Assessment of the Predictive Ability of the Neutrophil-to-Lymphocyte Ratio in Patients with In-Stent Restenosis after COVID-19
Abstract
:1. Introduction
2. Materials and Methods
2.1. Characteristics of the Study Groups
2.2. Collection of Clinical and Laboratory Data
2.3. Statistical Analysis
2.4. Ethical Approval Details
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Torrado, J.; Buckley, L.; Durán, A.; Trujillo, P.; Toldo, S.; Valle Raleigh, J.; Abbate, A.; Biondi-Zoccai, G.; Guzmán, L.A. Restenosis. Stent Thrombosis. and Bleeding Complications: Navigating Between Scylla and Charybdis. J. Am. Coll. Cardiol. 2018, 71, 1676–1695. [Google Scholar] [CrossRef] [PubMed]
- MedMarket Diligence. Global Dynamics of Surgical and Interventional Cardiovascular Procedures; 2015–2022 [Report #C500]; MedMarket Diligence: Foothill Ranch, CA, USA, 2016. [Google Scholar]
- Gori, T.; Polimeni, A.; Indolfi, C.; Räber, L.; Adriaenssens, T.; Münzel, T. Predictors of stent thrombosis and their implications for clinical practice. Nat. Rev. Cardiol. 2019, 16, 243–256. [Google Scholar] [CrossRef] [PubMed]
- Windecker, S.; Kolh, P.; Alfonso, F.; Collet, J.P.; Cremer, J.; Falk, V.; Filippatos, G.; Hamm, C.; Head, S.J.; Jüni, P.; et al. 2014 ESC/EACTS Guidelines on myocardial revascularization. Eur. Heart J. 2014, 35, 2541–2619. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Cardiovascular Diseases (CVDs). Available online: http://www.who.int/cardiovascular_diseases/en/ (accessed on 1 January 2020).
- Alfonso, F.; Coughlan, J.C.; Giacoppo, D.; Kastrati, A.; Byrne, R.B. Management of in-stent restenosis. EuroIntervention 2022, 18, e103–e123. [Google Scholar] [CrossRef]
- Klein, L.W.; Nathan, S.; Maehara, A.; Messenger, J.; Mintz, G.S.; Ali, Z.A.; Rymer, J.; Sandoval, Y.; Al-Azizi, K.; Mehran, R.; et al. SCAI Expert Consensus Statement on Management of In-Stent Restenosis and Stent Thrombosis. J. Soc. Cardiovasc. Angiogr. Interv. 2023, 2, 100971. [Google Scholar] [CrossRef]
- Alfonso, F.; Byrne, R.A.; Rivero, F.; Kastrati, A. Current treatment of in-stent restenosis. J. Am. Coll. Cardiol. 2014, 63, 2659–2673. [Google Scholar] [CrossRef]
- Canfield, J.; Totary-Jain, H. 40 Years of Percutaneous Coronary Intervention: History and Future Directions. J. Pers. Med. 2018, 8, 33. [Google Scholar] [CrossRef]
- Sun, J.; Yu, H.; Liu, H.; Pu, D.; Gao, J.; Jin, X.; Liu, X.; Yan, A. Correlation of pre-operative circulating inflammatory cytokines with restenosis and rapid angiographic stenotic progression risk in coronary artery disease patients underwent percutaneous coronary intervention with drug-eluting stents. J. Clin. Lab. Anal. 2020, 34, e23108. [Google Scholar] [CrossRef] [PubMed]
- Huang, C.; Wang, Y.; Li, X.; Ren, L.; Zhao, J.; Hu, Y.; Zhang, L.; Fan, G.; Xu, J.; Gu, X.; et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 2020, 395, 497–506. [Google Scholar] [CrossRef]
- Alfonso, F.; Gonzalo, N.; Rivero, F.; Escaned, J. The year in cardiovascular medicine 2020: Interventional cardiology. Eur. Heart J. 2021, 42, 985–1003. [Google Scholar] [CrossRef]
- Semenova, Y.; Pivina, L.; Khismetova, Z.; Auyezova, A.; Nurbakyt, A.; Kauysheva, A.; Ospanova, D.; Kuziyeva, G.; Kushkarova, A.; Ivankov, A. Anticipating the Need for Healthcare Resources Following the Escalation of the COVID-19 Outbreak in the Republic of Kazakhstan. J. Prev. Med. Public Health 2020, 53, 387–396. [Google Scholar] [CrossRef] [PubMed]
- Hauguel-Moreau, M.; Prati, G.; Pillière, R.; Beaune, S.; Loeb, T.; Sawczynski, B.; Aïdan, V.; Hergault, H.; Ouadahi, M.; Szymanski, C.; et al. Impact of two COVID-19 national lockdowns on acute coronary syndrome admissions. Coron. Artery Dis. 2022, 33, 333–334. [Google Scholar] [CrossRef] [PubMed]
- Suryana, K.K.; Widiana, R.I.G.; Suharsono, H.; Pujasakti, M.P.; Putra, W.W.S.; Yaniswari, N.M.D. Severity of anxiety disorder and other factors associated with disease severity among COVID-19 patients in a hospital, Bali, Indonesia. Med. J. Malays. 2021, 76, 461–465. [Google Scholar]
- Lubrano, V.; Zym, L.; Balzan, S. Neutrophyl to lymphocyte ratio and c reactive protein are indipendent predictors of severe coronary artery disease: Comparison with hydroperoxides and consolidated inflammatory markers. Theor. Biol. Forum. 2018, 111, 49–56. [Google Scholar]
- Küçükseymen, S.; Çağırcı, G.; Güven, R.; Arslan, Ş. Is neutrophyl to lymphocyte ratio really a useful marker for all grades of degenerative aortic stenosis? Türk Kardiyol. Derneği Arşivi 2017, 45, 506–513. [Google Scholar] [CrossRef]
- Fedrizal, F.F.; Wijaya, I.P.; Abdullah, M.; Yamin, M. Elevated neutrophil-to-lymphocyte ratio and smoking are associated with chronic total occlusion in patients with ST elevation myocardial infarction. BMC Cardiovasc. Disord. 2024, 24, 12. [Google Scholar] [CrossRef]
- Haybar, H.; Pezeshki, S.M.S.; Saki, N. Evaluation of complete blood count parameters in cardiovascular diseases: An early indicator of prognosis? Exp. Mol. Pathol. 2019, 110, 104267. [Google Scholar] [CrossRef]
- Ponti, G.; Maccaferri, M.; Ruini, C.; Tomasi, A.; Ozben, T. Biomarkers associated with COVID-19 disease progression. Crit. Rev. Clin. Lab. Sci. 2020, 57, 389–399. [Google Scholar] [CrossRef]
- Long, L.; Zeng, X.; Zhang, X.; Xiao, W.; Guo, E.; Zhan, W.; Yang, X.; Li, C.; Wu, C.; Xu, T.; et al. Short-term outcomes of coronavirus disease 2019 and risk factors for progression. Eur. Respir. J. 2020, 55, 2000990. [Google Scholar] [CrossRef]
- Lagunas-Rangel, F.A. Neutrophil-to-lymphocyte ratio and lymphocyte-to-C-reactive protein ratio in patients with severe coronavirus disease 2019 (COVID-19): A meta-analysis. J. Med. Virol. 2020, 92, 1733. [Google Scholar] [CrossRef]
- Jolicoeur, P.; Lamontagne, L. Impairment of bone marrow pre-B and B cells in MHV3 chronically-infected mice. Adv. Exp. Med. Biol. 1995, 380, 193–195. [Google Scholar] [PubMed]
- Yan, Q.; Li, P.; Ye, X.; Huang, X.; Mo, X.; Wang, Q.; Zhang, Y.; Luo, K.; Chen, Z.; Luo, J.; et al. Longitudinal peripheral blood transcriptional analysis of COVID-19 patients captures disease progression and reveals potential biomarkers. J. Immunol. 2021, 206, 2146–2159. [Google Scholar] [CrossRef] [PubMed]
- Huang, Z.; Fu, Z.; Huang, W.; Huang, K. Prognostic value of neutrophil-to-lymphocyte ratio in sepsis: A meta-analysis. Am. J. Emerg. Med. 2020, 38, 641–647. [Google Scholar] [CrossRef] [PubMed]
- Song, M.; Graubard, B.I.; Rabkin, C.S.; Engels, E.A. Neutrophil-to-lymphocyte ratio and mortality in the United States general population. Sci. Rep. 2021, 11, 464. [Google Scholar] [CrossRef] [PubMed]
- Mortaz, E.; Alipoor, S.D.; Adcock, I.M.; Mumby, S.; Koenderman, L. Update on Neutrophil Function in Severe Inflammation. Front. Immunol. 2018, 9, 2171. [Google Scholar] [CrossRef]
- Li, Z.; Guo, J.; Bi, L. Role of the NLRP3 inflammasome in autoimmune diseases. Biomed. Pharmacother. 2020, 130, 110542. [Google Scholar] [CrossRef] [PubMed]
- Lowsby, R.; Gomes, C.; Jarman, I.; Lisboa, P.; Nee, P.A.; Vardhan, M.; Eckersley, T.; Saleh, R.; Mills, H. Neutrophil to lymphocyte count ratio as an early indicator of blood stream infection in the emergency department. Emerg. Med. J. 2015, 32, 531–534. [Google Scholar] [CrossRef]
- Jiang, J.; Liu, R.; Yu, X.; Yang, R.; Xu, H.; Mao, Z.; Wang, Y. The neutrophil-lymphocyte count ratio as a diagnostic marker for bacteraemia: A systematic review and meta-analysis. Am. J. Emerg. Med. 2019, 37, 1482–1489. [Google Scholar] [CrossRef]
- Niu, D.; Huang, Q.; Yang, F.; Tian, W.; Li, C.; Ding, L.A.; Fang, H.C.; Zhao, Y. Serum biomarkers to differentiate Gram-negative. Gram-positive and fungal infection in febrile patients. J. Med. Microbiol. 2021, 70, 001360. [Google Scholar] [CrossRef]
- Joshi, D.; Sharma, A.; Shrestha, S.K.; Sharma, R.; Bhatta, Y.K.D.; Rajbanshi, B.G. Coronary Artery Bypass Grafting Following COVID-19 Infection: Difficulties and Challenges. J. Nepal. Health Res. Counc. 2022, 20, 555–557. [Google Scholar]
- Li, W.; Hou, M.; Ding, Z.; Liu, X.; Shao, Y.; Li, X. Prognostic Value of Neutrophil-to-Lymphocyte Ratio in Stroke: A Systematic Review and Meta-Analysis. Front. Neurol. 2021, 12, 686–983. [Google Scholar] [CrossRef]
- Forget, P.; Khalifa, C.; Defour, J.-P.; Latinne, D.; Van Pel, M.-C.; De Kock, M. What is the normal value of the neutrophil-to-lymphocyte ratio? BMC Res. Notes 2017, 10, 12. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Fest, J.; Ruiter, T.R.; Koerkamp, B.G.; Rizopoulos, D.; Ikram, M.A.; Van Eijck, C.H.J.; Stricker, B.H. The neutrophil-to-lymphocyte ratio is associated with mortality in the general population: The Rotterdam Study. Eur. J. Epidemiol. 2019, 34, 463–470. [Google Scholar] [CrossRef]
- Karakonstantis, S.; Kalemaki, D.; Tzagkarakis, E.; Lydakis, C. Pitfalls in studies of eosinopenia and neutrophil-to-lymphocyte count ratio. Infect. Dis. 2018, 50, 163–174. [Google Scholar] [CrossRef] [PubMed]
- Braga, C.G.; Gonçalves, P.A.; Cardoso, P.; Fiarresga, A.; Santos, L.; Domingues, A.; Costa, M.; Ferreira, R.; Duarte, J.; Seixo, F.; et al. Impact of the COVID-19 pandemic on percutaneous coronary interventions in Portugal. Rev. Port. Cardiol. 2023, 42, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Qin, Y.; Li, Q.; Liang, W.; Yan, R.; Tong, L.; Jia, M.; Zhao, C.; Zhao, W. TRIM28 SUMOylates and stabilizes NLRP3 to facilitate inflammasome activation. Nat. Commun. 2021, 12, 4794. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Anesthesia Patient Safety Foundation. American Society of Anesthesiologists and Anesthesia Patient Safety Foundation Joint Statement on Elective Surgery and Anesthesia for Patients after COVID-19 Infection. Available online: https://www.apsf.org/newsupdates/asa-and-apsf-joint-statement-on-elective-surgery-and-anesthesia-for-patients-after-covid-19-infection/ (accessed on 30 March 2022).
- Antonioli, L.; Pacher, P.; Vizi, E.S.; Haskó, G. CD39 and CD73 in immunity and inflammation. Trends Mol. Med. 2013, 19, 355–367. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Sambataro, G.; Sambataro, D.; Torrisi, S.E.; Vancheri, A.; Pavone, M.; Rosso, R.; Schisano, M.; Crimi, C.; Pignataro, F.; Fischer, A.; et al. State of the art in interstitial pneumonia with autoimmune features: A systematic review on retrospective studies and suggestions for further advances. Eur. Respir. Rev. 2018, 27, 170139. [Google Scholar] [CrossRef]
- Shah, N.; Parikh, V.; Patel, N.; Patel, N.; Badheka, A.; Deshmukh, A.; Rathod, A.; Lafferty, J. Neutrophil lymphocyte ratio significantly improves the Framingham risk score in prediction of coronary heart disease mortality: Insights from the National Health and Nutrition Examination Survey-III. Int. J. Cardiol. 2014, 171, 390–397. [Google Scholar] [CrossRef]
- Azab, B.; Zaher, M.; Weiserbs, K.F.; Torbey, E.; Lacossiere, K.; Gaddam, S.; Gobunsuy, R.; Jadonath, S.; Baldari, D.; McCord, D.; et al. Usefulness of neutrophil to lymphocyte ratio in predicting short- and long-term mortality after non-ST-elevation myocardial infarction. Am. J. Cardiol. 2010, 106, 470–476. [Google Scholar] [CrossRef] [PubMed]
- Tamhane, U.U.; Aneja, S.; Montgomery, D.; Rogers, E.-K.; Eagle, K.A.; Gurm, H.S. Association between admission neutrophil to lymphocyte ratio and outcomes in patients with acute coronary syndrome. Am. J. Cardiol. 2008, 102, 653–657. [Google Scholar] [CrossRef] [PubMed]
- Sun, Q.; Fan, J.; Billiar, T.R.; Scott, M.J. Inflammasome and autophagy regulation—A two-way street. Mol. Med. 2017, 23, 188–195. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Golia, E.; Limongelli, G.; Natale, F.; Fimiani, F.; Maddaloni, V.; Pariggiano, I.; Bianchi, R.; Crisci, M.; D’acierno, L.; Giordano, R.; et al. Inflammation and cardiovascular disease: From pathogenesis to therapeutic target. Curr. Atheroscler. Rep. 2014, 16, 435. [Google Scholar] [CrossRef] [PubMed]
- Seyit, M.; Avci, E.; Nar, R.; Senol, H.; Yilmaz, A.; Ozen, M.; Oskay, A.; Aybek, H. Neutrophil to lymphocyte ratio. lymphocyte to monocyte ratio and platelet to lymphocyte ratio to predict the severity of COVID-19. Am. J. Emerg. Med. 2021, 40, 110–114. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Liu, Y.; Zhang, Y.-M.; Tang, Y.; Chen, J.-Q.; Shao, Z.-Q. The evolution of plant NLR immune receptors and downstream signal components. Curr. Opin. Plant Biol. 2023, 73, 102363. [Google Scholar] [CrossRef] [PubMed]
Rates | N | % | |
---|---|---|---|
Age (years) | <50 | 76 | 8.17 |
51–70 | 592 | 63.58 | |
71> | 263 | 28.25 | |
Sex | male | 700 | 75.18 |
female | 231 | 24.82 | |
Job status | disabled person | 76 | 8.17 |
pensioner | 508 | 54.56 | |
unemployed | 133 | 14.28 | |
working | 214 | 22.99 |
Rate | Main Group | Control Group | p | ||
---|---|---|---|---|---|
Median | Interquartile Range | Median | Interquartile Range | ||
NLR | 2.51 | 1.6 | 2.68 | 1.8 | 0.166 |
Rate | r Squared | B | p | |||
---|---|---|---|---|---|---|
Studied Groups | ||||||
Main | Control | Main | Control | Main | Control | |
Troponin | 0.026 | 0.027 | 0.062 | 0.062 | 0.001 | 0.001 |
D-dimer | 0.039 | 0.067 | 0.001 | 0.001 | 0.001 | 0.001 |
CPK | 0.01 | 0.019 | 0.001 | 0.001 | 0.203 | 0.002 |
CPK-MB | 0.007 | 0.006 | 0.005 | 0.003 | 0.28 | 0.09 |
Platelets | 0.008 | 0.0013 | 0.001 | 0.001 | 0.917 | 0.773 |
IgG | 0.014 | 0.001 | 0.0011 | 0.001 | 0.892 | 0.626 |
IgM | 0.06 | 0.003 | −0.118 | −0.304 | 0.455 | 0.302 |
CRP | 0.017 | 0.031 | 0.024 | 0.022 | 0.007 | 0.001 |
Fibrinogen | 0.013 | 0.001 | −0.001 | 0.01 | 0.872 | 0.965 |
APTT | 0.06 | 0.001 | 0.013 | 0.007 | 0.343 | 0.56 |
Creatinine | 0.087 | 0.022 | 0.011 | 0.009 | 0.001 | 0.001 |
ALT | 0.05 | 0.063 | 0.031 | 0.028 | 0.001 | 0.001 |
AST | 0.051 | 0.017 | 0.014 | 0.008 | 0.001 | 0.004 |
Rate | B | Confidential Intervals | p | |||||
---|---|---|---|---|---|---|---|---|
Studied Groups | ||||||||
Main | Control | Main | Control | Main | Control | |||
Lower Limit | Upper Limit | Lower Limit | Upper Limit | |||||
Mortality | −0.716 | −0.414 | −1.683 | 0.25 | −1.464 | 0.636 | 0.146 | 0.439 |
MI | 1.183 | 1.386 | 0.375 | 1.991 | 0.696 | 2.075 | 0.004 | 0.000 |
Number of stents | 0.054 | −0.08 | −0.445 | 0.553 | −0.531 | 0.363 | 0.832 | 0.712 |
Ejection Fraction | −0.071 | −0.072 | −0.112 | −0.03 | −0.108 | −0.036 | 0.001 | 0.000 |
Previous CVI | 0.02 | 0.018 | 0.972 | 1.070 | 0.970 | 1.068 | 0.418 | 0.462 |
Predictors | Unadjusted | Adjusted | ||
---|---|---|---|---|
COR; 95% CI | p | AOR; 95% CI | p | |
Age | 1.003;0.990–1.016 | 0.654 | 1.005; 0.990–1.021 | 0.515 |
Hypertension | 0.420; 0.170–1.038 | 0.060 | 0.386; 0.143–1.043 | 0.060 |
Diabetes mellitus | 0.662; 0.479–0.913 | 0.012 * | 0.879; 0.582–1.327 | 0.539 |
NLR | 1.124; 1.068–1.182 | <0.001 * | 1.072; 1.014–1.133 | 0.014 * |
Glucose | 1.154; 1.099–1.212 | <0.001 * | 1.102; 1.038–1.171 | 0.002 * |
Urea | 1.064; 1.019–1.112 | 0.005 * | 0.941; 0.874–1.013 | 0.108 |
Creatinine | 1.006; 1.002–1.010 | 0.001 * | 1.005; 1.000–1.009 | 0.047 * |
C-reactive protein | 1.015; 1.009–1.021 | <0.001 * | 1.012; 1.006–1.018 | <0.001 * |
Triglycerides | 1.000; 0.926–1.080 | 0.996 | 1.015; 0.929–1.108 | 0.744 |
LDL | 1.158; 1.009–1.328 | 0.036 * | 1.229; 1.052–1.436 | 0.009 * |
HDL | 0.599; 0.401–0.896 | 0.013 * | 0.673; 0.432–1.048 | 0.080 |
Previous COVID-19 | 1.742; 1.305–2.326 | <0.001 * | 1.645; 1.198–2.257 | 0.002 * |
Men | 1.165; 0.855–1.587 | 0.334 | 1.146; 0.813–1.618 | 0.436 |
LV ejection fraction | 0.945; 0.931–0.960 | <0.001 * | 0.957; 0.941–0.972 | <0.001 * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pivina, L.; Batenova, G.; Ygiyeva, D.; Orekhov, A.; Pivin, M.; Dyussupov, A. Assessment of the Predictive Ability of the Neutrophil-to-Lymphocyte Ratio in Patients with In-Stent Restenosis after COVID-19. Diagnostics 2024, 14, 2262. https://doi.org/10.3390/diagnostics14202262
Pivina L, Batenova G, Ygiyeva D, Orekhov A, Pivin M, Dyussupov A. Assessment of the Predictive Ability of the Neutrophil-to-Lymphocyte Ratio in Patients with In-Stent Restenosis after COVID-19. Diagnostics. 2024; 14(20):2262. https://doi.org/10.3390/diagnostics14202262
Chicago/Turabian StylePivina, Lyudmila, Gulnara Batenova, Diana Ygiyeva, Andrey Orekhov, Maksim Pivin, and Altay Dyussupov. 2024. "Assessment of the Predictive Ability of the Neutrophil-to-Lymphocyte Ratio in Patients with In-Stent Restenosis after COVID-19" Diagnostics 14, no. 20: 2262. https://doi.org/10.3390/diagnostics14202262
APA StylePivina, L., Batenova, G., Ygiyeva, D., Orekhov, A., Pivin, M., & Dyussupov, A. (2024). Assessment of the Predictive Ability of the Neutrophil-to-Lymphocyte Ratio in Patients with In-Stent Restenosis after COVID-19. Diagnostics, 14(20), 2262. https://doi.org/10.3390/diagnostics14202262