Evaluating a New Photopheresis System: A Comparison with Two Established Systems on Cell Yield and Collection Efficiency
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Collection and Study Design
2.2. Spectra Optia Offline System
2.3. Amicus Blue Inline System
2.4. Therakos Cellex Inline System
2.5. Determination of Cell Blood Counts and CE
2.6. Flow Cytometry
2.7. Statistical Analysis
3. Results
3.1. Patient Data and MNC Collection
3.2. MCP Characteristics and Collection Efficiency
3.3. Correlation and Linear Regression between Peripheral and MCP Cell Counts
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Connelly-Smith, L.; Alquist, C.R.; Aqui, N.A.; Hofmann, J.C.; Klingel, R.; Onwuemene, O.A.; Patriquin, C.J.; Pham, H.P.; Sanchez, A.P.; Schneiderman, J.; et al. Guidelines on the Use of Therapeutic Apheresis in Clinical Practice—Evidence-Based Approach from the Writing Committee of the American Society for Apheresis: The Ninth Special Issue. J. Clin. Apher. 2023, 38, 77–278. [Google Scholar] [CrossRef] [PubMed]
- Knobler, R.; Arenberger, P.; Arun, A.; Assaf, C.; Bagot, M.; Berlin, G.; Bohbot, A.; Calzavara-Pinton, P.; Child, F.; Cho, A.; et al. European dermatology forum: Updated guidelines on the use of extracorporeal photopheresis 2020—Part 2. J. Eur. Acad. Dermatol. Venereol. 2021, 35, 27–49. [Google Scholar] [CrossRef] [PubMed]
- Knobler, R.; Arenberger, P.; Arun, A.; Assaf, C.; Bagot, M.; Berlin, G.; Bohbot, A.; Calzavara-Pinton, P.; Child, F.; Cho, A.; et al. European dermatology forum-updated guidelines on the use of extracorporeal photopheresis 2020—Part 1. J. Eur. Acad. Dermatol. Venereol. 2020, 34, 2693–2716. [Google Scholar] [CrossRef] [PubMed]
- Padmanabhan, A.; Connelly-Smith, L.; Aqui, N.; Balogun, R.A.; Klingel, R.; Meyer, E.; Pham, H.P.; Schneiderman, J.; Witt, V.; Wu, Y.; et al. Guidelines on the Use of Therapeutic Apheresis in Clinical Practice-Evidence-Based Approach from the Writing Committee of the American Society for Apheresis: The Eighth Special Issue. J. Clin. Apher. 2019, 34, 171–354. [Google Scholar] [CrossRef] [PubMed]
- Brosig, A.; Hahnel, V.; Orso, E.; Wolff, D.; Holler, E.; Ahrens, N. Technical comparison of four different extracorporeal photopheresis systems. Transfusion 2016, 56, 2510–2519. [Google Scholar] [CrossRef] [PubMed]
- Bueno, J.L.; Alonso, R.; Gonzalez-Santillana, C.; Naya, D.; Romera, I.; Alarcón, A.; Aguilar, M.; Bautista, G.; Duarte, R.; Ussetti, P.; et al. A paired trial comparing mononuclear cell collection in two machines for further inactivation through an inline or offline extracorporeal photopheresis procedure. Transfusion 2019, 59, 340–346. [Google Scholar] [CrossRef]
- Piccirillo, N.; Putzulu, R.; Massini, G.; Di Giovanni, A.; Giammarco, S.; Metafuni, E.; Sica, S.; Zini, G.; Chiusolo, P. Inline and offline extracorporeal photopheresis: Device performance, cell yields and clinical response. J. Clin. Apher. 2021, 36, 118–126. [Google Scholar] [CrossRef] [PubMed]
- Piccirillo, N.; Putzulu, R.; Massini, G.; Fiore, A.G.; Chiusolo, P.; Sica, S.; Zini, G. Mononuclear cell collection for extracorporeal photopheresis: Concentrate characteristics for off-line UV-A irradiation procedure. J. Clin. Apher. 2018, 33, 217–221. [Google Scholar] [CrossRef] [PubMed]
- Mayer, W.; Kontekakis, A.; Maas, C.; Kuchenbecker, U.; Behlke, S.; Schennach, H. Comparison of procedure times and collection efficiencies using integrated and multistep nonintegrated procedures for extracorporeal photopheresis. J. Clin. Apher. 2022, 37, 332–339. [Google Scholar] [CrossRef] [PubMed]
- Piccirillo, N.; Putzulu, R.; Massini, G.; Di Giovanni, A.; Chiusolo, P.; Sica, S.; Zini, G. Inline extracorporeal photopheresis: Evaluation of cell collection efficiency. Transfusion 2019, 59, 3714–3720. [Google Scholar] [CrossRef]
- Radwanski, K.; Burgstaler, E.; Weitgenant, J.; Dale, H.; Heber, C.; Winters, J. Pilot study of a new online extracorporeal photopheresis system in patients with steroid refractory or dependent chronic graft vs host disease. J. Clin. Apher. 2020, 35, 342–350. [Google Scholar] [CrossRef] [PubMed]
- Kartal, O.; Lindlbauer, N.; Laner-Plamberger, S.; Rohde, E.; Foettinger, F.; Ombres, L.; Zimmermann, G.; Mrazek, C.; Lauth, W.; Grabmer, C. Collection efficiency of mononuclear cells in offline extracorporeal photopheresis: Can processing time be shortened? Blood Transfus. 2024, 22, 150–156. [Google Scholar] [CrossRef] [PubMed]
- Kassambara, A. Rstatix: Pipe-Friendly Framework for Basic Statistical Tests. R Package, Version 0.7.2. 2023. Available online: https://rpkgs.datanovia.com/rstatix/ (accessed on 10 June 2024).
- R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. 2023. Available online: https://www.R-project.org/ (accessed on 10 June 2024).
- Rev 5.4-1470532; Therakos Cellex Photopheresis System Operator’s Manual. Available online: https://therakos.com/ (accessed on 20 September 2024).
- Part No. 777379-124; Spectra Optia System Operator’s Manual. Available online: https://www.terumobct.com/ (accessed on 20 September 2024).
- Cid, J.; Carbasse, G.; Suarez-Lledo, M.; Moreno, D.F.; Martinez, C.; Gutiérrez-García, G.; Fernández-Avilés, F.; Rosiñol, L.; Giavedoni, P.; Mascaró, J.M.; et al. Efficacy and safety of one-day offline extracorporeal photopheresis schedule processing one total blood volume for treating patients with graft-versus-host disease. Transfusion 2019, 59, 2636–2642. [Google Scholar] [CrossRef] [PubMed]
- Worel, N.; Lehner, E.; Fuhrer, H.; Kalhs, P.; Rabitsch, W.; Mitterbauer, M.; Hopfinger, G.; Greinix, H.T. Extracorporeal photopheresis as second-line therapy for patients with acute graft-versus-host disease: Does the number of cells treated matter? Transfusion 2018, 58, 1045–1053. [Google Scholar] [CrossRef] [PubMed]
- Azar, N.; Leblond, V.; Ouzegdouh, M.; Button, P. A transition from using multi-step procedures to a fully integrated system for performing extracorporeal photopheresis: A comparison of costs and efficiencies. J. Clin. Apher. 2017, 32, 474–478. [Google Scholar] [CrossRef] [PubMed]
- Azar, N.; Ouzegdouh, M.; Choquet, S.; Goncalves, N.; Leblond, V. In situ off-line extracorporeal photopheresis conducted in a real-life situation at a Hemobiotherapy Department in France: A comparison of costs vs on-line procedure. J. Clin. Apher. 2022, 37, 25–30. [Google Scholar] [CrossRef] [PubMed]
- Magaro, A.; Lucchetti, B.; Caime, A.; Lionetti, M.T.; Laszlo, D. Cost comparison of extracorporeal photopheresis technologies at the European Institute of Oncology. J. Clin. Apher. 2021, 36, 364–369. [Google Scholar] [CrossRef] [PubMed]
Patients | |
---|---|
n | 9 |
Age in years (mean ± SEM) | 50.83 ± 0.91 |
Sex M/F (n) | 4/5 |
Patients disease (n) | |
GvHD | 3 |
BOS | 3 |
Crohn’s disease | 2 |
Systemic sclerosis | 1 |
Weight in kg (mean ± SEM) | 65.35 ± 0.81 |
Total blood volume in mL (mean ± SEM) | 4119.67 ± 297.46 |
Pre-Procedure Peripheral Blood Cell Count (Mean ± SEM) | Optia | Amicus | Therakos |
---|---|---|---|
WBCs (×109/L) | 6.53 ± 0.24 | 5.96 ± 0.25 | 6.26 ± 0.28 |
Hb (g/dL) | 12.51 ± 0.10 | 12.23 ± 0.15 | 11.93 ± 0.15 |
Hct (%) | 37.41 ± 0.23 | 36.86 ± 0.40 | 36.44 ± 0.42 |
Plts (×109/L) | 273.69 ± 8.79 | 255.86 ± 11.98 | 270.09 ± 11.58 |
Neutrophils (%) | 67.21 ± 1.05 | 67.96 ± 1.13 | 67.68 ± 1.37 |
Lymphocytes (%) | 20.23 ± 0.86 | 19.49 ± 0.88 | 19.88 ± 1.15 |
Monocytes (%) | 9.85 ± 0.31 | 10.24 ± 0.37 | 9.82 ± 0.41 |
MNC (%) | 30.08 ± 1.02 | 29.73 ± 1.09 | 29.71 ± 1.37 |
ECP (mean ± SEM) | |||
n | 127 | 93 | 81 |
Processed blood volume (mL) | 2349.62 ± 42.53 | 2016.56 ± 8.75 | 1542.10 ± 2.25 |
Procedure runtime (minutes) | 63.47 ± 0.60 * | 92.86 ± 1.05 | 93.79 ± 2.22 |
ACD-A used (mL) | 202.94 ± 3.79 | 167.85 ± 1.42 | 187.74 ± 0.51 |
MCP volume (mL) | 99.82 ± 0.20 | 200 ± 0.00 | 132.91 ± 1.71 |
Processed blood volume/TBV | 0.56 ± 0.01 | 0.48 ± 0.01 | 0.38 ± 0.01 |
Photoactivation time (minutes) | 9.41 ± 0.05 | 22.23 ± 0.30 | 19.07 ± 1.08 |
Optia | Amicus | Therakos | |
---|---|---|---|
n | 127 | 93 | 81 |
MCP volume, mL | 99.82 ± 0.20 | 200 ± 0.00 | 132.91 ± 1.71 |
WBCs (×109/L) | 39.51 ± 2.81 | 9.63 ± 0.52 | 16.81 ± 0.89 |
WBCs (×106/kg BW) | 57.92 ± 2.82 | 29.09 ± 1.58 | 35.75 ± 2.21 |
WBCs (×109) | 3.94 ± 0.28 | 1.93 ± 0.10 | 2.22 ± 0.12 |
MNCs (×109) | 2.82 ± 0.13 | 1.83 ± 0.10 | 1.95 ± 0.09 |
MNCs (×106/kg BW) | 42.69 ± 1.42 | 27.56 ± 1.54 | 31.21 ± 1.66 |
MNCs (%) | 79.81 ± 1.97 | 90.43 ± 1.63 | 90.70 ± 1.43 |
Neutrophils (%) | 20.27 ± 1.97 | 9.55 ± 1.63 | 9.3 ± 1.43 |
Lymphocytes (×106/kg BW) | 29.49 ± 0.96 | 19.89 ± 1.12 | 23.26 ± 1.35 |
Lymphocytes (%) | 56.98 ± 1.78 | 65.54 ± 1.39 | 67.83 ± 1.75 |
Monocytes (×106/kg BW) | 13.34 ± 0.76 | 7.67 ± 0.49 | 7.95 ± 0.58 |
Monocytes (%) | 22.83 ± 0.75 | 24.89 ± 0.77 | 22.88 ± 0.96 |
Optia | Amicus | Therakos | |
---|---|---|---|
WBCs | 24.81 ± 0.78 | 17.46 ± 0.89 | 24.03 ± 1.13 |
MNCs | 65.79 ± 1.48 | 56.32 ± 2.80 | 74.42 ± 1.82 |
Lymphocytes | 70.98 ± 1.97 | 63.39 ± 3.11 | 85.07 ± 2.46 |
Monocytes | 56.36 ± 1.44 | 45.46 ± 2.60 | 55.89 ± 2.66 |
Neutrophils | 7.96 ± 1.97 | 1.26 ± 0.06 | 0.27 ± 0.06 |
Cell Type | System | Correlation Coefficient, r | Correlation Strength | Linear Regression, R2 | Slope |
---|---|---|---|---|---|
WBCs | Optia | 0.71 | strong | 0.498 | 8.22 |
Amicus | 0.34 | weak | 0.116 | 0.71 | |
Therakos | 0.64 | strong | 0.414 | 2.08 | |
MNCs | Optia | 0.76 | strong | 0.581 | 12.49 |
Amicus | 0.48 | moderate | 0.226 | 2.99 | |
Therakos | 0.83 | very strong | 0.687 | 6.46 | |
Neutrophils | Optia | 0.58 | moderate | 0.342 | 5.35 |
Amicus | 0.62 | strong | 0.38 | 0.08 | |
Therakos | 0.27 | weak | 0.072 | 0.47 | |
Lymphocytes | Optia | 0.62 | strong | 0.387 | 8.01 |
Amicus | 0.51 | moderate | 0.264 | 3.52 | |
Therakos | 0.8 | strong | 0.64 | 6.11 | |
Monocytes | Optia | 0.91 | very strong | 0.825 | 19.07 |
Amicus | 0.42 | moderate | 0.173 | 1.93 | |
Therakos | 0.78 | strong | 0.603 | 6.75 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kartal, O.; Laner-Plamberger, S.; Rohde, E.; Mrazek, C.; Lauth, W.; Grabmer, C. Evaluating a New Photopheresis System: A Comparison with Two Established Systems on Cell Yield and Collection Efficiency. Diagnostics 2024, 14, 2290. https://doi.org/10.3390/diagnostics14202290
Kartal O, Laner-Plamberger S, Rohde E, Mrazek C, Lauth W, Grabmer C. Evaluating a New Photopheresis System: A Comparison with Two Established Systems on Cell Yield and Collection Efficiency. Diagnostics. 2024; 14(20):2290. https://doi.org/10.3390/diagnostics14202290
Chicago/Turabian StyleKartal, Orkan, Sandra Laner-Plamberger, Eva Rohde, Cornelia Mrazek, Wanda Lauth, and Christoph Grabmer. 2024. "Evaluating a New Photopheresis System: A Comparison with Two Established Systems on Cell Yield and Collection Efficiency" Diagnostics 14, no. 20: 2290. https://doi.org/10.3390/diagnostics14202290
APA StyleKartal, O., Laner-Plamberger, S., Rohde, E., Mrazek, C., Lauth, W., & Grabmer, C. (2024). Evaluating a New Photopheresis System: A Comparison with Two Established Systems on Cell Yield and Collection Efficiency. Diagnostics, 14(20), 2290. https://doi.org/10.3390/diagnostics14202290