Antimicrobial Resistance: What Lies Beneath This Complex Phenomenon?
Abstract
:1. Introduction
2. Phenomenon of AMR: Drivers and Risk Factors
3. Origins of AMR
4. Mechanisms of AMR
5. Biofilm Formation
6. OMV Formation
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
AB | antibiotic |
ABC | Adenosine triphosphate-binding cassette Superfamily |
AlgU | extra cytoplasmic function sigma factor |
AMR | antimicrobial resistance |
ARGs | antimicrobial resistance genes |
c-di-GMP | cyclic dimeric guanosine monophosphate |
COVID-19 | coronavirus disease caused by the SARS-CoV-2 virus |
DHFR | dihydrofolate reductase |
DHPS | dihydropteroate synthase |
DNA | deoxyribonucleic acid |
EDTA | ethylenediaminetetraacetic acid |
EPS | extracellular polymeric substances |
FAD | flavin adenine dinucleotide |
HlyE | haemolysin E |
IL-1β | interleukin 1β |
IL-4 | interleukin 4 |
IL-6 | interleukin 6 |
IL-8 | interleukin 8 |
IL-10 | interleukin 10 |
IL-13 | interleukin 13 |
IM | inner membrane |
In | gene cassettes/integrons |
IS | insertion sequences IS |
Lipid A-pEtN | lipid A phosphoethanolamine transferase |
LOS | lipooligosaccharides |
Lpp | lipoprotein |
LPSs | lipopolysaccharides |
MATE | Multidrug and Toxic Compound Extrusion Superfamily |
MDR ĖSKAPE pathogens | multi-drug resistant ESKAPE pathogens indicated in the article |
MFS | Major Facilitator Superfamily |
MGE | mobile genetic elements |
NOD1 | nucleotide-binding oligomerization domain-containing protein 1 |
OM | outer membrane |
OmpA | outer membrane protein A |
OMPs | outer membrane proteins |
OMVs | out membrane vesicles |
PAMPs | pathogen-associated molecular patterns |
PBP | penicillin-binding proteins |
PG | peptidoglycan |
PL | phospholipids |
PQS | Pseudomonas Quinolone Signal |
PRRs | pattern recognition receptors |
RND | Resistance Nodulation and Cell Division Superfamily. |
RNR | ribonucleic acid |
RpoE | an alternative sigma factor of E. coli |
QSS | quorum sensing system |
SMR | Small Multidrug Resistance Superfamily |
TetX | monooxygenase conferring resistance to tetracycline antibiotics |
TetX2 | monooxygenase conferring resistance to tetracycline and tigecycline |
Tn | transposons |
TNF | tumor necrosis factor |
Comment: Names of bacteria and genes are presented in italics. |
References
- Akram, F.; Imtiaz, M.; Haq, I.U. Emergent crisis of antibiotic resistance: A silent pandemic threat to 21st century. Microb. Pathog. 2022, 174, 105923. [Google Scholar] [CrossRef] [PubMed]
- Podolsky, S.H. The evolving response to antibiotic resistance (1945–2018). Palgrave Commun. 2018, 4, 124. [Google Scholar] [CrossRef]
- Wang, W.; Yu, S.; Zhou, X.; Wang, L.; He, X.; Zhou, H.; Chang, Y. Antibiotic prescribing patterns at children’s outpatient departments of primary care institutions in Southwest China. BMC Prim. Care 2022, 23, 269. [Google Scholar] [CrossRef] [PubMed]
- O’Neill, J. Antimicrobial Resistance: Tackling a Crisis for the Health and Wealth of Nations/the Review on Antimicrobial Resistance Chaired by Jim O’Neill; Wellcome Trust: London, UK, 2014; Available online: https://wellcomecollection.org/works/rdpck35v (accessed on 26 November 2023).
- de Kraker, M.E.; Stewardson, A.J.; Harbarth, S. Will 10 Million People Die a Year due to Antimicrobial Resistance by 2050? PLoS Med. 2016, 13, e1002184. [Google Scholar] [CrossRef] [PubMed]
- Walsh, T.R.; Gales, A.C.; Laxminarayan, R.; Dodd, P.C. Antimicrobial Resistance: Addressing a Global Threat to Humanity. PLoS Med. 2023, 20, e1004264. [Google Scholar] [CrossRef]
- Irfan, M.; Almotiri, A.; AlZeyadi, Z.A. Antimicrobial Resistance and Its Drivers—A Review. Antibiotics 2022, 11, 1362. [Google Scholar] [CrossRef]
- Serna, C.; Gonzalez-Zorn, B. Antimicrobial resistance and One Health. Revista espanola de quimioterapia. Publ. Off. Soc. Esp. Quimioter. 2022, 35 (Suppl. S3), 37–40. [Google Scholar] [CrossRef]
- Carter, R.R.; Sun, J.; Jump, R.L. A Survey and Analysis of the American Public’s Perceptions and Knowledge About Antibiotic Resistance. Open Forum Infect. Dis. 2016, 3, ofw112. [Google Scholar] [CrossRef]
- Guo, H.; Hildon, Z.J.-L.; Lye, D.C.B.; Straughan, P.T.; Chow, A. The Associations between Poor Antibiotic and Antimicrobial Resistance Knowledge and Inappropriate Antibiotic Use in the General Population Are Modified by Age. Antibiotics 2021, 11, 47. [Google Scholar] [CrossRef]
- Pennino, F.; Maccauro, M.L.; Sorrentino, M.; Gioia, M.; Riello, S.; Messineo, G.; Di Rosa, C.; Montuori, P.; Triassi, M.; Nardone, A. Insights from a Cross-Sectional Study on Knowledge, Attitudes and Behaviors Concerning Antibiotic Use in a Large Metropolitan Area: Implications for Public Health and Policy Interventions. Antibiotics 2023, 12, 1476. [Google Scholar] [CrossRef]
- Singh-Phulgenda, S.; Antoniou, P.; Wong, D.L.F.; Iwamoto, K.; Kandelaki, K. Knowledge, attitudes and behaviors on antimicrobial resistance among general public across 14 member states in the WHO European region: Results from a cross-sectional survey. Front. Public Health 2023, 11, 1274818. [Google Scholar] [CrossRef] [PubMed]
- Bassetti, S.; Tschudin-Sutter, S.; Egli, A.; Osthoff, M. Optimizing antibiotic therapies to reduce the risk of bacterial resistance. Eur. J. Intern. Med. 2022, 99, 7–12. [Google Scholar] [CrossRef] [PubMed]
- Chinemerem Nwobodo, D.; Ugwu, M.C.; Oliseloke Anie, C.; Al-Ouqaili, M.T.; Chinedu Ikem, J.; Victor Chigozie, U.; Saki, M. Antibiotic resistance: The challenges and some emerging strategies for tackling a global menace. J. Clin. Lab. Anal. 2022, 36, e24655. [Google Scholar] [CrossRef] [PubMed]
- Huang, L.; Wu, C.; Gao, H.; Xu, C.; Dai, M.; Huang, L.; Hao, H.; Wang, X.; Cheng, G. Bacterial Multidrug Efflux Pumps at the Frontline of Antimicrobial Resistance: An Overview. Antibiotics 2022, 11, 520. [Google Scholar] [CrossRef] [PubMed]
- Jamaluddin, N.A.H.; Periyasamy, P.; Lau, C.L.; Ponnampalavanar, S.; Lai, P.S.M.; Loong, L.S.; Sidik, T.M.I.T.A.B.; Ramli, R.; Tan, T.L.; Kori, N.; et al. Assessment of antimicrobial prescribing patterns, guidelines compliance, and appropriateness of antimicrobial prescribing in surgical-practice units: Point prevalence survey in Malaysian teaching hospitals. Front. Pharmacol. 2024, 15, 1381843. [Google Scholar] [CrossRef] [PubMed]
- Prestinaci, F.; Pezzotti, P.; Pantosti, A. Antimicrobial resistance: A global multifaceted phenomenon. Pathog. Glob. Health 2015, 109, 309–318. [Google Scholar] [CrossRef]
- Chiș, A.A.; Rus, L.L.; Morgovan, C.; Arseniu, A.M.; Frum, A.; Vonica-Țincu, A.L.; Gligor, F.G.; Mureșan, M.L.; Dobrea, C.M. Microbial Resistance to Antibiotics and Effective Antibiotherapy. Biomedicines 2022, 10, 1121. [Google Scholar] [CrossRef]
- Langendonk, R.F.; Neill, D.R.; Fothergill, J.L. The Building Blocks of Antimicrobial Resistance in Pseudomonas aeruginosa: Implications for Current Resistance-Breaking Therapies. Front. Cell. Infect. Microbiol. 2021, 11, 665759. [Google Scholar] [CrossRef]
- Mancuso, G.; Midiri, A.; Gerace, E.; Biondo, C. Bacterial Antibiotic Resistance: The Most Critical Pathogens. Pathogens 2021, 10, 1310. [Google Scholar] [CrossRef]
- Reygaert, W.C. An overview of the antimicrobial resistance mechanisms of bacteria. AIMS Microbiol. 2018, 4, 482–501. [Google Scholar] [CrossRef]
- Uddin, T.M.; Chakraborty, A.J.; Khusro, A.; Zidan, B.R.M.; Mitra, S.; Bin Emran, T.; Dhama, K.; Ripon, K.H.; Gajdács, M.; Sahibzada, M.U.K.; et al. Antibiotic resistance in microbes: History, mechanisms, therapeutic strategies and future prospects. J. Infect. Public Health 2021, 14, 1750–1766. [Google Scholar] [CrossRef] [PubMed]
- Salam, A.; Al-Amin, Y.; Salam, M.T.; Pawar, J.S.; Akhter, N.; Rabaan, A.A.; Alqumber, M.A.A. Antimicrobial Resistance: A Growing Serious Threat for Global Public Health. Healthcare 2023, 11, 1946. [Google Scholar] [CrossRef] [PubMed]
- Dewan, I.; Uecker, H. A mathematician’s guide to plasmids: An introduction to plasmid biology for modellers. Microbiology 2023, 169, 001362. [Google Scholar] [CrossRef] [PubMed]
- Urban-Chmiel, R.; Marek, A.; Stępień-Pyśniak, D.; Wieczorek, K.; Dec, M.; Nowaczek, A.; Osek, J. Antibiotic Resistance in Bacteria—A Review. Antibiotics 2022, 11, 1079. [Google Scholar] [CrossRef]
- Partridge, S.R.; Kwong, S.M.; Firth, N.; Jensen, S.O. Mobile Genetic Elements Associated with Antimicrobial Resistance. Clin. Microbiol. Rev. 2018, 31. [Google Scholar] [CrossRef]
- Verdial, C.; Serrano, I.; Tavares, L.; Gil, S.; Oliveira, M. Mechanisms of Antibiotic and Biocide Resistance That Contribute to Pseudomonas aeruginosa Persistence in the Hospital Environment. Biomedicines 2023, 11, 1221. [Google Scholar] [CrossRef]
- Li, B.; Qiu, Y.; Song, Y.; Lin, H.; Yin, H. Dissecting horizontal and vertical gene transfer of antibiotic resistance plasmid in bacterial community using microfluidics. Environ. Int. 2019, 131, 105007. [Google Scholar] [CrossRef]
- Muteeb, G.; Rehman, T.; Shahwan, M.; Aatif, M. Origin of Antibiotics and Antibiotic Resistance, and Their Impacts on Drug Development: A Narrative Review. Pharmaceuticals 2023, 16, 1615. [Google Scholar] [CrossRef]
- Holmes, A.H.; Moore, L.S.P.; Sundsfjord, A.; Steinbakk, M.; Regmi, S.; Karkey, A.; Guerin, P.J.; Piddock, L.J.V. Understanding the mechanisms and drivers of antimicrobial resistance. Lancet 2016, 387, 176–187. [Google Scholar] [CrossRef]
- Pang, Z.; Raudonis, R.; Glick, B.R.; Lin, T.J.; Cheng, Z. Antibiotic resistance in Pseudomonas aeruginosa: Mechanisms and alternative therapeutic strategies. Biotechnol. Adv. 2019, 37, 177–192. [Google Scholar] [CrossRef]
- Kobra Salimiyan Rizi, K.G.; Noghondar, M.K. Adaptive Antibiotic Resistance: Overview and Perspectives. J. Infect. Dis. Ther. 2018, 6, 1–3. [Google Scholar] [CrossRef]
- Santajit, S.; Indrawattana, N. Mechanisms of Antimicrobial Resistance in ESKAPE Pathogens. BioMed Res. Int. 2016, 2016, 2475067. [Google Scholar] [CrossRef] [PubMed]
- Impey, R.E.; Hawkins, D.A.; Sutton, J.M.; Soares Da Costa, T.P. Overcoming Intrinsic and Acquired Resistance Mechanisms Associated with the Cell Wall of Gram-Negative Bacteria. AIMS Microbiol. 2020, 9, 623. [Google Scholar] [CrossRef] [PubMed]
- Jadimurthy, R.; Mayegowda, S.B.; Nayak, S.; Mohan, C.D.; Rangappa, K.S. Escaping mechanisms of ESKAPE pathogens from antibiotics and their targeting by natural compounds. Biotechnol. Rep. 2022, 34, e00728. [Google Scholar] [CrossRef] [PubMed]
- Barros, E.M.; Martin, M.J.; Selleck, E.M.; Lebreton, F.; Sampaio, J.L.M.; Gilmore, M.S. Daptomycin Resistance and Tolerance Due to Loss of Function in Staphylococcus aureus dsp1 and asp23. Antimicrob. Agents Chemother. 2019, 63, 10–1128. [Google Scholar] [CrossRef]
- Cheesman, M.J.; Ilanko, A.; Blonk, B.; Cock, I.E. Developing New Antimicrobial Therapies: Are Synergistic Combinations of Plant Extracts/Compounds with Conventional Antibiotics the Solution? Pharmacogn. Rev. 2017, 11, 57–72. [Google Scholar]
- Darby, E.M.; Trampari, E.; Siasat, P.; Gaya, M.S.; Alav, I.; Webber, M.A.; Blair, J.M.A. Molecular mechanisms of antibiotic resistance revisited. Nat. Rev. Microbiol. 2022, 21, 280–295. [Google Scholar] [CrossRef]
- Goldstein, B.P. Resistance to rifampicin: A review. J. Antibiot. 2014, 67, 625–630. [Google Scholar] [CrossRef]
- Heidary, M.; Khosravi, A.D.; Khoshnood, S.; Nasiri, M.J.; Soleimani, S.; Goudarzi, M. Daptomycin. J. Antimicrob. Chemother. 2018, 73, 1–11. [Google Scholar] [CrossRef]
- Jiang, X.; Yang, K.; Han, M.-L.; Yuan, B.; Li, J.; Gong, B.; Velkov, T.; Schreiber, F.; Wang, L.; Li, J. Outer Membranes of Polymyxin-Resistant Acinetobacter baumannii with Phosphoethanolamine-Modified Lipid A and Lipopolysaccharide Loss Display Different Atomic-Scale Interactions with Polymyxins. ACS Infect. Dis. 2020, 6, 2698–2708. [Google Scholar] [CrossRef]
- Mohapatra, S.S.; Dwibedy, S.K.; Padhy, I. Polymyxins, the last-resort antibiotics: Mode of action, resistance emergence, and potential solutions. J. Biosci. 2021, 46, 85. [Google Scholar] [CrossRef] [PubMed]
- Zhao, A.; Sun, J.; Liu, Y. Understanding bacterial biofilms: From definition to treatment strategies. Front. Cell. Infect. Microbiol. 2023, 13, 1137947. [Google Scholar] [CrossRef] [PubMed]
- Sharma, S.; Mohler, J.; Mahajan, S.D.; Schwartz, S.A.; Bruggemann, L.; Aalinkeel, R. Microbial Biofilm: A Review on Formation, Infection, Antibiotic Resistance, Control Measures, and Innovative Treatment. Microorganisms 2023, 11, 1614. [Google Scholar] [CrossRef] [PubMed]
- Abebe, G.M. The Role of Bacterial Biofilm in Antibiotic Resistance and Food Contamination. Int. J. Microbiol. 2020, 2020, 1705814. [Google Scholar] [CrossRef] [PubMed]
- Miron, A.; Giurcaneanu, C.; Mihai, M.M.; Beiu, C.; Voiculescu, V.M.; Popescu, M.N.; Soare, E.; Popa, L.G. Antimicrobial Biomaterials for Chronic Wound Care. Pharmaceutics 2023, 15, 1606. [Google Scholar] [CrossRef]
- Dutt, Y.; Dhiman, R.; Singh, T.; Vibhuti, A.; Gupta, A.; Pandey, R.P.; Raj, V.S.; Chang, C.-M.; Priyadarshini, A. The Association between Biofilm Formation and Antimicrobial Resistance with Possible Ingenious Bio-Remedial Approaches. Antibiotics 2022, 11, 930. [Google Scholar] [CrossRef]
- Kim, J.Y.; Suh, J.W.; Kang, J.S.; Kim, S.B.; Yoon, Y.K.; Sohn, J.W. Gram-Negative Bacteria’s Outer Membrane Vesicles. Infect. Chemother. 2023, 55, 1. [Google Scholar] [CrossRef]
- Juodeikis, R.; Carding, S.R. Outer Membrane Vesicles: Biogenesis, Functions, and Issues. Microbiol. Mol. Biol. Rev. MMBR 2022, 86, e0003222. [Google Scholar] [CrossRef]
- Collins, S.M.; Brown, A.C. Bacterial Outer Membrane Vesicles as Antibiotic Delivery Vehicles. Front. Immunol. 2021, 12, 733064. [Google Scholar] [CrossRef]
- Gao, L.; van der Veen, S. Role of Outer Membrane Vesicles in Bacterial Physiology and Host Cell Interactions. Infect. Microbes Dis. 2020, 2, 3–9. [Google Scholar] [CrossRef]
- Lieberman, L.A. Outer membrane vesicles: A bacterial-derived vaccination system. Front. Microbiol. 2022, 13, 1029146. [Google Scholar] [CrossRef] [PubMed]
- Magaña, G.; Harvey, C.; Taggart, C.C.; Rodgers, A.M. Bacterial Outer Membrane Vesicles: Role in Pathogenesis and Host-Cell Interactions. Antibiotics 2023, 13, 32. [Google Scholar] [CrossRef] [PubMed]
- Schwechheimer, C.; Kuehn, M.J. Outer-membrane vesicles from Gram-negative bacteria: Biogenesis and functions. Nat. Rev. Microbiol. 2015, 13, 605–619. [Google Scholar] [CrossRef] [PubMed]
- Winkle, M.; Hernández-Rocamora, V.M.; Pullela, K.; Goodall, E.C.A.; Martorana, A.M.; Gray, J.; Henderson, I.R.; Polissi, A.; Vollmer, W. DpaA Detaches Braun’s Lipoprotein from Peptidoglycan. mBio 2021, 12, 10–1128. [Google Scholar] [CrossRef]
- Nevermann, J.; Silva, A.; Otero, C.; Oyarzún, D.P.; Barrera, B.; Gil, F.; Calderón, I.L.; Fuentes, J.A. Identification of Genes Involved in Biogenesis of Outer Membrane Vesicles (OMVs) in Salmonella enterica Serovar Typhi. Front. Microbiol. 2019, 10, 104. [Google Scholar] [CrossRef]
- MacDonald, I.A.; Kuehn, M.J. Stress-Induced Outer Membrane Vesicle Production by Pseudomonas aeruginosa. J. Bacteriol. 2013, 195, 2971–2981. [Google Scholar] [CrossRef]
- Fan, Y.; Bai, J.; Xi, D.; Yang, B. RpoE Facilitates Stress-Resistance, Invasion, and Pathogenicity of Escherichia coli K1. Microorganisms 2022, 10, 879. [Google Scholar] [CrossRef]
- Wang, J.; Wang, Y.; Lou, H.; Wang, W. AlgU controls environmental stress adaptation, biofilm formation, motility, pyochelin synthesis and antagonism potential in Pseudomonas protegens SN15-2. Microbiol. Res. 2023, 272, 127396. [Google Scholar] [CrossRef]
- Sartorio, M.G.; Pardue, E.J.; Feldman, M.F.; Haurat, M.F. Bacterial Outer Membrane Vesicles: From Discovery to Applications. Annu. Rev. Microbiol. 2021, 75, 609–630. [Google Scholar] [CrossRef]
Drug Class | Representatives (Drug Groups or Drugs) | Mechanism of Action | Drug Target | Mechanisms of AMR |
---|---|---|---|---|
Mechanism of action | ||||
Inhibition of cell wall synthesis | ||||
β lactams | Penicillins Cephalosporins Carbapenems Monobactams | Inhibition of cell wall synthesis | Peptidoglycan biosynthesis | Drug uptake limitation (decreased number of pores or changed selectivity of porins, no outer cell membrane) Enzymatic drug inactivation by hydrolysis (β lactamase production) RND 1 efflux pumps (reduction of drug absorption in the cell) Altered targets (PBP 2 alteration in gram-positive bacteria) |
Glycopeptides | Vancomycin Teicoplanin | Peptidoglycan biosynthesis | Drug uptake limitation (thickened cell wall due to mutation, no outer cell wall or impermeable outer membrane in gram-negative bacteria) Altered targets (reprogramming of peptidoglycan biosynthesis via mutation of D-Ala-D-Ala ligase and peptidoglycan modification) | |
Disruption of bacterial cell inner membrane | ||||
Lipopeptides | Daptomycin | Disruption of bacterial cell inner membrane | Inner membrane | Enzymatic drug inactivation by immobilization a hydrolytic cleavage of the ester bond between the threonine and kynurenine residue Altered targets (genetically determined alteration of the cell surface charge leading to the repulsion of the anionic daptomycin molecules, changes in the membrane composition via the alteration of phospholipid membrane metabolism, alteration of complex transcriptional regulatory networks governing the cell envelope stress response and membrane homeostasis, indirectly affected cell wall synthesis and consequently—thickness |
Disruption of cell membranes’ structure, primarily the outer membrane, that finally causes cell lysis | ||||
Cationic peptides | Colistin Polymyxin E | Disruption of cell membranes’ structure, primarily the outer membrane, that finally causes cell lysis 1 | Cell membranes | Altered targets (overproduction of capsular polysaccharide, loss of LPSs 3 from bacterial outer membrane, modification of lipid A-pEtN 4 SMR 5 efflux pumps (reduction of drug absorption in the cell) |
Aminoglycosides | Streptomycin Gentamicin Kanamycin Amikacin Tobramycin Spectinomycin | Inhibition of cytoplasm protein synthesis | Translation | Drug uptake limitation (cell wall polarity) Enzymatic drug inactivation (phosphorylation, acetylation, nucleotydilation) RND efflux pumps (reduction of drug absorption in the cell) Altered targets (ribosomal alteration due to mutation in 16S rRNA gene, methylation by the 16S ribosomal methylases) |
Tetracyclines | Tetracycline Doxycycline Minocycline Tigecycline | Translation | Drug uptake limitation (decreased number of pores) Enzymatic drug inactivation (hydroxylation under FAD 6-dependent monooxygenases TetX 7 and TetX2 8) Efflux pumps (reduction of drug absorption in the cell) Altered targets (ribosomal protection) | |
Macrolides | Erythromycin Azithromycin Clarithromycin | Translation | Enzymatic drug inactivation (hydrolysis, glycosylation, phosphorylation) ABC 9, MFS 10, RND efflux pumps (reduction of drug absorption in the cell) Altered targets (ribosomal mutation, 23S rRNA methylation, ribosomal protection by ABC 11 proteins) | |
Lincosamides | Clindamycin | Translation | Altered targets (ribosomal methylation due to modification of 23S rRNA by methyltransferases in gram-positive bacteria) ABC, RND efflux pumps (reduction of drug absorption in the cell) Enzymatic drug inactivation (phosphorylation, nucleotidylation) | |
Amphenicols | Chloramphenicol | Translation | Enzymatic drug inactivation (acetylation) MFS, RND efflux pumps (reduction of drug absorption in the cell) Altered targets (ribosomal methylation due to mutations within 23S rRNA of the 50S ribosomal subunit) | |
Streptogramins | Quinupristin and dalfopristin | Translation | Altered target (ribosomal alteration due to mutation of 23S rRNA in 50S ribosomal subunit) ABC efflux pumps (reduction of drug absorption in the cell) Enzymatic dug inactivation (acetylation, breakage of a carbo-oxygen bond by carbon-oxygen lyase) | |
Oxazolidinones | Linezolid | Translation | Altered target (ribosomal methylation by methyltransferases via modification of the 23S rRNA, ribosomal protection by ABC proteins) RND efflux pumps (reduction of drug absorption in the cell) | |
Fluoroquinolones | Ciprofloxacin Ofloxacin Levofloxacin | Inhibition of nucleic acid synthesis | DNA replication | Enzymatic drug inactivation (acetylation) MATE 12, MFS, RND efflux pumps (reduction of drug absorption in the cell) Altered targets (DNA gyrase modification in gram-negative bacteria, topoisomerase IV modification—in gram-positive, protection of DNA gyrase and topoisomerase IV) |
Rifamycins | Rifampin | RNA synthesis | Altered targets (mutation of rpoB gene which encodes the β subunit of RNA polymerase) RND, SMR efflux pumps (reduction of drug absorption in the cell) | |
Pyrimidines | Trimethoprim | Inhibition of metabolic pathways (folic acid metabolism) | DHFR 13 | RND efflux pumps (reduction of drug absorption in the cell) Altered targets (reduced binding and overproduction of DHFR due to modification or acquisition of novel DHFR genes) |
Sulfonamides | Sulfamethoxazole | DHPS 14 | RND efflux pumps (reduction of drug absorption in the cell) Altered targets (DHPS reduce d binding, overproduction of resistant DHPS due to mutations in the DHPS gene and sul1/2 genes, which encode distinct DHPSs that are less susceptible to sulphonamide |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sakalauskienė, G.V.; Radzevičienė, A. Antimicrobial Resistance: What Lies Beneath This Complex Phenomenon? Diagnostics 2024, 14, 2319. https://doi.org/10.3390/diagnostics14202319
Sakalauskienė GV, Radzevičienė A. Antimicrobial Resistance: What Lies Beneath This Complex Phenomenon? Diagnostics. 2024; 14(20):2319. https://doi.org/10.3390/diagnostics14202319
Chicago/Turabian StyleSakalauskienė, Giedrė Valdonė, and Aurelija Radzevičienė. 2024. "Antimicrobial Resistance: What Lies Beneath This Complex Phenomenon?" Diagnostics 14, no. 20: 2319. https://doi.org/10.3390/diagnostics14202319
APA StyleSakalauskienė, G. V., & Radzevičienė, A. (2024). Antimicrobial Resistance: What Lies Beneath This Complex Phenomenon? Diagnostics, 14(20), 2319. https://doi.org/10.3390/diagnostics14202319