Virtual Monoenergetic Imaging of Thoracoabdominal Computed Tomography Angiography on Photon-Counting Detector Computertomography: Assessment of Image Quality and Leveraging Low-keV Series for Salvaging Suboptimal Contrast Acquisitions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patient Population
2.2. Scan Protocol and Image Reconstruction
2.3. Objective Image Analysis
2.4. Subgroup Analysis
2.5. Subjective Image Analysis
2.6. Statistical Analysis
3. Results
3.1. Patient Population
3.2. Objective Image Analysis
3.3. Subgroup Analysis
Subjective Image Analysis
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bette, S.J.; Braun, F.M.; Haerting, M.; Decker, J.A.; Luitjens, J.H.; Scheurig-Muenkler, C.; Kroencke, T.J.; Schwarz, F. Visualization of bone details in a novel photon-counting dual-source CT scanner-comparison with energy integrating CT. Eur. Radiol. 2021, 32, 2930–2936. [Google Scholar] [CrossRef] [PubMed]
- Byl, A.; Klein, L.; Sawall, S.; Heinze, S.; Schlemmer, H.-P.; Kachelrieß, M. Photon-counting normalized metal artifact reduction (NMAR) in diagnostic CT. Med. Phys. 2021, 45, 3572–3582. [Google Scholar] [CrossRef] [PubMed]
- Brendel, J.M.; Walterspiel, J.; Hagen, F.; Künler, J.; Paul, J.-F.; Nikolaou, K.; Gawazd, M.; Greulich, S.; Krumm, P.; Winkelmann, M. Coronary artery disease evaluation during transcatheter aortic valve replacement work-up using photon-counting CT and artificial intelligence. Diagn. Interv. Imaging 2024, 105, 273–280. [Google Scholar] [CrossRef]
- Willemink, M.J.; Persson, M.; Pourmorteza, A.; Pelc, N.J.; Fleischmann, D. Photon-counting CT: Technical Principles and Clinical Prospects. Radiology 2018, 289, 293–312. [Google Scholar] [CrossRef]
- Klein, L.; Dorn, S.; Amato, C.; Heinze, S.; Uhrig, M.; Schlemmer, H.-P.; Kachelrieß, M.; Sawall, S. Effects of Detector Sampling on Noise Reduction in Clinical Photon-Counting Whole-Body Computed Tomography. Investig. Radiol. 2020, 5, 111–119. [Google Scholar] [CrossRef]
- Marukawa, Y.; Sato, S.; Tanaka, T.; Tada, A.; Kanie, Y.; Kanazawa, S. Evaluating Low-kV Dual-source CT Angiography by High-pitch Spiral Acquisition and Iterative Reconstruction in Pediatric Congenital Heart Disease Patients. Acta Med. Okayama 2017, 71, 407–412. [Google Scholar]
- D’Angelo, T.; Cicero, G.; Mazziotti, S.; Ascenti, G.; Albrecht, M.H.; Martin, S.S.; Othman, A.; Vogl, T.J.; Wichmann, J.L. Dual energy computed tomography virtual monoenergetic imaging: Technique and clinical applications. Br. J. Radiol. 2019, 92, 20180546. [Google Scholar] [CrossRef]
- Pourmorteza, A.; Symons, R.; Henning, A.; Ulzheimer, S.; Bluemke, D. Dose efficiency of quarter-millimeter photon-counting computed tomography: First-in-human results. Investig. Radiol. 2018, 53, 365–372. [Google Scholar] [CrossRef]
- Higashigaito, K.; Euler, A.; Eberhard, M.; Flohr, T.G.; Schmidt, B.; Alkadhi, H. Contrast-Enhanced Abdominal CT with Clinical Photon-Counting Detector CT: Assessment of Image Quality and Comparison with Energy-Integrating Detector CT. Acad. Radiol. 2022, 29, 689–697. [Google Scholar] [CrossRef]
- Higashigaito, K.; Mergen, V.; Eberhard, M.; Jungblut, L.; Hebeisen, M.; Rätzer, S.; Zanini, B.; Kobe, A.; Martini, K.; Euler, A.; et al. CT Angiography of the Aorta Using Photon-counting Detector CT with Reduced Contrast Media Volume. Radiol. Cardiothorac. Imaging 2023, 5, e220140. [Google Scholar] [CrossRef]
- Emrich, T.; O’Doherty, J.; Schoepf, U.J.; Suranyi, P.; Aquino, G.; Kloeckner, R.; Schmidt, B.; Flohr, T.G.; Varga-Szemes, A. Reduced Iodinated Contrast Media Administration in Coronary CT Angiography on a Clinical Photon-Counting Detector CT System a Phantom Study Using a Dynamic Circulation Model. Investig. Radiol. 2023, 58, 148–155. [Google Scholar] [PubMed]
- Rippel, K.; Luitjens, J.H.; Habeeballah, O.; Scheurig-Muenkler, C.; Bette, S.J.; Braun, F.M.; Kroencke, T.; Decker, J.A.; Schwarz, F. Evaluation of ECG-gated, high-pitch thoracoabdominal angiographies with dual-source photon-counting detector computed tomography. J. Endovasc. Ther. 2024, 15266028241230943. [Google Scholar] [CrossRef] [PubMed]
- Tsigkas, G.; Despotopoulos, S.; Makris, A.; Koniari, I.; Armylagos, S.; Davlouros, P.; Hahlis, G. Transcatheter versus surgical aortic valve replacement in severe, symptomatic aortic stenosis. J. Geriatr. Cardiol. 2018, 15, 76–85. [Google Scholar]
- Pontes, I.; Guimaraes, C.; Fonseca, E.; Silva, M.; Neto, R.; Ishikawa, W. Computed tomography angiography in the planning of transcatheter aortic valve replacement: A step-by-step approach. Radiol. Bras. 2022, 55, 373–379. [Google Scholar] [CrossRef]
- Wake, N.; Kumamaru, K.; Prior, R.; Rybicki, F.; Steigner, M. Computed tomography angiography for transcatheter aortic valve replacement. Radiol. Technol. 2013, 84, 326–340. [Google Scholar]
- Hagar, M.T.; Kluemper, T.; Hein, M.; von Zur Muhlen, C.; Faby, S.; Capilli, F.; Schuppert, C.; Schmitt, R.; Ruile, P.; Westermann, D.; et al. Photon-counting CT-angiography in pre-TAVR aortic annulus assessment: Effects of retrospective vs. prospective ECG-synchronization on prosthesis valve selection. Int. J. Cardiovasc. Imaging 2024, 40, 811–820. [Google Scholar] [CrossRef]
- Sharma, N.; Sachedina, A.; Kumar, S. Low-flow, Low-gradient Severe Aortic Stenosis: A Review. Heart Int. 2023, 17, 8–12. [Google Scholar] [CrossRef]
- Van der Bie, J.; Sharma, S.P.; van Straten, M.; Bos, D.; Hirsch, A.; Dijkshoorn, M.L.; Adrichem, R.; van Mieghem, N.; Budde, R. Photon-counting Detector CT in Patients Pre- and Post-Transcatheter Aortic Valve. Radiol. Cardiothorac. Imaging 2023, 5, e220318. [Google Scholar] [CrossRef]
- Zanon, C.; Cademartiri, F.; Toniolo, A.; Bini, C.; Clemente, A.; Colacchio, E.C.; Mastro, F.; Antonello, M.; Quaia, E.; Pepe, A. Advantages of Photon-Counting Detector CT in Aortic Imaging. Tomography 2024, 10, 1–13. [Google Scholar] [CrossRef]
- Risch, F.; Harmel, E.; Rippel, K.; Wein, B.; Raake, P.; Girdauskas, E.; Elvinger, S.; Owais, T.; Scheurig-Muenkler, C.; Kroencke, T.J.; et al. Virtual non-contrast series of photon-counting detector computed tomography angiography for aortic valve calcium scoring. Radiol. Cardiothorac. Imaging 2024, 40, 723–732. [Google Scholar] [CrossRef]
- Euler, A.; Higashigaito, K.; Mergen, V.; Sartoretti, T.; Zanini, B.; Schmidt, B.; Flohr, T.G.; Ulzheimer, S.; Eberhard, M.; Alkadhi, H. High-Pitch Photon-Counting Detector Computed Tomography Angiography of the Aorta-Intraindividual Comparison to Energy-Integrating Detector Computed Tomography at Equal Radiation Dose. Investig. Radiol. 2022, 57, 115–121. [Google Scholar] [CrossRef] [PubMed]
- Rippel, K.; Decker, J.A.; Trzaska, T.; Haerting, M.; Kroencke, T.J.; Schwarz, F.; Scheurig-Muenkler, C. Evaluation of Run-Off Computed Tomography Angiography on a First-Generation Photon-Counting Detector CT scanner–Comparison with low-kVp Energy-Integrating CT. Eur. J. Radiol. 2023, 158, 110645. [Google Scholar] [CrossRef] [PubMed]
- Skawran, S.; Angst, F.; Blüthgen, C.; Eberhard, M.; Kälin, P.; Kobe, A.; Nagy, D.; Szucs-Farkas, Z.; Alkadhi, H.; Euler, A. Dual-Energy Low-keV or Single-Energy Low-kV CT for Endoleak Detection? A 6-Reader Study in an Aortic Aneurysm Phantom. Investig. Radiol. 2020, 55, 45–52. [Google Scholar] [CrossRef]
- Sudarski, S.; Apfaltrer, P.; Nance, J.W., Jr.; Schneider, D.; Meyer, M.; Schoenberg, S.O.; Fink, C.; Henzler, T. Optimization of keV-settings in abdominal and lower extremity dual-source dual-energy CT angiography determined with virtual monoenergetic imaging. Eur. J. Radiol. 2013, 82, e574–e581. [Google Scholar] [CrossRef]
- Ren, H.; Zhen, Y.; Gong, Z.; Wang, C.; Chang, Z.; Zheng, J. Assessment of Virtual Monoenergetic Images in Run-off Computed Tomography Angiography: A Comparison Study to Conventional Images from Spectral Detector Computed Tomography. J. Comput. Assist. Tomogr. 2021, 45, 232–237. [Google Scholar] [CrossRef]
- Leithner, D.; Mahmoudi, S.; Wichmann, J.L.; Martin, S.S.; Lenga, L.; Albrecht, M.H.; Booz, C.; Arendt, C.; Beeres, M.; D’Angelo, T.; et al. Evaluation of virtual monoenergetic imaging algorithms for dual-energy carotid and intracerebral CT angiography: Effects on image quality, artefacts and diagnostic performance for the detection of stenosis. Eur. J. Radiol. 2018, 99, 111–117. [Google Scholar] [CrossRef]
- Alaiti, M.A.; Attizzani, G.F.; Fares, A.; Eck, B.; Hedent, S.V.; Patel, S.; Cavallo, A.U.; Fahmi, R.; Levi, J.; Ichibori, Y.; et al. Contrast-Sparing Imaging Utilizing Spectral Detector CT for Transcatheter Aortic Valve Replacement Procedure Planning. Struct. Heart 2020, 4, 195–203. [Google Scholar] [CrossRef]
- Patino, M.; Parakh, A.; Lo, G.C.; Agrawal, M.; Kambadakone, A.R.; Oliveira, G.; Sahani, D.V. Virtual Monochromatic Dual-Energy Aortoiliac CT Angiography with Reduced Iodine Dose: A Prospective Randomized Study. Am. J. Roentgenol. 2019, 212, 467–474. [Google Scholar] [CrossRef]
- Noda, Y.; Nakamura, F.; Yasuda, N.; Miyoshi, T.; Kawai, N.; Kawada, H.; Hyodo, F.; Matsuo, M. Advantages and disadvantages of single-source dual-energy whole-body CT angiography with 50% reduced iodine dose at 40 keV reconstruction. Br. J. Radiol. 2021, 94, 20201276. [Google Scholar] [CrossRef]
- Yalynska, T.; Polacin, M.; Frauenfelder, T.; Martini, K. Impact of Photon Counting Detector CT Derived Virtual Monoenergetic Images on the Diagnosis of Pulmonary Embolism. Diagnostics 2022, 12, 2715. [Google Scholar] [CrossRef]
Age, Years | 77.4 ± 8.5 |
Sex (m/f) | 40/15 |
Weight, kg | 75.2 ± 10.8 |
Height, m | 1.70 ± 0.07 |
BMI, kg/m² | 25.9 ± 3.1 |
CTDIvol, mGy | 4.1 ± 1 |
DLP, mGy·cm | 473 ± 172.5 |
keV | Loc | HU | Noise | CNR | SNR |
---|---|---|---|---|---|
40 | ascending aorta | 1338.8 ± 249.7 | 39.4 ± 9.7 | 34.2 ± 10.9 | 39.1 ± 13.4 |
40 | descending aorta | 1138.1 ± 242.7 | 51.1 ± 13.4 | 22.4 ± 7.7 | 33.2 ± 11.6 |
40 | Infrarenal aorta | 868.5 ± 232.1 | 48.8 ± 16.6 | 17.9 ± 7.3 | 25.1 ± 9.3 |
40 | left CFA | 414.9 ± 169.2 | 30.7 ± 9.8 | 12.4 ± 7.4 | 11.9 ± 5.8 |
40 | right CFA | 417.4 ± 172.7 | 32.6 ± 9.4 | 11.4 ± 6.2 | 12.0 ± 6.0 |
45 | ascending aorta | 1078.7 ± 223.1 | 34.2 ± 8.6 | 31.2 ± 9.9 | 34.7 ± 12.3 |
45 | descending aorta | 924.3 ± 200.8 | 45.1 ± 11.4 | 20.3 ± 7.1 | 29.7 ± 10.5 |
45 | Infrarenal aorta | 716.3 ± 175.1 | 43.0 ± 13.4 | 16.4 ± 6.4 | 22.9 ± 8.1 |
45 | left CFA | 349.7 ± 131.7 | 28.0 ± 8.5 | 11.2 ± 6.4 | 11.1 ± 5.1 |
45 | right CFA | 348.8 ± 135.8 | 29.2 ± 8.5 | 10.4 ± 5.5 | 11.1 ± 5.2 |
70 | ascending aorta | 456.2 ± 93.8 | 20.2 ± 4.7 | 20.8 ± 5.7 | 22.2 ± 7.1 |
70 | descending aorta | 388.3 ± 79.1 | 26.1 ± 6.5 | 13.6 ± 4.4 | 18.9 ± 5.9 |
70 | Infrarenal aorta | 305.0 ± 80.4 | 25.1 ± 7.8 | 10.8 ± 4.1 | 14.8 ± 5.0 |
70 | left CFA | 165.6 ± 53.7 | 17.3 ± 5.9 | 7.3 ± 4.2 | 8.0 ± 3.3 |
70 | right CFA | 167.3 ± 51.3 | 16.5 ± 5.6 | 7.8 ± 4.8 | 8.1 ± 3.1 |
keV 70 | keV 40/45 | |
---|---|---|
Subgroup 1 n = 11 | 5 (45) | 7 (64) |
Subgroup 2 n = 22 | 17 (77) | 20 (91) |
Subgroup 3 n = 21 | 19 (90) | 20 (95) |
Subgroup 4 n = 41 | 38 (93) | 40 (98) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rippel, K.; Decker, J.A.; Luitjens, J.; Habeeballah, O.; Bette, S.; Braun, F.; Kroencke, T.J.; Scheurig-Muenkler, C. Virtual Monoenergetic Imaging of Thoracoabdominal Computed Tomography Angiography on Photon-Counting Detector Computertomography: Assessment of Image Quality and Leveraging Low-keV Series for Salvaging Suboptimal Contrast Acquisitions. Diagnostics 2024, 14, 2843. https://doi.org/10.3390/diagnostics14242843
Rippel K, Decker JA, Luitjens J, Habeeballah O, Bette S, Braun F, Kroencke TJ, Scheurig-Muenkler C. Virtual Monoenergetic Imaging of Thoracoabdominal Computed Tomography Angiography on Photon-Counting Detector Computertomography: Assessment of Image Quality and Leveraging Low-keV Series for Salvaging Suboptimal Contrast Acquisitions. Diagnostics. 2024; 14(24):2843. https://doi.org/10.3390/diagnostics14242843
Chicago/Turabian StyleRippel, Katharina, Josua A. Decker, Jan Luitjens, Osama Habeeballah, Stefanie Bette, Franziska Braun, Thomas J. Kroencke, and Christian Scheurig-Muenkler. 2024. "Virtual Monoenergetic Imaging of Thoracoabdominal Computed Tomography Angiography on Photon-Counting Detector Computertomography: Assessment of Image Quality and Leveraging Low-keV Series for Salvaging Suboptimal Contrast Acquisitions" Diagnostics 14, no. 24: 2843. https://doi.org/10.3390/diagnostics14242843
APA StyleRippel, K., Decker, J. A., Luitjens, J., Habeeballah, O., Bette, S., Braun, F., Kroencke, T. J., & Scheurig-Muenkler, C. (2024). Virtual Monoenergetic Imaging of Thoracoabdominal Computed Tomography Angiography on Photon-Counting Detector Computertomography: Assessment of Image Quality and Leveraging Low-keV Series for Salvaging Suboptimal Contrast Acquisitions. Diagnostics, 14(24), 2843. https://doi.org/10.3390/diagnostics14242843