Association of Positive Airway Pressure Adherence with Clinical Outcomes in Patients with Type 2 Diabetes and Obstructive Sleep Apnea
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Patients
2.2. Data Collection
Epworth Sleepiness Scale
2.3. Polysomnography
2.3.1. Follow Up
2.3.2. PAP Adherence
2.4. Statistical Analysis
3. Results
3.1. Patients’ Characteristics
3.2. Effect of PAP Treatment on Diabetes-Related Outcomes
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lyons, M.M.; Bhatt, N.Y.; Pack, A.I.; Magalang, U.J. Global burden of sleep-disordered breathing and its implications. Respirology 2020, 25, 690–702. [Google Scholar] [CrossRef] [PubMed]
- Locke, B.W.; Lee, J.J.; Sundar, K.M. OSA and Chronic Respiratory Disease: Mechanisms and Epidemiology. Int. J. Environ. Res. Public. Health 2022, 19, 5473. [Google Scholar] [CrossRef]
- Hou, H.; Zhao, Y.; Yu, W.; Dong, H.; Xue, X.; Ding, J.; Xing, W.; Wang, W. Association of obstructive sleep apnea with hypertension: A systematic review and meta-analysis. J. Glob. Health 2018, 8, 010405. [Google Scholar] [CrossRef]
- Punjabi, N.M.; Shahar, E.; Redline, S.; Gottlieb, D.J.; Givelber, R.; Resnick, H.E.; Sleep Heart Health Study Investigators. Sleep-disordered breathing, glucose intolerance, and insulin resistance: The Sleep Heart Health Study. Am. J. Epidemiol. 2004, 160, 521–530. [Google Scholar] [CrossRef]
- Shahar, E.; Whitney, C.W.; Redline, S.; Lee, E.T.; Newman, A.B.; Nieto, F.J.; O’Connor, G.T.; Boland, L.L.; Schwartz, J.E.; Samet, J.M. Sleep-disordered breathing and cardiovascular disease: Cross-sectional results of the Sleep Heart Health Study. Am. J. Respir. Crit. Care Med. 2001, 163, 19–25. [Google Scholar] [CrossRef] [PubMed]
- Reutrakul, S.; Mokhlesi, B. Obstructive sleep apnea and diabetes: A state of the art review. Chest 2017, 152, 1070–1086. [Google Scholar] [CrossRef] [PubMed]
- Adderley, N.J.; Subramanian, A.; Toulis, K.; Gokhale, K.; Taverner, T.; Hanif, W.; Haroon, S.; Thomas, G.N.; Sainsbury, C.; Tahrani, A.A.; et al. Obstructive Sleep Apnea, a Risk Factor for Cardiovascular and Microvascular Disease in Patients with Type 2 Diabetes: Findings from a Population-Based Cohort Study. Diabetes Care 2020, 43, 1868–1877. [Google Scholar] [CrossRef] [PubMed]
- Siwasaranond, N.; Nimitphong, H.; Manodpitipong, A.; Saetung, S.; Chirakalwasan, N.; Thakkinstian, A.; Reutrakul, S. The Relationship between Diabetes-Related Complications and Obstructive Sleep Apnea in Type 2 Diabetes. J. Diabetes Res. 2018, 2018, 9269170. [Google Scholar] [CrossRef]
- Anothaisintawee, T.; Reutrakul, S.; Van Cauter, E.; Thakkinstian, A. Sleep disturbances compared to traditional risk factors for diabetes development: Systematic review and meta-analysis. Sleep Med. Rev. 2016, 30, 11–24. [Google Scholar] [CrossRef]
- Chasens, E.R.; Umlauf, M.G.; Pillion, D.J.; Wells, J.A. Nocturnal polyuria in type 2 diabetes: A symptom of obstructive sleep apnea. Diabetes Educ. 2002, 28, 424–434. [Google Scholar] [CrossRef]
- Foster, G.D.; Borradaile, K.E.; Sanders, M.H.; Millman, R.; Zammit, G.; Newman, A.B.; Wadden, T.A.; Kelley, D.; Wing, R.R.; Pi-Sunyer, F.X.; et al. A randomized study on the effect of weight loss on obstructive sleep apnea among obese patients with type 2 diabetes: The Sleep AHEAD study. Arch. Intern. Med. 2009, 169, 1619–1626. [Google Scholar] [CrossRef] [PubMed]
- Punjabi, N.M.; Sorkin, J.D.; Katzel, L.I.; Goldberg, A.P.; Schwartz, A.R.; Smith, P.L. Sleep-disordered breathing and insulin resistance in middle-aged and overweight men. Am. J. Respir. Crit. Care Med. 2002, 165, 677–682. [Google Scholar] [CrossRef] [PubMed]
- Ioja, S.; Chasens, E.R.; Ng, J.; Strollo, P.J.; Korytkowski, M.T. Obstructive sleep apnea in adults with type 1 and type 2 diabetes: Perspectives from a quality improvement initiative in a university-based diabetes center. BMJ Open Diabetes Res. Care 2017, 5, e000433. [Google Scholar] [CrossRef] [PubMed]
- Senaratna, C.V.; Perret, J.L.; Lodge, C.J.; Lowe, A.J.; Campbell, B.E.; Matheson, M.C.; Hamilton, G.S.; Dharmage, S.C. Prevalence of obstructive sleep apnea in the general population: A systematic review. Sleep Med. Rev. 2017, 34, 70–81. [Google Scholar] [CrossRef]
- Punjabi, N.M.; Caffo, B.S.; Goodwin, J.L.; Gottlieb, D.J.; Newman, A.B.; O’Connor, G.T.; Rapoport, D.M.; Redline, S.; Resnick, H.E.; Robbins, J.A.; et al. Sleep-disordered breathing and mortality: A prospective cohort study. PLoS Med. 2009, 6, e1000132. [Google Scholar] [CrossRef] [PubMed]
- Seicean, S.; Stroh, K.P.; Seicean, A.; Gibby, C.; Marwick, T.H. Sleep disordered breathing as a risk of cardiac events in subjects with diabetes mellitus and normal exercise echocardiographic findings. Am. J. Cardiol. 2013, 111, 1214–1220. [Google Scholar] [CrossRef]
- Rice, T.B.; Foster, G.D.; Sanders, M.H.; Unruh, M.; Reboussin, D.; Kuna, S.T.; Millman, R.; Zammit, G.; Wing, R.R.; Wadden, T.A.; et al. The relationship between obstructive sleep apnea and self-reported stroke or coronary heart disease in overweight and obese adults with type 2 diabetes mellitus. Sleep 2012, 35, 1293–1298. [Google Scholar] [CrossRef]
- Zhu, Z.; Zhang, F.; Liu, Y.; Yang, S.; Li, C.; Niu, Q.; Niu, J. Relationship of obstructive sleep apnoea with diabetic retinopathy: A meta-analysis. BioMed Res. Int. 2017, 2017, 4737064. [Google Scholar] [CrossRef]
- Tahrani, A.A. Obstructive sleep apnoea in diabetes: Does it matter? Diabetes Vasc. Dis. Res. 2017, 14, 454–462. [Google Scholar] [CrossRef]
- Tahrani, A.A.; Ali, A.; Raymond, N.T.; Begum, S.; Dubb, K.; Altaf, Q.A.; Piya, M.K.; Barnett, A.H.; Stevens, M.J. Obstructive sleep apnea and diabetic nephropathy: A cohort study. Diabetes Care 2013, 36, 3718–3725. [Google Scholar] [CrossRef]
- Basner, R.C. Continuous positive airway pressure for obstructive sleep apnea. N. Engl. J. Med. 2007, 356, 1751–1758. [Google Scholar] [CrossRef] [PubMed]
- Herth, J.; Sievi, N.A.; Schmidt, F.; Kohler, M. Effects of continuous positive airway pressure therapy on glucose metabolism in patients with obstructive sleep apnoea and type 2 diabetes: A systematic review and meta-analysis. Eur. Respir. Rev. 2023, 32, 230083. [Google Scholar] [CrossRef]
- Shang, W.; Zhang, Y.; Wang, G.; Han, D. Benefits of continuous positive airway pressure on glycaemic control and insulin resistance in patients with type 2 diabetes and obstructive sleep apnoea: A meta-analysis. Diabetes Obes. Metab. 2021, 23, 540–548. [Google Scholar] [CrossRef]
- Zhu, B.; Ma, C.; Chaiard, J.; Shi, C. Effect of continuous positive airway pressure on glucose metabolism in adults with type 2 diabetes: A systematic review and meta-analysis of randomized controlled trials. Sleep Breath. 2018, 22, 287–295. [Google Scholar] [CrossRef]
- Labarca, G.; Reyes, T.; Jorquera, J.; Dreyse, J.; Drake, L. CPAP in patients with obstructive sleep apnea and type 2 diabetes mellitus: Systematic review and meta-analysis. Clin. Respir. J. 2018, 12, 2361–2368. [Google Scholar] [CrossRef]
- Lam, J.C.M.; Lai, A.Y.K.; Tam, T.C.C.; Yuen, M.M.A.; Lam, K.S.L.; Ip, M.S.M. CPAP therapy for patients with sleep apnea and type 2 diabetes mellitus improves control of blood pressure. Sleep Breath. 2017, 21, 377–386. [Google Scholar] [CrossRef] [PubMed]
- Shaw, J.E.; Punjabi, N.M.; Naughton, M.T.; Willes, L.; Bergenstal, R.M.; Cistulli, P.A.; Fulcher, G.R.; Richards, G.N.; Zimmet, P.Z. The effect of treatment of obstructive sleep apnea on glycemic control in type 2 diabetes. Am. J. Respir. Crit. Care Med. 2016, 194, 486–492. [Google Scholar] [CrossRef] [PubMed]
- Myhill, P.C.; Davis, W.A.; Peters, K.E.; Chubb, S.A.; Hillman, D.; Davis, T.M. Effect of continuous positive airway pressure therapy on cardiovascular risk factors in patients with type 2 diabetes and obstructive sleep apnea. J. Clin. Endocrinol. Metab. 2012, 97, 4212–4218. [Google Scholar] [CrossRef]
- Tahrani, A.A.; Ali, A.; Raymond, N.T.; Begum, S.; Dubb, K.; Mughal, S.; Jose, B.; Piya, M.K.; Barnett, A.H.; Stevens, M.J. Obstructive sleep apnea and diabetic neuropathy: A novel association in patients with type 2 diabetes. Am. J. Respir. Crit. Care Med. 2012, 186, 434–441. [Google Scholar] [CrossRef]
- Smith, J.P.; Cyr, L.G.; Dowd, L.K.; Duchin, K.S.; Lenihan, P.A.; Sprague, J. The Veterans Affairs Continuous Positive Airway Pressure Use and Diabetic Retinopathy Study. Optom. Vis. Sci. 2019, 96, 874–878. [Google Scholar] [CrossRef]
- Johns, M.W. A new method for measuring daytime sleepiness: The Epworth sleepiness scale. Sleep 1991, 14, 540–545. [Google Scholar] [CrossRef] [PubMed]
- Berry, R.B.; Brooks, R.; Gamaldo, C.E.; Harding, S.M.; Lloyd, R.M.; Marcus, C.L.; Vaughn, B.V. The AASM Manual for the Scoring of Sleep and Associated Events: Rules, Terminology and Technical Specifications, Version 2.2; American Academy of Sleep Medicine: Darien, IL, USA, 2015. [Google Scholar]
- Zia, S.; Fields, B.G. Sleep telemedicine: An emerging field’s latest frontier. Chest 2016, 149, 1556–1565. [Google Scholar] [CrossRef] [PubMed]
- Hwang, D.; Chang, J.W.; Benjafield, A.V.; Crocker, M.E.; Kelly, C.; Becker, K.A.; Kim, J.B.; Woodrum, R.R.; Liang, J.; Derose, S.F. Effect of telemedicine education and telemonitoring on continuous positive airway pressure adherence. The Tele-OSA randomized trial. Am. J. Respir. Crit. Care Med. 2018, 197, 117–126. [Google Scholar] [CrossRef] [PubMed]
- Kribbs, N.B.; Pack, A.I.; Kline, L.R.; Smith, P.L.; Schwartz, A.R.; Schubert, N.M.; Redline, S.; Henry, J.N.; Getsy, J.E.; Dinges, D.F. Objective measurement of patterns of nasal CPAP use by patients with obstructive sleep apnea. Am. Rev. Respir. Dis. 1993, 147, 887–895. [Google Scholar] [CrossRef]
- Bouloukaki, I.; Giannadaki, K.; Mermigkis, C.; Tzanakis, N.; Mauroudi, E.; Moniaki, V.; Michelakis, S.; Siafakas, N.M.; Schiza, S.E. Intensive versus standard follow-up to improve continuous positive airway pressure compliance. Eur. Respir. J. 2014, 44, 1262–1274. [Google Scholar] [CrossRef]
- Weaver, T.E.; Maislin, G.; Dinges, D.F.; Bloxham, T.; George, C.F.; Greenberg, H.; Kader, G.; Mahowald, M.; Younger, J.; Pack, A.I. Relationship between hours of CPAP use and achieving normal levels of sleepiness and daily functioning. Sleep 2007, 30, 711–719. [Google Scholar] [CrossRef]
- Bonsignore, M.R.; Baiamonte, P.; Mazzuca, E.; Castrogiovanni, A.; Marrone, O. Obstructive sleep apnea and comorbidities: A dangerous liaison. Multidiscip. Respir. Med. 2019, 14, 8. [Google Scholar] [CrossRef]
- Kojima, S.; Saito, A.; Sasaki, F.; Hayashi, M.; Mieno, Y.; Sakakibara, H.; Hashimoto, S. Associations of diabetes mellitus and hypertension with adherence to continuous positive airway pressure therapy in male patients with obstructive sleep apnea. Fujita Med. J. 2022, 8, 37–41. [Google Scholar] [CrossRef]
- Nsair, A.; Hupin, D.; Chomette, S.; Barthélémy, J.C.; Roche, F. Factors Influencing adherence to auto-CPAP: An observational monocentric study comparing patients with and without cardiovascular diseases. Front. Neurol. 2019, 10, 801. [Google Scholar] [CrossRef]
- Martínez-Cerón, E.; Barquiel, B.; Bezos, A.M.; Casitas, R.; Galera, R.; García-Benito, C.; Hernanz, A.; Alonso-Fernández, A.; Garcia-Rio, F. Effect of Continuous Positive Airway Pressure on Glycemic Control in Patients with Obstructive Sleep Apnea and Type 2 Diabetes. A Randomized Clinical Trial. Am. J. Respir. Crit. Care Med. 2016, 194, 476–485. [Google Scholar] [CrossRef]
- Ohira, A.; Yamakawa, T.; Iwahashi, N.; Tanaka, S.; Sugiyama, M.; Harada, M.; Ichikawa, M.; Akiyama, T.; Orime, K.; Terauchi, Y. Association of continuous positive airway pressure therapy on cardiac hypertrophy in patients with sleep apnea comorbid with type 2 diabetes mellitus. Endocr. J. 2023, 70, 47–58. [Google Scholar] [CrossRef] [PubMed]
- Babu, A.R.; Herdegen, J.; Fogelfeld, L.; Shott, S.; Mazzone, T. Type 2 diabetes, glycemic control, and continuous positive airway pressure in obstructive sleep apnea. Arch. Intern. Med. 2005, 165, 447–452. [Google Scholar] [CrossRef] [PubMed]
- Tasbakan, M.S.; Grote, L.; Hedner, J.; Kvamme, J.A.; Verbraecken, J.; McNicholas, W.T.; Roisman, G.; Tkacova, R.; Bonsignore, M.R.; Saaresranta, T.; et al. Positive airway pressure (PAP) treatment reduces glycated hemoglobin (HbA1c) levels in obstructive sleep apnea patients with concomitant weight loss: Longitudinal data from the ESADA. J. Sleep Res. 2021, 30, e13331. [Google Scholar] [CrossRef]
- Chasens, E.R.; Korytkowski, M.; Burke, L.E.; Strollo, P.J.; Stansbury, R.; Bizhanova, Z.; Atwood, C.W.; Sereika, S.M. Effect of Treatment of OSA With CPAP on Glycemic Control in Adults with Type 2 Diabetes: The Diabetes Sleep Treatment Trial (DSTT). Endocr. Pract. 2022, 28, 364–371. [Google Scholar] [CrossRef]
- Malik, J.A.; Masoodi, S.R.; Shoib, S. Obstructive sleep apnea in Type 2 diabetes and impact of continuous positive airway pressure therapy on glycemic control. Indian. J. Endocrinol. Metab. 2017, 21, 106–112. [Google Scholar] [CrossRef] [PubMed]
- Guo, L.X.; Zhao, X.; Pan, Q.; Sun, X.; Li, H.; Wang, X.X.; Zhang, L.N.; Wang, Y. Effect of Continuous Positive Airway Pressure Therapy on Glycemic Excursions and Insulin Sensitivity in Patients with Obstructive Sleep Apnea-hypopnea Syndrome and Type 2 Diabetes. Chin. Med. J. 2015, 128, 2301–2306. [Google Scholar] [CrossRef]
- Zhao, X.; Zhang, W.; Xin, S.; Yu, X.; Zhang, X. Effect of CPAP on blood glucose fluctuation in patients with type 2 diabetes mellitus and obstructive sleep apnea. Sleep Breath. 2022, 26, 1875–1883. [Google Scholar] [CrossRef]
- Sheth, U.; Monson, R.S.; Prasad, B.; Sahni, A.S.; Matani, S.; Mercado, T.; Smith, M.A.; Carlucci, M.A.; Danielson, K.K.; Reutrakul, S. Association of continuous positive airway pressure adherence with complications in patients with type 2 diabetes and obstructive sleep apnea. J. Clin. Sleep Med. 2021, 17, 1563–1569. [Google Scholar] [CrossRef]
- Cook, N.R.; Cohen, J.; Hebert, P.R.; Taylor, J.O.; Hennekens, C.H. Implications of small reductions in diastolic blood pressure for primary prevention. Arch. Intern. Med. 1995, 155, 701–709. [Google Scholar] [CrossRef]
- Ruzicka, M.; Knoll, G.; Leenen, F.H.H.; Leech, J.; Aaron, S.D.; Hiremath, S. Effects of CPAP on Blood Pressure and Sympathetic Activity in Patients with Diabetes Mellitus, Chronic Kidney Disease, and Resistant Hypertension. CJC Open 2020, 2, 258–264. [Google Scholar] [CrossRef]
- Prasad, B.; Carley, D.W.; Krishnan, J.A.; Weaver, T.E.; Weaver, F.M. Effects of positive airway pressure treatment on clinical measures of hypertension and type 2 diabetes. J. Clin. Sleep Med. 2012, 8, 481–487. [Google Scholar] [CrossRef] [PubMed]
Characteristics | Total Population (n = 355) | PAP Non-Adherent Group (≤6 h/Night) (n = 156) | PAP Adherent Group (>6 h/Night) (n = 199) | p Value |
---|---|---|---|---|
Demographics | ||||
Gender (males) | 260 (73%) | 115 (74%) | 145 (73%) | 0.888 |
Age | 62 ± 11 | 61 ± 11 | 63 ± 11 | 0.160 |
Age ≥ 60 years | 209 (59%) | 90 (58%) | 119 (60%) | 0.830 |
BMI | 37 ± 7 | 37 ± 8 | 37 ± 7 | 0.465 |
BMI ≥ 30 | 306 (86%) | 131 (84%) | 175 (88%) | 0.373 |
Current/Former Smoking | (72%) | (73%) | (71%) | 0.199 |
Symptoms | ||||
ESS | 12 ± 5 | 12 ± 5 | 11 ± 5 | 0.657 |
ESS ≥ 11 | 236 (66%) | 103 (66%) | 133 (67%) | 0.908 |
Hemoglobin A1c, % | 7.6 ± 1.3 | 7.5 ± 1.2 | 7.6 ± 1.1 | 0.676 |
Systolic BP | 132 ± 14 | 130 ± 12 | 133 ± 15 | 0.176 |
Diastolic BP | 77 ± 11 | 77 ± 10 | 78 ± 11 | 0.773 |
Co-morbidities | ||||
Hypertension | 247 (69%) | 112 (72%) | 135 (68%) | 0.541 |
CVD | 92 (26%) | 43 (28%) | 49 (25%) | 0.614 |
COPD | 94 (26%) | 30 (19%) | 64 (32%) | 0.038 |
Depression (on medications) | 48 (13%) | 22 (14%) | 26 (13%) | 0.831 |
Hyperlipidemia | 208 (59%) | 95 (61%) | 113 (57%) | 0.512 |
OSA severity indices | ||||
AHI | 53 ± 23 | 51 ± 23 | 54 ± 23 | 0.376 |
ODI | 56 ± 25 | 56 ± 25 | 57 ± 24 | 0.622 |
Mean SpO2 | 90 ± 3 | 90 ± 3 | 90 ± 3 | 0.141 |
Lowest SpO2 | 76 ± 8 | 76 ± 8 | 75 ± 8 | 0.317 |
TST90 | 113 ± 76 | 107 ± 79 | 119 ± 75 | 0.268 |
Follow up (years) | 5.5 ± 3.8 | 5.3 ± 3.2 | 5.8 ± 2.9 | 0.189 |
Total Population (n = 355) | p-Value | PAP Non-Adherent Group (≤6 h/Night) (n = 156) | p-Value | PAP Adherent Group (>6 h/Night) (n = 199) | p Value | p Value Between Two Groups | |||||
---|---|---|---|---|---|---|---|---|---|---|---|
Baseline | Follow up | 0.03 | Baseline | Follow up | Baseline | Follow up | |||||
Hemoglobin A1c, % | 7.6 ± 1.3 | 6.4 ± 1.2 | 0.001 | 7.5 ± 1.2 | 7.1 ± 1.0 | 7.6 ± 1.1 | 6.3 ± 0.3 | <0.001 | 0.676 | 0.04 | |
Systolic BP | 132 ± 14 | 124 ± 10 | <0.001 | 130 ± 12 | 123 ± 10 | <0.001 | 133 ± 15 | 124 ± 3 | <0.001 | 0.176 | 0.237 |
Diastolic BP | 77 ± 11 | 73 ± 6 | <0.001 | 77 ± 10 | 74 ± 8 | 0.003 | 78 ± 11 | 73 ± 7 | 0.004 | 0.773 | 0.321 |
BMI | 37 ± 7 | 36 ± 7 | 0.277 | 37 ± 8 | 37 ± 8 | 0.093 | 37 ± 7 | 36 ± 6 | 0.069 | 0.465 | 0.516 |
ESS | 12 ± 5 | 6 ± 4 | <0.001 | 12 ± 5 | 6.5 ± 4 | <0.001 | 11 ± 5 | 6 ± 4 | <0.001 | 0.657 | 0.557 |
PAP Non-Adherent Group (≤6 h/Night) (n = 156) | p-Value | PAP Adherent Group (>6 h/Night) (n = 199) | p-Value | |||
---|---|---|---|---|---|---|
Difference (95% CI) | Adjusted Difference (95% CI) * | Difference (95% CI) | Adjusted Difference (95% CI) * | |||
Hemoglobin A1c, % | −0.4 (0.01, 0.6) | −0.3 (0.01, 0.5) | 0.08 | −1.3 (0.04, 1.9) | −1.4 (0.04, 2.0) | <0.001 |
Systolic BP | −6.8 (3.8, 9.7) | −5.5 (0.86, 10,3) | <0.001 | −10.4 (7.2, 13.6) | −10.1 (4.9, 15.36) | <0.001 |
Diastolic BP | −3.3 (1.1, 5.4) | −0.55 (−4, 2.9) | 0.003 | −4.9 (2.4, 7.3) | −2.9 (0.8, 6.6) | <0.001 |
BMI | +0.57 (0.03–1.1) | +0.65 (1.5, 2.0) | 0.054 | +0.9 (0.1, 1.9) | +0.51 (1.0, 20) | 0.059 |
ESS | −5.5 (4.1, 6.9) | −4.2 (2.5, 5.9) | <0.001 | −5.5 (4, 5, 6.6) | −5.9 (4.3, 7.4) | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bouloukaki, I.; Stathakis, G.; Moniaki, V.; Mavroudi, E.; Tsiligianni, I.; Schiza, S. Association of Positive Airway Pressure Adherence with Clinical Outcomes in Patients with Type 2 Diabetes and Obstructive Sleep Apnea. Diagnostics 2024, 14, 2781. https://doi.org/10.3390/diagnostics14242781
Bouloukaki I, Stathakis G, Moniaki V, Mavroudi E, Tsiligianni I, Schiza S. Association of Positive Airway Pressure Adherence with Clinical Outcomes in Patients with Type 2 Diabetes and Obstructive Sleep Apnea. Diagnostics. 2024; 14(24):2781. https://doi.org/10.3390/diagnostics14242781
Chicago/Turabian StyleBouloukaki, Izolde, George Stathakis, Violeta Moniaki, Eleni Mavroudi, Ioanna Tsiligianni, and Sophia Schiza. 2024. "Association of Positive Airway Pressure Adherence with Clinical Outcomes in Patients with Type 2 Diabetes and Obstructive Sleep Apnea" Diagnostics 14, no. 24: 2781. https://doi.org/10.3390/diagnostics14242781
APA StyleBouloukaki, I., Stathakis, G., Moniaki, V., Mavroudi, E., Tsiligianni, I., & Schiza, S. (2024). Association of Positive Airway Pressure Adherence with Clinical Outcomes in Patients with Type 2 Diabetes and Obstructive Sleep Apnea. Diagnostics, 14(24), 2781. https://doi.org/10.3390/diagnostics14242781