Sex Differences in Sleep Profiles and the Effect of Elexacaftor/Tezacaftor/Ivacaftor on Sleep Quality in Adult People with Cystic Fibrosis: A Prospective Observational Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Study Participants
2.3. Cardiorespiratory Polysomnography
2.4. Assessments
2.5. Laboratory Chemical Analysis
2.6. Statistical Analysis
3. Results
3.1. Study Participants
3.2. Sleep Profiles of wwCF Versus mwCF
3.3. Sleep Profiles of Men and Women with CF Versus Lung-Healthy Men and Women
3.4. Correlations Between Changes in ppFEV1 and Changes in PSG Parameters in pwCF
3.5. Correlation Between Blood Transferrin and PLMI in pwCF
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Patel, A.K.; Reddy, V.; Shumway, K.R.; Araujo, J.F. Physiology, Sleep Stages. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2024. Available online: https://www.ncbi.nlm.nih.gov/books/NBK526132/ (accessed on 26 January 2024).
- Nowakowski, S.; Meers, J.; Heimbach, E. Sleep and women’s health. Sleep. Med. Res. 2013, 4, 1–22. [Google Scholar] [CrossRef] [PubMed]
- Mehta, N.; Shafi, F.; Bhat, A. Unique aspects of sleep in women. Mo. Med. 2015, 112, 430–434. [Google Scholar] [PubMed]
- Mong, J.A.; Cusmano, D.M. Sex differences in sleep: Impact of biological sex and sex steroids. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2016, 371, 20150110. [Google Scholar] [CrossRef] [PubMed]
- Mallampalli, M.P.; Carter, C.L. Exploring sex and gender differences in sleep health: A Society for Women’s Health Research Report. J. Womens Health 2014, 23, 553–562. [Google Scholar] [CrossRef] [PubMed]
- Pengo, M.F.; Won, C.H.; Bourjeily, G. Sleep in women across the life span. Chest 2018, 154, 196–206. [Google Scholar] [CrossRef]
- Welsner, M.; Schulte, T.; Dietz-Terjung, S.; Weinreich, G.; Stehling, F.; Taube, C.; Strassburg, S.; Schoebel, C.; Sutharsan, S. Effect of triple combination CFTR modulator therapy on sleep in adult patients with cystic fibrosis. Respiration 2022, 101, 766–774. [Google Scholar] [CrossRef]
- de Boeck, K.; Zolin, A.; Cuppens, H.; Olesen, H.V.; Viviani, L. The relative frequency of CFTR mutation classes in European patients with cystic fibrosis. J. Cyst. Fibros. 2014, 13, 403–409. [Google Scholar] [CrossRef]
- Kerem, E.; Reisman, J.; Corey, M.; Canny, G.J.; Levison, H. Prediction of mortality in patients with cystic fibrosis. N. Engl. J. Med. 1992, 326, 1187–1191. [Google Scholar] [CrossRef]
- Ramsey, B.W.; Davies, J.; McElvaney, N.G.; Tullis, E.; Bell, S.C.; Dřevínek, P.; Griese, M.; McKone, E.F.; Wainwright, C.E.; Konstan, M.W.; et al. A CFTR potentiator in patients with cystic fibrosis and the G551D mutation. N. Engl. J. Med. 2011, 365, 1663–1672. [Google Scholar] [CrossRef]
- Scotet, V.; L’Hostis, C.; Férec, C. The changing epidemiology of cystic fibrosis: Incidence, survival and impact of the CFTR gene discovery. Genes 2020, 11, 589. [Google Scholar] [CrossRef]
- Barry, P.J.; Taylor-Cousar, J.L. Triple combination cystic fibrosis transmembrane conductance regulator modulator therapy in the real world—Opportunities and challenges. Curr. Opin. Pulm. Med. 2021, 27, 554–566. [Google Scholar] [CrossRef] [PubMed]
- Nichols, D.P.; Paynter, A.C.; Heltshe, S.L.; Donaldson, S.H.; Frederick, C.A.; Freedman, S.D.; Gelfond, D.; Hoffman, L.R.; Kelly, A.; Narkewicz, M.R.; et al. Clinical effectiveness of elexacaftor/tezacaftor/ivacaftor in people with cystic fibrosis: A clinical trial. Am. J. Respir. Crit. Care Med. 2022, 205, 529–539. [Google Scholar] [CrossRef] [PubMed]
- Jain, R.; Kazmerski, T.M.; Aitken, M.L.; West, N.; Wilson, A.; Bozkanat, K.M.; Montemayor, K.; von Berg, K.; Sjoberg, J.; Poranski, M.; et al. Challenges faced by women with cystic fibrosis. Clin. Chest Med. 2021, 42, 517–530. [Google Scholar] [CrossRef] [PubMed]
- Saint-Criq, V.; Harvey, B.J. Estrogen and the cystic fibrosis gender gap. Steroids 2014, 81, 4–8. [Google Scholar] [CrossRef]
- Holtrop, M.; Cosmich, S.; Lee, M.; Keller, A.; Jain, R. Sex differences persist after treatment with ivacaftor in people with cystic fibrosis. Chest, 2024; Online ahead of print. [Google Scholar] [CrossRef]
- Wang, A.; Lee, M.J.; Keller, A.; Jian, S.; Lowe, K.; Finklea, J.D.; Jain, R. Sex differences in outcomes of people with cystic fibrosis treated with elexacaftor/tezacaftor/ivacaftor. J. Cyst. Fibros. 2024, 23, 91–98. [Google Scholar] [CrossRef]
- Perin, C.; Fagondes, S.C.; Casarotto, F.C.; Pinotti, A.F.F.; Barreto, S.S.M.; Dalcin, P.d.T.R. Sleep findings and predictors of sleep desaturation in adult cystic fibrosis patients. Sleep. Breath. 2012, 16, 1041–1048. [Google Scholar] [CrossRef]
- Fauroux, B.; Pepin, J.-L.; Boelle, P.-Y.; Cracowski, C.; Murris-Espin, M.; Nove-Josserand, R.; Stremler, N.; Simon, T.; Burgel, P.-R. Sleep quality and nocturnal hypoxaemia and hypercapnia in children and young adults with cystic fibrosis. Arch. Dis. Child. 2012, 97, 960–966. [Google Scholar] [CrossRef]
- Bouka, A.; Tiede, H.; Liebich, L.; Dumitrascu, R.; Hecker, C.; Reichenberger, F.; Mayer, K.; Seeger, W.; Schulz, R. Quality of life in clinically stable adult cystic fibrosis out-patients: Associations with daytime sleepiness and sleep quality. Respir. Med. 2012, 106, 1244–1249. [Google Scholar] [CrossRef]
- Milross, M.A.; Piper, A.J.; Norman, M.; Dobbin, C.J.; Grunstein, R.R.; Sullivan, C.E.; Bye, P.T. Subjective sleep quality in cystic fibrosis. Sleep. Med. 2002, 3, 205–212. [Google Scholar] [CrossRef]
- Berry, R.B.; Brooks, R.; Gamaldo, C.E.; Harding, S.M.; Lloyd, R.M.; Marcus, C.L.; Vaughn, B.V. The AASM Manual for the Scoring of Sleep and Associated Events: Rules, Terminology and Technical Specifications; American Academy of Sleep Medicine: Darien, IL, USA, 2015. [Google Scholar]
- Jarad, N.A.; Sequeiros, I.M.; Patel, P.; Bristow, K.; Sund, Z. Fatigue in cystic fibrosis: A novel prospective study investigating subjective and objective factors associated with fatigue. Chron. Respir. Dis. 2012, 9, 241–249. [Google Scholar] [CrossRef]
- der Vlist, M.M.N.-V.; Burghard, M.; Hulzebos, H.; Doeleman, W.R.; Heijerman, H.G.; van der Ent, C.K.; Nijhof, S.L. Prevalence of severe fatigue among adults with cystic fibrosis: A single center study. J. Cyst. Fibros. 2018, 17, 368–374. [Google Scholar] [CrossRef] [PubMed]
- Reiter, J.; Breuer, O.; Cohen-Cymberknoh, M.; Forno, E.; Gileles-Hillel, A. Sleep in children with cystic fibrosis: More under the covers. Pediatr. Pulmonol. 2022, 57, 1944–1951. [Google Scholar] [CrossRef] [PubMed]
- Vandeleur, M.; Walter, L.M.; Armstrong, D.S.; Robinson, P.; Nixon, G.M.; Horne, R.S. How well do children with cystic fibrosis sleep? An actigraphic and questionnaire-based study. J. Pediatr. 2017, 182, 170–176. [Google Scholar] [CrossRef] [PubMed]
- Cohen-Cymberknoh, M.; Atia, O.; Gileles-Hillel, A.; Kerem, E.; Reiter, J. Sleep disorders in patients with primary ciliary dyskinesia, cystic fibrosis with and without pancreatic insufficiency. Respir. Med. 2019, 151, 96–101. [Google Scholar] [CrossRef]
- Jia, S.; Wang, Y.; Ross, M.H.; Zuckerman, J.B.; Murray, S.; Han, M.K.; E Cahalan, S.; E Lenhan, B.; Best, R.N.; Taylor-Cousar, J.L.; et al. Association between CFTR modulators and changes in iron deficiency markers in cystic fibrosis. J. Cyst. Fibros. 2024; Online ahead of print. [Google Scholar] [CrossRef]
- Accurso, F.J.; Van Goor, F. Elexacaftor-Tezacaftor-Ivacaftor for CF with F508del Homozygous. N. Engl. J. Med. 2018, 379, 1671–1681. [Google Scholar]
- Sharma, S.; Ghosh, R. Role of CFTR in Iron Transport and its Implications. J. Cyst. Fibros. 2015, 14, 523–531. [Google Scholar]
- Cuppens, H. Modulation of CFTR Activity and its Effects on Neurotransmission. Front. Pharmacol. 2020, 11, 576239. [Google Scholar]
- Schaupp, L.; Addante, A.; Völler, M.; Fentker, K.; Kuppe, A.; Bardua, M.; Duerr, J.; Piehler, L.; Röhmel, J.; Thee, S.; et al. Longitudinal effects of elexacaftor/tezacaftor/ivacaftor on sputum viscoelastic properties, airway infection and inflammation in patients with cystic fibrosis. Eur. Respir. J. 2023, 62, 2202153. [Google Scholar] [CrossRef] [PubMed]
- Loske, J.; Völler, M.; Lukassen, S.; Stahl, M.; Thürmann, L.; Seegebarth, A.; Röhmel, J.; Wisniewski, S.; Messingschlager, M.; Lorenz, S.; et al. Pharmacological Improvement of Cystic Fibrosis Transmembrane Conductance Regulator Function Rescues Airway Epithelial Homeostasis and Host Defense in Children with Cystic Fibrosis. Am. J. Respir. Crit. Care Med. 2024, 209, 1338–1350. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Wucherpfennig, L.; Triphan, S.M.F.; Wege, S.; Kauczor, H.U.; Heussel, C.P.; Schmitt, N.; Wuennemann, F.; Mayer, V.L.; Sommerburg, O.; Mall, M.A.; et al. Magnetic resonance imaging detects improvements of pulmonary and paranasal sinus abnormalities in response to elexacaftor/tezacaftor/ivacaftor therapy in adults with cystic fibrosis. J. Cyst. Fibros. 2022, 21, 1053–1060. [Google Scholar] [CrossRef] [PubMed]
Baseline | 6-Month Follow-Up | |||||
---|---|---|---|---|---|---|
wwCF (n = 12) | mwCF (n = 16) | p-Value | wwCF (n = 12) | mwCF (n = 16) | p-Value | |
AHI, events/h | 3 ± 3 | 4 ± 5 | 0.199 | 1 ± 1 | 2 ± 2 | 0.169 |
Supine AHI, events/h | 9 ± 10 | 7 ± 14 | 0.342 | 1 ± 1 | 9 ± 8 | 0.269 |
AHI during REM sleep, events/h | 8 ± 12 | 10 ± 10 | 0.499 | 1 ± 1 | 3 ± 1 | 0.377 |
RERAs, events/h | 18 ± 22 | 10 ± 9 | 0.499 | 1 ± 1 | 16 ± 1 | 0.049 |
ODI, events/h | 6 ± 7 | 8 ± 5 | 0.352 | 2 ± 1 | 8 ± 2 | 0.246 |
Arousal index, events/h | 36 ± 65 | 16 ± 12 | 0.049 | 19 ± 5 | 14 ± 5 | 0.049 |
Total sleep time, min | 291 ± 39 | 301 ± 42 | 0.267 | 309 ± 32 | 309 ± 9 | 0.281 |
Sleep efficiency, % | 76 ± 10 | 75 ± 11 | 0.449 | 67 ± 6 | 72 ± 2 | 0.205 |
Sleep latency, min | 76 ± 10 | 75 ± 11 | 0.449 | 109 ± 30 | 73 ± 11 | 0.302 |
Wake time after sleep onset, min | 28 ± 21 | 28 ± 19 | 0.407 | 40 ± 11 | 44 ± 15 | 0.407 |
Time spent in N1 sleep, min | 6 ± 4 | 9 ± 4 | 0.07 | 6 ± 2 | 9 ± 1 | 0.06 |
Time spent in N2 sleep, min | 159 ± 29 | 160 ± 26 | 0.458 | 158 ± 10 | 159 ± 7 | 0.458 |
Time spent in N3 sleep, min | 78 ± 26 | 77 ± 22 | 0.468 | 81 ± 11 | 73 ± 5 | 0.469 |
Time spent in REM sleep, min | 55 ± 27 | 53 ± 22 | 0.409 | 53 ± 11 | 48 ± 4 | 0.412 |
Time spent awake, min | 87 ± 33 | 98 ± 46 | 0.263 | 88 ± 16 | 103 ± 12 | 0.254 |
PLMI, events/h | 9 ± 8 | 23 ± 12 | 0.057 | 48 ± 32 | 19 ± 6 | 0.013 |
ESS score | 14 ± 8 | 6 ± 3 | 0.049 | - | - | - |
Mean nocturnal SpO2, % | 93 ± 2 | 92 ± 2 | 0.454 | 95 ± 1 | 94 ± 2 | 0.454 |
Minimum nocturnal SpO2, % | 87 ± 2 | 88 ± 4 | 0.418 | 90 ± 1 | 88 ± 1 | 0.417 |
Nocturnal respiration rate, breaths/min | 22 ± 4 | 21 ± 4 | 0.109 | 17 ± 1 | 15 ± 1 | 0.033 |
Nocturnal heart rate, beats/min | 74 ± 12 | 60 ± 8 | 0.001 | 68 ± 5 | 57 ± 3 | 0.007 |
Controls (Baseline) | Cystic Fibrosis (Baseline) | p-Value vs. Controls | Cystic Fibrosis (6-Month Follow-Up) | p-Value vs. Controls at Baseline | |
---|---|---|---|---|---|
Women | (n = 12) | (n = 12) | (n = 12) | ||
AHI, events/h | 8 ± 9 | 3 ± 3 | 0.004 | 1 ± 1 | 0.004 |
AHI during REM sleep, events/h | 10 ± 10 | 8 ± 12 | 0.068 | 1 ± 1 | 0.004 |
ODI, events/h | 12 ± 14 | 6 ± 7 | 0.023 | 2 ± 1 | 0.023 |
Total sleep time, min | 336 ± 73 | 291 ± 39 | 0.316 | 309 ± 32 | 0.074 |
Sleep efficiency, % | 83 ± 11 | 76 ± 10 | 0.091 | 67 ± 6 | 0.011 |
PLMI, events/h | 33 ± 37 | 9 ± 8 | <0.001 | 48 ± 33 | 0.566 |
ESS score | 8 ± 4 | 14 ± 8 | 0.040 | - | - |
Men | (n = 16) | (n = 16) | (n = 16) | ||
AHI, events/h | 9 ± 20 | 4 ± 5 | 0.028 | 2 ± 2 | 0.018 |
AHI during REM sleep, events/h | 12 ± 20 | 10 ± 10 | 0.068 | 3 ± 1 | 0.049 |
ODI, events/h | 11 ± 5 | 8 ± 5 | 0.319 | 2 ± 1 | 0.014 |
Total sleep time, min | 345 ± 42 | 301 ± 42 | 0.045 | 309 ± 9 | 0.143 |
Sleep efficiency, % | 84 ± 11 | 75 ± 11 | 0.020 | 72 ± 2 | 0.118 |
PLMI, events/h | 29 ± 32 | 23 ± 12 | 0.319 | 19 ± 6 | 0.068 |
ESS score | 6 ± 4 | 6 ± 3 | 0.783 | - | - |
wwCF (n = 12) | mwCF (n = 16) | |
---|---|---|
Correlations with the change in ppFEV1 from baseline to 6 months | ||
Change in AHI from baseline to 6 months | –0.071 (0.827) | 0.114 (0.686) |
Change in supine AHI from baseline to 6 months | –0.123 (0.703) | 0.013 (0.965) |
Change in AHI during REM sleep from baseline to 6 months | –0.638 (0.025) | 0.072 (0.798) |
Change in RERAs from baseline to 6 months | 0.609 (0.035) | 0.179 (0.508) |
Change in ODI from baseline to 6 months | –0.439 (0.177) | –0.119 (0.685) |
Change in arousal index from baseline to 6 months | 0.528 (0.095) | –0.184 (0.513) |
Change in total sleep time from baseline to 6 months | 0.217 (0.498) | –0.04 (0.990) |
Change in sleep efficiency from baseline to 6 months | 0.046 (0.888) | 0.113 (0.689) |
Change in sleep latency from baseline to 6 months | 0.228 (0.477) | –0.143 (0.612) |
Change in wake time after sleep onset from baseline to 6 months | –0.365(0.300) | 0.270 (0.350) |
Change in nocturnal mean SpO2 from baseline to 6 months | 0.088 (0.786) | –0.350 (0.201) |
Change in nocturnal minimum SpO2 from baseline to 6 months | 0.353 (0.288) | –0.459 (0.085) |
Change in nocturnal respiration rate from baseline to 6 months | 0.518 (0.084) | 0.222 (0.427) |
Change in nocturnal heart rate from baseline to 6 months | 0.049 (0.880) | 0.450 (0.092) |
wwCF (n = 12) | mwCF (n = 26) | p-Value | |
---|---|---|---|
Transferrin, g/L | |||
Baseline | 2.7 ± 0.4 | 2.2 ± 0.5 | 0.0049 |
6-month follow-up | 3.8 ± 0.4 | 2.6 ± 0.5 | <0.001 |
Change from baseline to 6 months | 1.1 ± 0.6 | 0.4 ± 0.4 | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dietz-Terjung, S.; Straßburg, S.; Schulte, T.; Dietz, P.; Weinreich, G.; Taube, C.; Schöbel, C.; Welsner, M.; Sutharsan, S. Sex Differences in Sleep Profiles and the Effect of Elexacaftor/Tezacaftor/Ivacaftor on Sleep Quality in Adult People with Cystic Fibrosis: A Prospective Observational Study. Diagnostics 2024, 14, 2859. https://doi.org/10.3390/diagnostics14242859
Dietz-Terjung S, Straßburg S, Schulte T, Dietz P, Weinreich G, Taube C, Schöbel C, Welsner M, Sutharsan S. Sex Differences in Sleep Profiles and the Effect of Elexacaftor/Tezacaftor/Ivacaftor on Sleep Quality in Adult People with Cystic Fibrosis: A Prospective Observational Study. Diagnostics. 2024; 14(24):2859. https://doi.org/10.3390/diagnostics14242859
Chicago/Turabian StyleDietz-Terjung, Sarah, Svenja Straßburg, Tim Schulte, Paul Dietz, Gerhard Weinreich, Christian Taube, Christoph Schöbel, Matthias Welsner, and Sivagurunathan Sutharsan. 2024. "Sex Differences in Sleep Profiles and the Effect of Elexacaftor/Tezacaftor/Ivacaftor on Sleep Quality in Adult People with Cystic Fibrosis: A Prospective Observational Study" Diagnostics 14, no. 24: 2859. https://doi.org/10.3390/diagnostics14242859
APA StyleDietz-Terjung, S., Straßburg, S., Schulte, T., Dietz, P., Weinreich, G., Taube, C., Schöbel, C., Welsner, M., & Sutharsan, S. (2024). Sex Differences in Sleep Profiles and the Effect of Elexacaftor/Tezacaftor/Ivacaftor on Sleep Quality in Adult People with Cystic Fibrosis: A Prospective Observational Study. Diagnostics, 14(24), 2859. https://doi.org/10.3390/diagnostics14242859