Usefulness of Generative Artificial Intelligence (AI) Tools in Pediatric Dentistry
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ethical Consideration
2.2. Questions Presented to the Generative AI Tools
2.3. Evaluation of Answers of the Generative AI Tools
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Tessler, F.N.; Thomas, J. Artificial Intelligence for Evaluation of Thyroid Nodules: A Primer. Thyroid 2023, 33, 150–158. [Google Scholar] [CrossRef] [PubMed]
- Goodfellow, I.; Bengio, Y.; Courville, A. Deep Learning; MIT Press: Cambridge, MA, USA, 2016. [Google Scholar]
- Schoene, A.M.; Basinas, I.; van Tongeren, M.; Ananiadou, S. A Narrative Literature Review of Natural Language Processing Applied to the Occupational Exposome. Int. J. Environ. Res. Public Health 2022, 19, 8544. [Google Scholar] [CrossRef]
- Aramaki, E.; Wakamiya, S.; Yada, S.; Nakamura, Y. Natural Language Processing: From Bedside to Everywhere. Yearb. Med. Inform. 2022, 31, 243–253. [Google Scholar] [CrossRef] [PubMed]
- Liu, N.; Luo, K.; Yuan, Z.; Chen, Y. A Transfer Learning Method for Detecting Alzheimer’s Disease Based on Speech and Natural Language Processing. Front. Public Health 2022, 10, 772592. [Google Scholar] [CrossRef]
- Reading Turchioe, M.; Volodarskiy, A.; Pathak, J.; Wright, D.N.; Tcheng, J.E.; Slotwiner, D. Systematic review of current natural language processing methods and applications in cardiology. Heart 2022, 108, 909–916. [Google Scholar] [CrossRef] [PubMed]
- Michalski, A.A.; Lis, K.; Stankiewicz, J.; Kloska, S.M.; Sycz, A.; Dudziński, M.; Muras-Szwedziak, K.; Nowicki, M.; Bazan-Socha, S.; Dabrowski, M.J.; et al. Supporting the Diagnosis of Fabry Disease Using a Natural Language Processing-Based Approach. J. Clin. Med. 2023, 12, 3599. [Google Scholar] [CrossRef]
- Hsu, H.Y.; Hsu, K.C.; Hou, S.Y.; Wu, C.L.; Hsieh, Y.W.; Cheng, Y.D. Examining Real-World Medication Consultations and Drug-Herb Interactions: ChatGPT Performance Evaluation. JMIR Med. Educ. 2023, 9, e48433. [Google Scholar] [CrossRef] [PubMed]
- Kuroiwa, T.; Sarcon, A.; Ibara, T.; Yamada, E.; Yamamoto, A.; Tsukamoto, K.; Fujita, K. The Potential of ChatGPT as a Self-Diagnostic Tool in Common Orthopedic Diseases: Exploratory Study. J. Med. Internet Res. 2023, 25, e47621. [Google Scholar] [CrossRef] [PubMed]
- Acar, A.H. Can natural language processing serve as a consultant in oral surgery? J. Stomatol. Oral Maxillofac. Surg. 2024, 125, 101724. [Google Scholar] [CrossRef] [PubMed]
- Worthington, H.V.; MacDonald, L.; Poklepovic Pericic, T.; Sambunjak, D.; Johnson, T.M.; Imai, P.; Clarkson, J.E. Home use of interdental cleaning devices, in addition to toothbrushing, for preventing and controlling periodontal diseases and dental caries. Cochrane Database Syst. Rev. 2019, 4, CD012018. [Google Scholar] [CrossRef]
- Usuda, M.; Kametani, M.; Hamada, M.; Suehiro, Y.; Matayoshi, S.; Okawa, R.; Naka, S.; Matsumoto-Nakano, M.; Akitomo, T.; Mitsuhata, C.; et al. Inhibitory Effect of Adsorption of Streptococcus mutans onto Scallop-Derived Hydroxyapatite. Int. J. Mol. Sci. 2023, 24, 11371. [Google Scholar] [CrossRef] [PubMed]
- Yasuda, J.; Yasuda, H.; Nomura, R.; Matayoshi, S.; Inaba, H.; Gongora, E.; Iwashita, N.; Shirahata, S.; Kaji, N.; Akitomo, T.; et al. Investigation of periodontal disease development and Porphyromonas gulae FimA genotype distribution in small dogs. Sci. Rep. 2024, 14, 5360. [Google Scholar] [CrossRef]
- Zou, J.; Meng, M.; Law, C.S.; Rao, Y.; Zhou, X. Common dental diseases in children and malocclusion. Int. J. Oral Sci. 2018, 10, 7. [Google Scholar] [CrossRef] [PubMed]
- Akitomo, T.; Asao, Y.; Iwamoto, Y.; Kusaka, S.; Usuda, M.; Kametani, M.; Ando, T.; Sakamoto, S.; Mitsuhata, C.; Kajiya, M.; et al. A Third Supernumerary Tooth Occurring in the Same Region: A Case Report. Dent. J. 2023, 11, 49. [Google Scholar] [CrossRef] [PubMed]
- Akitomo, T.; Kusaka, S.; Iwamoto, Y.; Usuda, M.; Kametani, M.; Asao, Y.; Nakano, M.; Tachikake, M.; Mitsuhata, C.; Nomura, R. Five-Year Follow-Up of a Child with Non-Syndromic Oligodontia from before the Primary Dentition Stage: A Case Report. Children 2023, 10, 717. [Google Scholar] [CrossRef] [PubMed]
- Akitomo, T.; Kusaka, S.; Usuda, M.; Kametani, M.; Kaneki, A.; Nishimura, T.; Ogawa, M.; Mitsuhata, C.; Nomura, R. Fusion of a Tooth with a Supernumerary Tooth: A Case Report and Literature Review of 35 Cases. Children 2023, 11, 6. [Google Scholar] [CrossRef] [PubMed]
- Vieira, L.D.S.; Mandetta, A.R.H.; Bortoletto, C.C.; Sobral, A.P.T.; Motta, L.J.; Mesquita Ferrari, R.A.; Duran, C.C.G.; Horliana, A.C.R.T.; Fernandes, K.P.S.; Bussadori, S.K. A minimal interventive protocol using antimicrobial photodynamic therapy on teeth with molar incisor hypomineralization: A case report. J. Biophotonics 2024, 17, e202300414. [Google Scholar] [CrossRef] [PubMed]
- Kiselnikova, L.; Vislobokova, E.; Voinova, V. Dental manifestations of hypophosphatasia in children and the effects of enzyme replacement therapy on dental status: A series of clinical cases. Clin. Case Rep. 2020, 8, 911–918. [Google Scholar] [CrossRef] [PubMed]
- Karhumaa, H.; Lämsä, E.; Vähänikkilä, H.; Blomqvist, M.; Pätilä, T.; Anttonen, V. Dental caries and attendance to dental care in Finnish children with operated congenital heart disease. A practice based follow-up study. Eur. Arch. Paediatr. Dent. 2021, 22, 659–665. [Google Scholar] [CrossRef] [PubMed]
- Kametani, M.; Akitomo, T.; Usuda, M.; Kusaka, S.; Asao, Y.; Nakano, M.; Iwamoto, Y.; Tachikake, M.; Ogawa, M.; Kaneki, A.; et al. Evaluation of Periodontal Status and Oral Health Habits with Continual Dental Support for Young Patients with Hemophilia. Appl. Sci. 2024, 14, 1349. [Google Scholar] [CrossRef]
- Akitomo, T.; Ogawa, M.; Kaneki, A.; Nishimura, T.; Usuda, M.; Kametani, M.; Kusaka, S.; Asao, Y.; Iwamoto, Y.; Tachikake, M.; et al. Dental Abnormalities in Pediatric Patients Receiving Chemotherapy. J. Clin. Med. 2024, 13, 2877. [Google Scholar] [CrossRef]
- Akitomo, T.; Tsuge, Y.; Mitsuhata, C.; Nomura, R. A Narrative Review of the Association between Dental Abnormalities and Chemotherapy. J. Clin. Med. 2024, 13, 4942. [Google Scholar] [CrossRef] [PubMed]
- Muzulan, C.F.; Gonçalves, M.I. Recreational strategies for the elimination of pacifier and finger sucking habits. J. Soc. Bras. Fonoaudiol. 2011, 23, 66–70. [Google Scholar] [CrossRef]
- Khan, L. Dental Care and Trauma Management in Children and Adolescents. Pediatr. Ann. 2019, 48, e3–e8. [Google Scholar] [CrossRef] [PubMed]
- Némat, S.M.; Kenny, K.P.; Day, P.F. Special considerations in paediatric dental trauma. Prim. Dent. J. 2023, 12, 64–71. [Google Scholar] [CrossRef] [PubMed]
- Alghamidi, W.A.; Alghamdi, S.B.; Assiri, J.A.; Almathami, A.A.; Alkahtani, Z.M.; Togoo, R.A. Efficacy of self-designed intraoral appliances in prevention of cheek, lip and tongue bite after local anesthesia administration in pediatric patients. J. Clin. Exp. Dent. 2019, 11, e315–e321. [Google Scholar] [CrossRef]
- Fang, Q.; Reynaldi, R.; Araminta, A.S.; Kamal, I.; Saini, P.; Afshari, F.S.; Tan, S.C.; Yuan, J.C.; Qomariyah, N.N.; Sukotjo, C. Artificial Intelligence (AI)-driven dental education: Exploring the role of chatbots in a clinical learning environment. J. Prosthet. Dent. 2024, in press. [CrossRef]
- Sharma, S.; Kumari, P.; Sabira, K.; Parihar, A.S.; Divya Rani, P.; Roy, A.; Surana, P. Revolutionizing Dentistry: The Applications of Artificial Intelligence in Dental Health Care. J. Pharm. Bioallied Sci. 2024, 16 (Suppl. S3), S1910–S1912. [Google Scholar] [CrossRef]
- Sabri, H.; Saleh, M.H.A.; Hazrati, P.; Merchant, K.; Misch, J.; Kumar, P.S.; Wang, H.L.; Barootchi, S. Performance of three artificial intelligence (AI)-based large language models in standardized testing; implications for AI-assisted dental education. J. Periodontal Res. 2024. [Google Scholar] [CrossRef] [PubMed]
- Lu, W.; Yu, X.; Li, Y.; Cao, Y.; Chen, Y.; Hua, F. Artificial Intelligence-Related Dental Research: Bibliometric and Altmetric Analysis. Int. Dent. J. 2024. [Google Scholar] [CrossRef] [PubMed]
- Mertens, S.; Krois, J.; Cantu, A.G.; Arsiwala, L.T.; Schwendicke, F. Artificial intelligence for caries detection: Randomized trial. J. Dent. 2021, in press. [CrossRef] [PubMed]
- Dave, M.; Patel, N. Artificial intelligence in healthcare and education. Br. Dent. J. 2023, 234, 761–764. [Google Scholar] [CrossRef]
- Hartman, H.; Nurdin, D.; Akbar, S.; Cahyanto, A.; Setiawan, A.S. Exploring the potential of artificial intelligence in paediatric dentistry: A systematic review on deep learning algorithms for dental anomaly detection. Int. J. Paediatr. Dent. 2024, 34, 639–652. [Google Scholar] [CrossRef] [PubMed]
- Guile, E.E.; Hagens, E.; de Miranda, J.C. Dental nursing in Suriname: Training and deployment. J. Dent. Educ. 1981, 45, 156–160. [Google Scholar] [CrossRef]
- Seminario, A.L.; DeRouen, T.; Cholera, M.; Liu, J.; Phantumvanit, P.; Kemoli, A.; Castillo, J.; Pitiphat, W. Mitigating Global Oral Health Inequalities: Research Training Programs in Low- and Middle-Income Countries. Ann. Glob. Health 2020, 86, 141. [Google Scholar] [CrossRef]
- Suzuki, S.; Ohyama, A.; Yoshino, K.; Eguchi, T.; Kamijo, H.; Sugihara, N. COVID-19-Related Factors Delaying Dental Visits of Workers in Japan. Int. Dent. J. 2022, 72, 716–724. [Google Scholar] [CrossRef] [PubMed]
- Emerich, K.; Wyszkowski, J. Clinical practice: Dental trauma. Eur. J. Pediatr. 2010, 169, 1045–1050. [Google Scholar] [CrossRef]
- Suri, L.; Gagari, E.; Vastardis, H. Delayed tooth eruption: Pathogenesis, diagnosis, and treatment. A literature review. Am. J. Orthod. Dentofac. Orthop. 2004, 126, 432–445. [Google Scholar] [CrossRef]
- Akitomo, T.; Asao, Y.; Mitsuhata, C.; Kozai, K. A new supernumerary tooth occurring in the same region during follow-up after supernumerary tooth extraction: A case report. Pediatr. Dent. J. 2021, 31, 100–107. [Google Scholar] [CrossRef]
- Usuda, M.; Akitomo, T.; Kametani, M.; Kusaka, S.; Mitsuhata, C.; Nomura, R. Dens invaginatus of fourteen teeth in a pediatric patient. Pediatr. Dent. J. 2023, 33, 240–245. [Google Scholar] [CrossRef]
- Aguiar de Sousa, R.; Costa, S.M.; Almeida Figueiredo, P.H.; Camargos, C.R.; Ribeiro, B.C.; Alves ESilva, M.R.M. Is ChatGPT a reliable source of scientific information regarding third-molar surgery? J. Am. Dent. Assoc. 2024, 155, 227–232. [Google Scholar] [CrossRef] [PubMed]
- Balel, Y. Can ChatGPT be used in oral and maxillofacial surgery? J. Stomatol. Oral Maxillofac. Surg. 2023, 124, 101471. [Google Scholar] [CrossRef]
- Recommended Use of Fluoride Toothpaste. Available online: https://www.jspd.or.jp/recommendation/article19/ (accessed on 26 November 2024).
- Johnson, D.; Goodman, R.; Patrinely, J.; Stone, C.; Zimmerman, E.; Donald, R.; Chang, S.; Berkowitz, S.; Finn, A.; Jahangir, E.; et al. Assessing the Accuracy and Reliability of AI-Generated Medical Responses: An Evaluation of the Chat-GPT Model. Res. Sq. 2023; preprint. [Google Scholar]
- King, R.C.; Samaan, J.S.; Yeo, Y.H.; Mody, B.; Lombardo, D.M.; Ghashghaei, R. Appropriateness of ChatGPT in Answering Heart Failure Related Questions. Heart Lung Circ. 2024, 33, 1314–1318. [Google Scholar] [CrossRef] [PubMed]
- Ozgor, B.Y.; Simavi, M.A. Accuracy and reproducibility of ChatGPT’s free version answers about endometriosis. Int. J. Gynecol. Obstet. 2024, 165, 691–695. [Google Scholar] [CrossRef] [PubMed]
- Cetin, H.K.; Koramaz, I.; Zengin, M.; Demir, T. The Evaluation of YouTube™ English Videos’ Quality About Coronary Artery Bypass Grafting. Sisli Etfal Hastan. Tip Bul. 2023, 57, 130–135. [Google Scholar]
- Borges do Nascimento, I.J.; Pizarro, A.B.; Almeida, J.M.; Azzopardi-Muscat, N.; Gonçalves, M.A.; Björklund, M.; Novillo-Ortiz, D. Infodemics and health misinformation: A systematic review of reviews. Bull. World Health Organ. 2022, 100, 544–561. [Google Scholar] [CrossRef] [PubMed]
- Massey, P.A.; Montgomery, C.; Zhang, A.S. Comparison of ChatGPT-3.5, ChatGPT-4, and Orthopaedic Resident Performance on Orthopaedic Assessment Examinations. J. Am. Acad. Orthop. Surg. 2023, 31, 1173–1179. [Google Scholar] [CrossRef]
- Horiuchi, D.; Tatekawa, H.; Oura, T.; Oue, S.; Walston, S.L.; Takita, H.; Matsushita, S.; Mitsuyama, Y.; Shimono, T.; Miki, Y.; et al. Comparing the Diagnostic Performance of GPT-4-based ChatGPT, GPT-4V-based ChatGPT, and Radiologists in Challenging Neuroradiology Cases. Clin. Neuroradiol. 2024, 34, 779–787. [Google Scholar] [CrossRef]
- Takagi, S.; Watari, T.; Erabi, A.; Sakaguchi, K. Performance of GPT-3.5 and GPT-4 on the Japanese Medical Licensing Examination: Comparison Study. JMIR Med. Educ. 2023, 9, e48002. [Google Scholar] [CrossRef]
- Stadler, M.; Horrer, A.; Fischer, M.R. Crafting medical MCQs with generative AI: A how-to guide on leveraging ChatGPT. GMS J. Med. Educ. 2024, 41, Doc20. [Google Scholar] [PubMed]
- Goodman, R.S.; Patrinely JRJr Osterman, T.; Wheless, L.; Johnson, D.B. On the cusp: Considering the impact of artificial intelligence language models in healthcare. Med 2023, 4, 139–140. [Google Scholar] [CrossRef] [PubMed]
- Schwendicke, F.; Samek, W.; Krois, J. Artificial intelligence in dentistry: Chances and challenges. J. Dent. Res. 2020, 99, 769–774. [Google Scholar] [CrossRef]
- You, W.; Hao, A.; Li, S.; Wang, Y.; Xia, B. Deep learning-based dental plaque detection on primary teeth: A comparison with clinical assessments. BMC Oral Health 2020, 20, 141. [Google Scholar] [CrossRef] [PubMed]
- Kılıc, M.C.; Bayrakdar, I.S.; Çelik, Ö.; Bilgir, E.; Orhan, K.; Aydın, O.B.; Kaplan, F.A.; Sağlam, H.; Odabaş, A.; Aslan, A.F.; et al. Artificial intelligence system for automatic deciduous tooth detection and numbering in panoramic radiographs. Dentomaxillofac Radiol. 2021, 50, 20200172. [Google Scholar] [CrossRef] [PubMed]
- Naeimi, S.M.; Darvish, S.; Salman, B.N.; Luchian, I. Artificial Intelligence in Adult and Pediatric Dentistry: A Narrative Review. Bioengineering 2024, 11, 431. [Google Scholar] [CrossRef]
- Alessa, N. Application of Artificial Intelligence in Pediatric Dentistry: A Literature Review. J. Pharm. Bioallied Sci. 2024, 16 (Suppl. S3), S1938–S1940. [Google Scholar] [CrossRef]
- Vishwanathaiah, S.; Fageeh, H.N.; Khanagar, S.B.; Maganur, P.C. Artificial Intelligence Its Uses and Application in Pediatric Dentistry: A Review. Biomedicines 2023, 11, 788. [Google Scholar] [CrossRef]
- Alharbi, N.; Alharbi, A.S. AI-Driven Innovations in Pediatric Dentistry: Enhancing Care and Improving Outcome. Cureus 2024, 16, e69250. [Google Scholar] [CrossRef]
- Dave, T.; Athaluri, S.A.; Singh, S. ChatGPT in medicine: An overview of its applications, advantages, limitations, future prospects, and ethical considerations. Front. Artif. Intell. 2023, 6, 1169595. [Google Scholar] [CrossRef] [PubMed]
- Mondal, H.; Panigrahi, M.; Mishra, B.; Behera, J.K.; Mondal, S. A pilot study on the capability of artificial intelligence in preparation of patients’ educational materials for Indian public health issues. J. Fam. Med. Prim. Care 2023, 12, 1659–1662. [Google Scholar] [CrossRef] [PubMed]
- Yau, J.Y.; Saadat, S.; Hsu, E.; Murphy, L.S.; Roh, J.S.; Suchard, J.; Tapia, A.; Wiechmann, W.; Langdorf, M.I. Accuracy of Prospective Assessments of 4 Large Language Model Chatbot Responses to Patient Questions About Emergency Care: Experimental Comparative Study. J. Med. Internet Res. 2024, 26, e60291. [Google Scholar] [CrossRef] [PubMed]
- Munir, F.; Gehres, A.; Wai, D.; Song, L. Evaluation of ChatGPT as a Tool for Answering Clinical Questions in Pharmacy Practice. J. Pharm. Pract. 2024, 37, 1303–1310. [Google Scholar] [CrossRef] [PubMed]
Age
|
Score 1 | Poor quality, poor flow of the site, most information missing, and not at all useful for patients |
Score 2 | Generally poor quality and poor flow, some information listed but many important topics missing, and of very limited use to patients |
Score 3 | Moderate quality, suboptimal flow, some important information is adequately discussed but others poorly discussed, and somewhat useful for patients |
Score 4 | Good quality and generally good flow, most of the relevant information is listed, but some topics are not covered, and useful for patients |
Score 5 | Excellent quality and excellent flow, and very useful for patients |
Question | ChatGPT 3.5 | Microsoft Copilot | Gemini | Average |
---|---|---|---|---|
1 | 2.83 ± 0.75 | 4.33 ± 0.82 * | 3.50 ± 1.05 | 3.56 ± 1.04 |
2 | 3.17 ± 0.75 | 3.50 ± 1.05 | 3.00 ± 0.63 | 3.22 ± 0.80 |
3 | 3.33 ± 0.52 | 3.83 ± 0.75 | 3.17 ± 0.98 | 3.44 ± 0.78 |
4 | 2.83 ± 0.75 | 3.17 ± 0.41 | 3.17 ± 1.17 | 3.06 ± 0.80 |
5 | 3.17 ± 0.41 | 3.83 ± 0.75 | 2.83 ± 0.98 | 3.28 ± 0.83 |
6 | 3.67 ± 0.52 | 2.83 ± 0.75 | 2.33 ± 0.82 * | 2.94 ± 0.87 |
7 | 3.50 ± 0.55 | 3.83 ± 0.75 | 3.33 ± 1.03 | 3.56 ± 0.78 |
8 | 3.33 ± 0.52 | 3.83 ± 0.75 | 3.83 ± 0.75 | 3.67 ± 0.69 |
9 | 1.67 ± 0.52 | 3.67 ± 0.82 ** | 2.50 ± 0.55 | 2.61 ± 1.04 |
10 | 2.33 ± 0.52 | 4.00 ± 0.63 ** | 3.67 ± 0.52 * | 3.33 ± 0.91 |
11 | 2.83 ± 0.75 | 2.17 ± 0.75 | 3.17 ± 0.75 | 2.72 ± 0.83 |
12 | 3.00 ± 0.89 | 3.83 ± 0.41 | 3.00 ± 0.89 | 3.28 ± 0.83 |
13 | 3.33 ± 0.82 | 3.00 ± 0.63 | 2.67 ± 0.82 | 3.00 ± 0.77 |
14 | 3.67 ± 0.82 | 4.17 ± 0.75 | 3.67 ± 0.52 | 3.83 ± 0.71 |
15 | 4.50 ± 0.55 | 1.00 ± 0.00 ** | 3.83 ± 0.75 † | 3.11 ± 1.64 |
16 | 2.00 ± 0.89 | 4.17 ± 0.41 * | 4.33 ± 0.82 ** | 3.50 ± 1.29 |
17 | 4.00 ± 0.63 | 3.67 ± 0.52 | 3.83 ± 0.41 | 3.83 ± 0.51 |
18 | 4.00 ± 0.00 | 3.83 ± 0.41 | 3.67 ± 0.52 | 3.83 ± 0.38 |
19 | 3.17 ± 0.75 | 4.17 ± 0.75 | 3.67 ± 0.82 | 3.67 ± 0.84 |
20 | 3.17 ± 0.75 | 3.33 ± 0.82 | 3.33 ± 0.82 | 3.28 ± 0.75 |
Total | 3.18 ± 0.90 | 3.51 ± 1.00 | 3.33 ± 0.89 | 3.34 ± 0.94 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kusaka, S.; Akitomo, T.; Hamada, M.; Asao, Y.; Iwamoto, Y.; Tachikake, M.; Mitsuhata, C.; Nomura, R. Usefulness of Generative Artificial Intelligence (AI) Tools in Pediatric Dentistry. Diagnostics 2024, 14, 2818. https://doi.org/10.3390/diagnostics14242818
Kusaka S, Akitomo T, Hamada M, Asao Y, Iwamoto Y, Tachikake M, Mitsuhata C, Nomura R. Usefulness of Generative Artificial Intelligence (AI) Tools in Pediatric Dentistry. Diagnostics. 2024; 14(24):2818. https://doi.org/10.3390/diagnostics14242818
Chicago/Turabian StyleKusaka, Satoru, Tatsuya Akitomo, Masakazu Hamada, Yuria Asao, Yuko Iwamoto, Meiko Tachikake, Chieko Mitsuhata, and Ryota Nomura. 2024. "Usefulness of Generative Artificial Intelligence (AI) Tools in Pediatric Dentistry" Diagnostics 14, no. 24: 2818. https://doi.org/10.3390/diagnostics14242818
APA StyleKusaka, S., Akitomo, T., Hamada, M., Asao, Y., Iwamoto, Y., Tachikake, M., Mitsuhata, C., & Nomura, R. (2024). Usefulness of Generative Artificial Intelligence (AI) Tools in Pediatric Dentistry. Diagnostics, 14(24), 2818. https://doi.org/10.3390/diagnostics14242818