Smartphone-Based Pupillometry Using Machine Learning for the Diagnosis of Sports-Related Concussion
Abstract
:1. Introduction
2. Methods
2.1. Data Collection
2.2. Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bryan, M.A.; Rowhani-Rahbar, A.; Comstock, R.D.; Rivara, F.; Seattle Sports Concussion Research, C. Sports- and Recreation-Related Concussions in US Youth. Pediatrics 2016, 138, e20154635. [Google Scholar] [CrossRef] [PubMed]
- Stemper, B.D.; Harezlak, J.; Shah, A.S.; Rowson, S.; Mihalik, J.P.; Riggen, L.; Duma, S.; Pasquina, P.; Broglio, S.P.; McAllister, T.W.; et al. Association between Preseason/Regular Season Head Impact Exposure and Concussion Incidence in NCAA Football. Med. Sci. Sports Exerc. 2022, 54, 912–922. [Google Scholar] [CrossRef] [PubMed]
- Harmon, K.G.; Clugston, J.R.; Dec, K.; Hainline, B.; Herring, S.; Kane, S.F.; Kontos, A.P.; Leddy, J.J.; McCrea, M.; Poddar, S.K.; et al. American Medical Society for Sports Medicine position statement on concussion in sport. Br. J. Sports Med. 2019, 53, 213–225. [Google Scholar] [CrossRef] [PubMed]
- Harmon, K.G.; Whelan, B.M.; Aukerman, D.F.; Hwang, C.E.; Poddar, S.K.; DeLeo, A.; Elkington, H.A.; Garruppo, G.; Holliday, M.; Bruce, J.M. Diagnosis of Sports-Related Concussion Using Symptom Report or Standardized Assessment of Concussion. JAMA Netw. Open 2024, 7, e2416223. [Google Scholar] [CrossRef] [PubMed]
- Kroshus, E.; Garnett, B.; Hawrilenko, M.; Baugh, C.M.; Calzo, J.P. Concussion under-reporting and pressure from coaches, teammates, fans, and parents. Soc. Sci. Med. 2015, 134, 66–75. [Google Scholar] [CrossRef]
- Echemendia, R.J.; Burma, J.S.; Bruce, J.M.; Davis, G.A.; Giza, C.C.; Guskiewicz, K.M.; Naidu, D.; Black, A.M.; Broglio, S.; Kemp, S.; et al. Acute evaluation of sport-related concussion and implications for the Sport Concussion Assessment Tool (SCAT6) for adults, adolescents and children: A systematic review. Br. J. Sports Med. 2023, 57, 722–735. [Google Scholar] [CrossRef]
- Bruce, J.M.; Thelen, J.; Meeuwisse, W.; Hutchison, M.G.; Rizos, J.; Comper, P.; Echemendia, R.J. Use of the Sport Concussion Assessment Tool 5 (SCAT5) in professional hockey, part 2: Which components differentiate concussed and non-concussed players? Br. J. Sports Med. 2020, 55, 557–565. [Google Scholar] [CrossRef]
- Harmon, K.G.; Whelan, B.M.; Aukerman, D.F.; Bohr, A.D.; Nerrie, J.M.; Elkinton, H.A.; Holliday, M.; Poddar, S.K.; Chrisman, S.P.D.; McQueen, M.B. Diagnostic accuracy and reliability of sideline concussion evaluation: A prospective, case-controlled study in college athletes comparing newer tools Ma and established tests. Br. J. Sports Med. 2022, 56, 144–150. [Google Scholar] [CrossRef]
- King, A.; Devick, S.T. The Proposed King-Devick Test and Its Relation to the Pierce Saccade Test and Reading Levels; Illinois College of Optometry: Chicago, IL, USA, 1976. [Google Scholar]
- King, J.; Friend, C.; Zhang, D.; Carr, W. Comparative Performance of Three Eye-Tracking Devices in Detection of Mild Traumatic Brain Injury in Acute Versus Chronic Subject Populations. Mil. Med. 2024, 189, 628–635. [Google Scholar] [CrossRef]
- Meier, T.B.; Huber, D.L.; Goeckner, B.D.; Gill, J.M.; Pasquina, P.; Broglio, S.P.; McAllister, T.W.; Harezlak, J.; McCrea, M.A.; for CARE Consortium Investigators. Association of Blood Biomarkers of Inflammation with Acute Concussion in Collegiate Athletes and Military Service Academy Cadets. Neurology 2024, 102, e207991. [Google Scholar] [CrossRef]
- Carrick, F.R.; Azzolino, S.F.; Hunfalvay, M.; Pagnacco, G.; Oggero, E.; D’Arcy, R.C.N.; Abdulrahman, M.; Sugaya, K. The Pupillary Light Reflex as a Biomarker of Concussion. Life 2021, 11, 1104. [Google Scholar] [CrossRef] [PubMed]
- Capo-Aponte, J.; Urosevich, T.G.; Walsh, D.V.; Temme, L.A.; Tarbett, A.K. Pupillary Light Reflex as an Objective Biomarker for Early Identification of Blast-Induced mTBI. J. Spine 2013, S4, 1–4. [Google Scholar] [CrossRef]
- Thiagarajan, P.; Ciuffreda, K.J. Pupillary responses to light in chronic non-blast-induced mTBI. Brain Inj 2015, 29, 1420–1425. [Google Scholar] [CrossRef] [PubMed]
- Truong, J.Q.; Ciuffreda, K.J. Comparison of pupillary dynamics to light in the mild traumatic brain injury (mTBI) and normal populations. Brain Inj 2016, 30, 1378–1389. [Google Scholar] [CrossRef]
- Capo-Aponte, J.E.; Beltran, T.A.; Walsh, D.V.; Cole, W.R.; Dumayas, J.Y. Validation of Visual Objective Biomarkers for Acute Concussion. Mil. Med. 2018, 183, 9–17. [Google Scholar] [CrossRef]
- Hsu, J.; Stec, M.; Ranaivo, H.R.; Srdanovic, N.; Kurup, S.P. Concussion Alters Dynamic Pupillary Light Responses in Children. J. Child. Neurol. 2021, 36, 195–202. [Google Scholar] [CrossRef]
- Master, C.L.; Podolak, O.E.; Ciuffreda, K.J.; Metzger, K.B.; Joshi, N.R.; McDonald, C.C.; Margulies, S.S.; Grady, M.F.; Arbogast, K.B. Utility of Pupillary Light Reflex Metrics as a Physiologic Biomarker for Adolescent Sport-Related Concussion. JAMA Ophthalmol. 2020, 138, 1135–1141. [Google Scholar] [CrossRef]
- Bower, M.M.; Sweidan, A.J.; Xu, J.C.; Stern-Neze, S.; Yu, W.; Groysman, L.I. Quantitative Pupillometry in the Intensive Care Unit. J. Intensive Care Med. 2021, 36, 383–391. [Google Scholar] [CrossRef]
- Signoretti, S.; Lazzarino, G.; Tavazzi, B.; Vagnozzi, R. The pathophysiology of concussion. PM R 2011, 3, S359–S368. [Google Scholar] [CrossRef] [PubMed]
- McAnany, J.J.; Smith, B.M.; Garland, A.; Kagen, S.L. iPhone-based Pupillometry: A Novel Approach for Assessing the Pupillary Light Reflex. Optom. Vis. Sci. 2018, 95, 953–958. [Google Scholar] [CrossRef]
- Piaggio, D.; Namm, G.; Melillo, P.; Simonelli, F.; Iadanza, E.; Pecchia, L. Pupillometry via smartphone for low-resource settings. Biocybern. Biomed. Eng. 2021, 41, 891–902. [Google Scholar] [CrossRef]
- McGrath, L.B.; Eaton, J.; Abecassis, I.J.; Maxin, A.; Kelly, C.; Chesnut, R.M.; Levitt, M.R. Mobile smartphone-based digital pupillometry curves in the diagnosis of traumatic brain injury. Front. Neurosci. 2022, 16, 893711. [Google Scholar] [CrossRef] [PubMed]
- Maxin, A.J.; Lim, D.H.; Kush, S.; Carpenter, J.; Shaibani, R.; Gulek, B.G.; Harmon, K.G.; Mariakakis, A.; McGrath, L.B.; Levitt, M.R. Smartphone Pupillometry and Machine Learning for Detection of Acute Mild Traumatic Brain Injury: Cohort Study. JMIR Neurotech 2024, 3, e58398. [Google Scholar] [CrossRef]
- Memmini, A.K.; Mosesso, K.M.; Perkins, S.M.; Brett, B.L.; Pasquina, P.F.; McAllister, T.W.; McCrea, M.A.; Broglio, S.P.; Investigators, C.C. Premorbid Risk Factors and Acute Injury Characteristics of Sport-Related Concussion Across the National Collegiate Athletic Association: Findings from the Concussion Assessment, Research, and Education (CARE) Consortium. Sports Med. 2023, 53, 1457–1470. [Google Scholar] [CrossRef] [PubMed]
- Patricios, J.S.; Schneider, K.J.; Dvorak, J.; Ahmed, O.H.; Blauwet, C.; Cantu, R.C.; Davis, G.A.; Echemendia, R.J.; Makdissi, M.; McNamee, M.; et al. Consensus statement on concussion in sport: The 6th International Conference on Concussion in Sport-Amsterdam, October 2022. Br. J. Sports Med. 2023, 57, 695–711. [Google Scholar] [CrossRef]
- Maxin, A.J.; Gulek, B.G.; Lee, C.; Lim, D.; Mariakakis, A.; Levitt, M.R.; McGrath, L.B. Validation of a Smartphone Pupillometry Application in Diagnosing Severe Traumatic Brain Injury. J. Neurotrauma 2023, 40, 2118–2125. [Google Scholar] [CrossRef]
- Maxin, A.J.; Kush, S.; Gulek, B.G.; Winston, G.M.; Chae, J.; Shaibani, R.; McGrath, L.B.; Abecassis, I.J.; Levitt, M.R. Smartphone pupillometry for detection of cerebral vasospasm after aneurysmal subarachnoid hemorrhage. J. Stroke Cerebrovasc. Dis. 2024, 33, 107922. [Google Scholar] [CrossRef]
- Maxin, A.J.; Gulek, B.G.; Chae, J.; Winston, G.; Weisbeek, P.; McGrath, L.B.; Levitt, M.R. A smartphone pupillometry tool for detection of acute large vessel occlusion. J. Stroke Cerebrovasc. Dis. 2023, 32, 107430. [Google Scholar] [CrossRef]
- Mariakakis, A.; Baudin, J.; Whitmire, E.; Mehta, V.; Banks, M.A.; Law, A.; McGrath, L.; Patel, S.N. PupilScreen: Using smartphones to assess traumatic brain injury. Proc. ACM Interact. Mob. Wearable Ubiquitous Technol. 2017, 1, 81. [Google Scholar] [CrossRef]
- Rashidi, H.H.; Tran, N.K.; Betts, E.V.; Howell, L.P.; Green, R. Artificial Intelligence and Machine Learning in Pathology: The Present Landscape of Supervised Methods. Acad. Pathol. 2019, 6, 2374289519873088. [Google Scholar] [CrossRef]
- Chawla, N.V.; Bowyer, K.W.; Hall, L.O.; Kegelmeyer, W.P. SMOTE: Synthetic minority over-sampling technique. J. Artif. Intell. Res. 2002, 16, 321–357. [Google Scholar] [CrossRef]
- Garcia, G.P.; Broglio, S.P.; Lavieri, M.S.; McCrea, M.; McAllister, T.; Investigators, C.C. Quantifying the Value of Multidimensional Assessment Models for Acute Concussion: An Analysis of Data from the NCAA-DoD Care Consortium. Sports Med. 2018, 48, 1739–1749. [Google Scholar] [CrossRef] [PubMed]
- Resch, J.E.; Brown, C.N.; Schmidt, J.; Macciocchi, S.N.; Blueitt, D.; Cullum, C.M.; Ferrara, M.S. The sensitivity and specificity of clinical measures of sport concussion: Three tests are better than one. BMJ Open Sport Exerc. Med. 2016, 2, e000012. [Google Scholar] [CrossRef] [PubMed]
- Patricios, J.; Schneider, G.M.; van Ierssel, J.; Purcell, L.K.; Davis, G.A.; Echemendia, R.J.; Fremont, P.; Fuller, G.W.; Herring, S.; Harmon, K.G.; et al. Sport Concussion Office Assessment Tool—6. Br. J. Sports Med. 2023, 57, 651–667. [Google Scholar] [CrossRef] [PubMed]
- Naidu, D.; Borza, C.; Kobitowich, T.; Mrazik, M. Sideline Concussion Assessment: The King-Devick Test in Canadian Professional Football. J. Neurotrauma 2018, 35, 2283–2286. [Google Scholar] [CrossRef]
- Fuller, G.W.; Cross, M.J.; Stokes, K.A.; Kemp, S.P.T. King-Devick concussion test performs poorly as a screening tool in elite rugby union players: A prospective cohort study of two screening tests versus a clinical reference standard. Br. J. Sports Med. 2019, 53, 1526–1532. [Google Scholar] [CrossRef]
- Heyming, T.; Knudsen-Robbins, C.; Schomberg, J.; Hayakawa, J.; Lara, B.; Bacon, K.; Valdez, B.; Wickens, M.; Shelton, S.K.; Romain, J.; et al. Evaluation of Quantitative Pupillometry in Acute Postinjury Pediatric Concussion. Pediatr. Neurol. 2024, 153, 103–112. [Google Scholar] [CrossRef]
- Oeur, A.; Mull, M.; Riccobono, G.; Arbogast, K.B.; Ciuffreda, K.J.; Joshi, N.; Fedonni, D.; Master, C.L.; Margulies, S.S. Pupillary Light Response Deficits in 4-Week-Old Piglets and Adolescent Children after Low-Velocity Head Rotations and Sports-Related Concussions. Biomedicines 2023, 11, 587. [Google Scholar] [CrossRef]
- Lee, M.H.; Mitra, B.; Pui, J.K.; Fitzgerald, M. The use and uptake of pupillometers in the Intensive Care Unit. Aust. Crit. Care 2018, 31, 199–203. [Google Scholar] [CrossRef]
- Gramkow, M.H.; Clemmensen, F.K.; Sjaelland, N.S.; Waldemar, G.; Hasselbalch, S.G.; Frederiksen, K.S. Diagnostic performance of light reflex pupillometry in Alzheimer’s disease. Alzheimers. Dement. 2024, 16, e12628. [Google Scholar] [CrossRef]
- Kaifie, A.; Reugels, M.; Kraus, T.; Kursawe, M. The pupillary light reflex (PLR) as a marker for the ability to work or drive—A feasibility study. J. Occup. Med. Toxicol. 2021, 16, 39. [Google Scholar] [CrossRef] [PubMed]
- Huyghe, T.; Calleja-Gonzalez, J.; Bird, S.P.; Alcaraz, P.E. Pupillometry as a new window to player fatigue? A glimpse inside the eyes of a Euro Cup Women’s Basketball team. Biol. Sport 2024, 41, 3–15. [Google Scholar] [CrossRef] [PubMed]
Pupillary Light Reflex Parameter | Description |
---|---|
Latency (s) (LAT) | Time from onset of light stimulus to initial pupillary constriction |
Percent Change (%) (CHANGE) | Percent change in pupillary diameter from maximum to minimum |
Minimum Pupillary Diameter (mm) (MIN) | Minimum diameter after light stimulus |
Maximum Pupillary Diameter (mm) (MAX) | Average resting diameter prior to light stimulus |
Mean Constriction Velocity (mm/s) (MCV) | The average speed at which the pupil constricts after the light stimulus until the minimum diameter is reached |
Maximum Constriction Velocity (mm/s) (MAXCV) | The maximum speed at which the pupil constricts after the light stimulus until the minimum diameter is reached |
Mean Dilation Velocity (mm/s) (MDV) | The average speed at which the pupil dilates after removal of the light stimulus |
Total n (%) | Concussed n (%) | Baseline n (%) | Difference Between Groups (p-Value) | |
---|---|---|---|---|
n = 93 | n = 11 | n = 93 | ||
Age (mean, range) + | 20 (18–24) | 21 (18–23) | 20 (17–24) | 0.60 c |
Position | 0.63 b | |||
Defensive backs | 16 (17%) | 2 (18%) | 14 (17%) | 1 b |
Linebackers | 16 (17%) | 4 (36%) | 12 (15%) | 0.09 b |
Defensive Lineman | 8 (9%) | 0 (0%) | 8 (9%) | 0.59 b |
Offensive Lineman | 19 (20%) | 3 (27%) | 16 (20%) | 0.69 b |
Skill positions (running back, wide receiver, tight end) | 22 (24%) | 2 (18%) | 20 (24%) | 1 b |
Quarterbacks | 5 (5%) | 0 (0%) | 5 (6%) | 1 b |
Specialists (kicker, punter, long snapper) | 7 (8%) | 0 (0%) | 7 (9%) | 0.59 b |
Comorbidities | 0.08 b | |||
Mood | 9 (10%) | 3 (27%) | 6 (7%) | 0.01 * b |
ADHD | 2 (2%) | 0 (0) | 2 (2%) | 0.99 b |
Headache/migraine | 1 (1%) | 0 (0) | 1 (1%) | 0.99 b |
Year in School | 0.75 c | |||
1 | 36 (39%) | 4 (36%) | 32 (39%) | 1 c |
2 | 32 (24%) | 3 (27%) | 29 (35%) | 0.91 c |
3 | 21 (23%) | 3 (27%) | 18 (22%) | 0.84 c |
4 | 8 (9%) | 1 (1%) | 7 (9%) | 1 c |
Eye Color | 0.28 b | |||
Blue | 16 (17%) | 0 (0) | 16 (20%) | 0.20 b |
Brown | 61 (66%) | 10 (91%) | 51 (62%) | 0.09 b |
Green | 10 (11%) | 1 (9%) | 9 (11%) | 0.99 b |
Hazel | 6 (6%) | 0 (0) | 6 (7%) | 1 b |
History of Previous Concussion ‡ | 0.13 d | |||
1 | 16 (16%) | 4 (36%) | 12 (15%) | 0.99 d |
2 | 2 (2%) | 2 (18%) | 0 (0) | 0.99 d |
Baseline Symptom Reporting | ||||
Total Symptoms (median, range) | 2 (0–21) | 2 (0–19) | 2 (0–21) | 0.64 c |
Symptom Severity (median, range) | 3 (0–65) | 2 (0–24) | 3 (0–65) | 0.71 c |
PLR Parameter | Baseline Mean ± SD (n = 93) | Concussed Mean ± SD (n = 11) | Effect Size for Baseline to Concussion | Single-Variable AUC for Baseline to Concussion Before SMOTE | Single-Variable AUC for Baseline to Concussion After SMOTE |
---|---|---|---|---|---|
MAX | 4.3 ± 1.1 | 4.1 ± 1.3 | 0.2 | 0.5 | 0.59 |
MIN | 2.6 ± 0.5 | 2.3 ± 0.5 | 0.6 | 0.53 | 0.67 |
CHANGE | 36.4 ± 15.9 | 38.4 ± 20.9 | 0.1 | 0.44 | 0.64 |
LAT | 1 ± 0.8 | 1.1 ± 1 | 0.1 | 0.54 | 0.62 |
MCV | 1 ± 1.1 | 0.8 ± 0.2 | 0.3 | 0.43 | 0.6 |
MAXCV | 5.6 ± 3.5 | 6.2 ± 2.8 | 0.2 | 0.44 | 0.67 |
MDV | 0.5 ± 0.7 | 0.6 ± 0.5 | 0.2 | 0.61 | 0.75 |
Model | Parameters | Accuracy | Sensitivity | Specificity | AUC | F1 Score |
---|---|---|---|---|---|---|
KNN | LAT, MAX, MAXCV, MDV | 82% | 40% | 87% | 0.64 | 24% |
RF | MDV | 86% | 30% | 93% | 0.61 | 28% |
SVM * | - | - | - | - | - | - |
LR * | - | - | - | - | - | - |
Model | Parameters | Accuracy | Sensitivity | Specificity | AUC | F1 Score |
---|---|---|---|---|---|---|
RF | LAT, %, MIN, MCV, MAXCV, MDV | 91% | 97% | 86% | 0.91 | 92% |
KNN | LAT, MAX, MAXCV, MDV | 89 | 92 | 86 | 0.89 | 89% |
SVM | LAT, MAX, MAXCV | 79 | 89 | 68 | 0.78 | 81% |
LR | CHANGE, MCV, MDV | 72% | 78% | 66% | 0.72 | 74% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Maxin, A.J.; Whelan, B.M.; Levitt, M.R.; McGrath, L.B.; Harmon, K.G. Smartphone-Based Pupillometry Using Machine Learning for the Diagnosis of Sports-Related Concussion. Diagnostics 2024, 14, 2723. https://doi.org/10.3390/diagnostics14232723
Maxin AJ, Whelan BM, Levitt MR, McGrath LB, Harmon KG. Smartphone-Based Pupillometry Using Machine Learning for the Diagnosis of Sports-Related Concussion. Diagnostics. 2024; 14(23):2723. https://doi.org/10.3390/diagnostics14232723
Chicago/Turabian StyleMaxin, Anthony J., Bridget M. Whelan, Michael R. Levitt, Lynn B. McGrath, and Kimberly G. Harmon. 2024. "Smartphone-Based Pupillometry Using Machine Learning for the Diagnosis of Sports-Related Concussion" Diagnostics 14, no. 23: 2723. https://doi.org/10.3390/diagnostics14232723
APA StyleMaxin, A. J., Whelan, B. M., Levitt, M. R., McGrath, L. B., & Harmon, K. G. (2024). Smartphone-Based Pupillometry Using Machine Learning for the Diagnosis of Sports-Related Concussion. Diagnostics, 14(23), 2723. https://doi.org/10.3390/diagnostics14232723