Diagnostic Performance of Visionix VX120+ Platform for Dry Eye Screening
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample
2.2. Clinical Measurements
2.3. Dry Eye Module VX120+
2.4. Statistical Analysis
3. Results
3.1. Diagnostic Accuracy of Visionix VX120+
3.2. Agreement between Visionix and Fluorescein Break-Up Time Measurements
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Craig, J.P.; Nichols, K.K.; Akpek, E.K.; Caffery, B.; Dua, H.S.; Joo, C.K.; Liu, Z.; Nelson, J.D.; Nichols, J.J.; Tsubota, K.; et al. TFOS DEWS II Definition and Classification Report. Ocul. Surf. 2017, 15, 276–283. [Google Scholar] [CrossRef] [PubMed]
- Stapleton, F.; Alves, M.; Bunya, V.Y.; Jalbert, I.; Lekhanont, K.; Malet, F.; Na, K.S.; Schaumberg, D.; Uchino, M.; Vehof, J.; et al. TFOS DEWS II Epidemiology Report. Ocul. Surf. 2017, 15, 334–365. [Google Scholar] [CrossRef] [PubMed]
- Farrand, K.F.; Fridman, M.; Stillman, I.Ö.; Schaumberg, D.A. Prevalence of Diagnosed Dry Eye Disease in the United States Among Adults Aged 18 Years and Older. Am. J. Ophthalmol. 2017, 182, 90–98. [Google Scholar] [CrossRef] [PubMed]
- Yokoi, N.; Georgiev, G.A. Tear-film-oriented diagnosis for dry eye. Jpn. J. Ophthalmol. 2019, 63, 127–136. [Google Scholar] [CrossRef] [PubMed]
- Holly, F. Physical chemistry of the normal and disordered tear film. Trans. Ophthalmol. Soc. UK 1985, 104, 374–379. [Google Scholar]
- Yuan, Y.; Wang, J.; Chen, Q.; Tao, A.; Shen, M.; Shousha, M.A. Reduced tear meniscus dynamics in dry eye patients with aqueous tear deficiency. Am. J. Ophthalmol. 2010, 149, 932–938. [Google Scholar] [CrossRef]
- Singh, A.; Vanathi, M.; Kishore, A.; Gupta, N.; Tandon, R. Evaluation of strip meniscometry, tear meniscus height and depth in the diagnosis of dry eye disease in asian Indian eyes. Ocul. Surf. 2019, 17, 747–752. [Google Scholar] [CrossRef]
- Pena-Verdeal, H.; Garcia-Queiruga, J.; Sabucedo-Villamarin, B.; Garcia-Resua, C.; Giraldez, M.J.; Yebra-Pimentel, E. A Comprehensive Study on Tear Meniscus Height Inter-Eye Differences in Aqueous Deficient Dry Eye Diagnosis. J. Clin. Med. 2024, 13, 659. [Google Scholar] [CrossRef]
- Wolffsohn, J.S.; Arita, R.; Chalmers, R.; Djalilian, A.; Dogru, M.; Dumbleton, K.; Gupta, P.K.; Karpecki, P.; Lazreg, S.; Pult, H.; et al. TFOS DEWS II Diagnostic Methodology report. Ocul. Surf. 2017, 15, 539–574. [Google Scholar] [CrossRef]
- Whitcher, J.P.; Shiboski, C.H.; Shiboski, S.C.; Heidenreich, A.M.; Kitagawa, K.; Zhang, S.; Hamann, S.; Larkin, G.; McNamara, N.A.; Greenspan, J.S.; et al. A simplified quantitative method for assessing keratoconjunctivitis sicca from the Sjögren’s Syndrome International Registry. Am. J. Ophthalmol. 2010, 149, 405–415. [Google Scholar] [CrossRef]
- Akpek, E.K.; Amescua, G.; Farid, M.; Garcia-Ferrer, F.J.; Lin, A.; Rhee, M.K.; Varu, D.M.; Musch, D.C.; Dunn, S.P.; Mah, F.S.; et al. Dry Eye Syndrome Preferred Practice Pattern®. Ophthalmology 2019, 126, 286–334. [Google Scholar] [CrossRef] [PubMed]
- Mooi, J.K.; Wang, M.T.M.; Lim, J.; Müller, A.; Craig, J.P. Minimising instilled volume reduces the impact of fluorescein on clinical measurements of tear film stability. Cont. Lens Anterior Eye 2017, 40, 170–174. [Google Scholar] [CrossRef] [PubMed]
- Acet, Y.; Dağ, Y. Changes caused by fluorescein in the tear film evaluated with hybrid break-up time test as a new method—Part Two: Its effect on breakup locations and other quantitative values. Photodiagnosis Photodyn. Ther. 2023, 43, 103651. [Google Scholar] [CrossRef] [PubMed]
- Serés, C.; Quevedo, L.; Cardona, G.; Blanch, E.; Augé, M. Tear break-up time for tear film evaluation: Are moistening solutions interchangeable? Cont. Lens Anterior Eye 2015, 38, 272–276. [Google Scholar] [CrossRef] [PubMed]
- Johnson, M.E.; Murphy, P.J. The Effect of instilled fluorescein solution volume on the values and repeatability of TBUT measurements. Cornea 2005, 24, 811–817. [Google Scholar] [CrossRef] [PubMed]
- Singh, S.; Srivastav, S.; Modiwala, Z.; Ali, M.H.; Basu, S. Repeatability, reproducibility and agreement between three different diagnostic imaging platforms for tear film evaluation of normal and dry eye disease. Eye 2023, 37, 2042–2047. [Google Scholar] [CrossRef]
- Sánchez-González, M.C.; Capote-Puente, R.; García-Romera, M.C.; De-Hita-Cantalejo, C.; Bautista-Llamas, M.J.; Silva-Viguera, C.; Sánchez-González, J.M. Dry eye disease and tear film assessment through a novel non-invasive ocular surface analyzer: The OSA protocol. Front. Med. 2022, 9, 938484. [Google Scholar] [CrossRef]
- Ozulken, K.; Aksoy Aydemir, G.; Tekin, K.; Mumcuoğlu, T. Correlation of Non-invasive Tear Break-Up Time with Tear Osmolarity and Other Invasive Tear Function Tests. Semin. Ophthalmol. 2020, 35, 78–85. [Google Scholar] [CrossRef]
- Zeri, F.; Rizzo, G.C.; Ponzini, E.; Tavazzi, S. Comparing automated and manual assessments of tear break-up time using different non-invasive devices and a fluorescein procedure. Sci. Rep. 2024, 14, 2516. [Google Scholar] [CrossRef]
- Molina-Martín, A.; de Fez, D.; Piñero, D.P. Repeatability of non-invasive break-up time measures with a new automated dry eye platform in healthy eyes. Int. Ophthalmol. 2020, 40, 2855–2864. [Google Scholar] [CrossRef]
- Martínez-Plaza, E.; Molina-Martín, A.; Piñero, D.P. Agreement of Tear Break-Up Time and Meniscus Height between Medmont E300 and Visionix VX120+. Appl. Sci. 2022, 12, 4589. [Google Scholar] [CrossRef]
- Schiffman, R.M.; Christianson, M.D.; Jacobsen, G.; Hirsch, J.D.; Reis, B.L. Reliability and validity of the Ocular Surface Disease Index. Arch. Ophthalmol. 2000, 118, 615–621. [Google Scholar] [CrossRef] [PubMed]
- Bron, A.J.; Evans, V.E.; Smith, J.A. Grading of corneal and conjunctival staining in the context of other dry eye tests. Cornea 2003, 22, 640–650. [Google Scholar] [CrossRef] [PubMed]
- Gneiting, T.; Vogel, P. Receiver operating characteristic (ROC) curves. arXiv 2018, arXiv:1809.04808. [Google Scholar]
- Bland, J.M.; Altman, D.G. Statistical methods for assessing agreement between two methods of clinical measurement. Lancet 1986, 1, 307–310. [Google Scholar] [CrossRef]
- Willcox, M.D.P.; Argüeso, P.; Georgiev, G.A.; Holopainen, J.M.; Laurie, G.W.; Millar, T.J.; Papas, E.B.; Rolland, J.P.; Schmidt, T.A.; Stahl, U.; et al. TFOS DEWS II Tear Film Report. Ocul. Surf. 2017, 15, 366–403. [Google Scholar] [CrossRef]
- Bron, A.J.; de Paiva, C.S.; Chauhan, S.K.; Bonini, S.; Gabison, E.E.; Jain, S.; Knop, E.; Markoulli, M.; Ogawa, Y.; Perez, V.; et al. TFOS DEWS II pathophysiology report. Ocul. Surf. 2017, 15, 438–510. [Google Scholar]
- Vigo, L.; Pellegrini, M.; Bernabei, F.; Carones, F.; Scorcia, V.; Giannaccare, G. Diagnostic Performance of a Novel Noninvasive Workup in the Setting of Dry Eye Disease. J. Ophthalmol. 2020, 2020, 5804123. [Google Scholar] [CrossRef]
- Versura, P.; Frigato, M.; Cellini, M.; Mulè, R.; Malavolta, N.; Campos, E.C. Diagnostic performance of tear function tests in Sjogren’s syndrome patients. Eye 2007, 21, 229–237. [Google Scholar] [CrossRef]
- Hong, J.; Sun, X.; Wei, A.; Cui, X.; Li, Y.; Qian, T.; Wang, W.; Xu, J. Assessment of tear film stability in dry eye with a newly developed keratograph. Cornea 2013, 32, 716–721. [Google Scholar] [CrossRef]
- Downie, L.E. Automated Tear Film Surface Quality Breakup Time as a Novel Clinical Marker for Tear Hyperosmolarity in Dry Eye Disease. Invest. Ophthalmol. Vis. Sci. 2015, 56, 7260–7268. [Google Scholar] [CrossRef] [PubMed]
- Bhandari, V.; Reddy, J.K.; Relekar, K.; Ingawale, A.; Shah, N. Non-invasive assessment of tear film stability with a novel corneal topographer in Indian subjects. Int. Ophthalmol. 2016, 36, 781–790. [Google Scholar] [CrossRef] [PubMed]
- Cho, P.; Douthwaite, W. The relation between invasive and noninvasive tear break-up time. Optom. Vis. Sci. 1995, 72, 17–22. [Google Scholar] [CrossRef] [PubMed]
- Valencia-Nieto, L.; López-de la Rosa, A.; González-García, M.J.; López-Miguel, A. Reliability and agreement of subjective and objective non-invasive break-up time measurements in contact lens wearers. Ophthalmic Physiol. Opt. 2024, 44, 124–130. [Google Scholar] [CrossRef]
- Niedernolte, B.; Trunk, L.; Wolffsohn, J.S.; Pult, H.; Bandlitz, S. Evaluation of tear meniscus height using different clinical methods. Clin. Exp. Optom. 2021, 104, 583–588. [Google Scholar] [CrossRef]
Parameters | DED Group | Control Group | p-Value |
---|---|---|---|
Spherical equivalent (D) | −1.18 ± 2.51 | −0.25 ± 2.92 | 0.12 |
Visual acuity (logMAR) | −0.05 ± 0.09 | −0.03 ± 0.11 | 0.81 |
OSDI questionnaire | 37.91 ± 18.97 | 8.37 ± 9.66 | <0.001 |
Tear meniscus height (mm) | 0.27 ± 0.08 | 0.30 ± 0.08 | 0.13 |
First NIBUT (s) | 4.62 ± 3.53 | 6.36 ± 4.34 | 0.19 |
NIBUT50% (s) | 7.20 ± 3.12 | 9.11 ± 3.08 | 0.010 |
Fluorescein tear break-up time (s) | 5.13 ± 1.95 | 8.29 ± 4.97 | 0.012 |
Corneal staining (Oxford scale) | 0.00 [0.00/1.00] | 0.00 [0.00/0.00] | 0.051 |
Nasal conjunctival staining (Oxford scale) | 0.00 [0.00/0.00] | 0.00 [0.00/0.00] | 0.60 |
Temporal conjunctival staining (Oxford scale) | 0.00 [0.00/1.00] | 0.00 [0.00/0.00] | 0.035 |
Schirmer test (mm) | 16.17 ± 11.26 | 18.33 ± 9.42 | 0.25 |
Parameters | Optimal Cut-Off | Sensitivity | Specificity |
---|---|---|---|
Tear meniscus height (mm) | 0.29 | 0.62 | 0.67 |
First NIBUT (s) | 5.05 | 0.85 | 0.46 |
NIBUT50% (s) | 7.35 | 0.65 | 0.79 |
Comparison | Mean Difference (95% CI) | Lower LoA (95% CI) | Upper LoA (95% CI) |
---|---|---|---|
First NIBUT vs. FBUT (s) | −1.10 (−2.11/−0.09) | −8.78 (−10.51/−7.06) | 6.58 (4.86/8.31) |
NIBUT50% vs. FBUT (s) | 1.55 (0.60/2.50) | −5.68 (−7.30/−4.06) | 8.78 (7.15/10.40) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Martínez-Plaza, E.; Barberán-Bernardos, L.; Molina-Martín, A.; Piñero, D.P. Diagnostic Performance of Visionix VX120+ Platform for Dry Eye Screening. Diagnostics 2024, 14, 2276. https://doi.org/10.3390/diagnostics14202276
Martínez-Plaza E, Barberán-Bernardos L, Molina-Martín A, Piñero DP. Diagnostic Performance of Visionix VX120+ Platform for Dry Eye Screening. Diagnostics. 2024; 14(20):2276. https://doi.org/10.3390/diagnostics14202276
Chicago/Turabian StyleMartínez-Plaza, Elena, Laura Barberán-Bernardos, Ainhoa Molina-Martín, and David P. Piñero. 2024. "Diagnostic Performance of Visionix VX120+ Platform for Dry Eye Screening" Diagnostics 14, no. 20: 2276. https://doi.org/10.3390/diagnostics14202276
APA StyleMartínez-Plaza, E., Barberán-Bernardos, L., Molina-Martín, A., & Piñero, D. P. (2024). Diagnostic Performance of Visionix VX120+ Platform for Dry Eye Screening. Diagnostics, 14(20), 2276. https://doi.org/10.3390/diagnostics14202276