marciani. 2024. "Experimental Measurements of the Length of the Human Colon: A Systematic Review and Meta-Analysis" Diagnostics 14, no. 19: 2190. https://doi.org/10.3390/diagnostics14192190
APA StyleAlqarni, F., Akbar, T., Fatani, H., Kumasaka, S., Hoad, C. L., Spiller, R. C., Taylor, M. A., & Marciani, L. (2024). Experimental Measurements of the Length of the Human Colon: A Systematic Review and Meta-Analysis. Diagnostics, 14(19), 2190. https://doi.org/10.3390/diagnostics14192190