Cerebrospinal Fluid Analysis in Rheumatological Diseases with Neuropsychiatric Complications and Manifestations: A Narrative Review
Abstract
:1. Introduction
2. Cerebrospinal Fluid and the Blood-Cerebrospinal Fluid Barrier
3. Cerebrospinal Fluid Analysis
4. Objectives
5. Methods
6. Results: CSF Analysis in Systemic Rheumatic Inflammatory Diseases
6.1. Neuropsychiatric Systemic Lupus Erythematosus
6.1.1. Pathogenesis of Neuropsychiatric Systemic Lupus Erythematosus
6.1.2. Cerebrospinal Fluid Analysis in Neuropsychiatric Systemic Lupus Erythematosus
6.2. Sjogren’s Syndrome
6.2.1. Pathogenesis of Neurological Involvement in Sjogren’s Syndrome
6.2.2. Cerebrospinal Fluid Analysis in Sjogren’s Syndrome
6.3. Neurological Involvement in Rheumatoid Arthritis
Cerebrospinal Fluid Analysis in Rheumatoid Arthritis
6.4. Neurological Involvement in Behçet’s Syndrome
6.4.1. Pathogenesis of Neurological Involvement in Behçet’s Syndrome
6.4.2. Cerebrospinal Fluid Analysis in Behçet’s Syndrome
7. Discussion and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Dougados, M.; Gossec, L. Classification criteria for rheumatic diseases: Why and how? Arthritis Rheum. 2007, 57, 1112–1115. [Google Scholar] [CrossRef] [PubMed]
- Sofat, N.; Malik, O.; Higgens, C.S. Neurological involvement in patients with rheumatic disease. QJM 2006, 99, 69–79. [Google Scholar] [CrossRef] [PubMed]
- Govoni, M.; Bortoluzzi, A.; Padovan, M.; Silvagni, E.; Borrelli, M.; Donelli, F.; Ceruti, S.; Trotta, F. The diagnosis and clinical management of the neuropsychiatric manifestations of lupus. J. Autoimmun. 2016, 74, 41–72. [Google Scholar] [CrossRef] [PubMed]
- Goglin, S.E.; Imboden, J.B. Neurologic Manifestations of Rheumatic Diseases. Rheum. Dis. Clin. N. Am. 2017, 43, xiii–xiv. [Google Scholar] [CrossRef] [PubMed]
- Tumani, H.; Petereit, H.F.; Gerritzen, A.; Gross, C.C.; Huss, A.; Isenmann, S.; Jesse, S.; Khalil, M.; Lewczuk, P.; Lewerenz, J.; et al. S1 guidelines “lumbar puncture and cerebrospinal fluid analysis” (abridged and translated version). Neurol. Res. Pract. 2020, 2, 8. [Google Scholar] [CrossRef] [PubMed]
- Gastaldi, M.; Zardini, E.; Franciotta, D. An update on the use of cerebrospinal fluid analysis as a diagnostic tool in multiple sclerosis. Expert Rev. Mol. Diagn. 2017, 17, 31–46. [Google Scholar] [CrossRef] [PubMed]
- Johanson, C.E.; Duncan, J.A.; Klinge, P.M.; Brinker, T.; Stopa, E.G.; Silverberg, G.D. Multiplicity of cerebrospinal fluid functions: New challenges in health and disease. Cerebrospinal Fluid. Res. 2008, 5, 10. [Google Scholar] [CrossRef] [PubMed]
- Sakka, L.; Coll, G.; Chazal, J. Anatomy and physiology of cerebrospinal fluid. Eur. Ann. Otorhinolaryngol. Head Neck Dis. 2011, 128, 309–316. [Google Scholar] [CrossRef]
- Abbott, N.J.; Patabendige, A.A.; Dolman, D.E.; Yusof, S.R.; Begley, D.J. Structure and function of the blood-brain barrier. Neurobiol. Dis. 2010, 37, 13–25. [Google Scholar] [CrossRef]
- Hladky, S.B.; Barrand, M.A. Mechanisms of fluid movement into, through and out of the brain: Evaluation of the evidence. Fluids Barriers CNS 2014, 11, 26. [Google Scholar] [CrossRef]
- Johanson, C.E.; Duncan, J.A.; Stopa, E.G.; Baird, A. Enhanced prospects for drug delivery and brain targeting by the choroid plexus-CSF route. Pharm. Res. 2005, 22, 1011–1037. [Google Scholar] [CrossRef]
- Redzic, Z.B.; Segal, M.B. The structure of the choroid plexus and the physiology of the choroid plexus epithelium. Adv. Drug Deliv. Rev. 2004, 56, 1695–1716. [Google Scholar] [CrossRef] [PubMed]
- Reiber, H. Flow rate of cerebrospinal fluid (CSF)—A concept common to normal blood-CSF barrier function and to dysfunction in neurological diseases. J. Neurol. Sci. 1994, 122, 189–203. [Google Scholar] [CrossRef] [PubMed]
- Eeg-Olofsson, O.; Link, H.; Wigertz, A. Concentrations of CSF proteins as a measure of blood brain barrier function and synthesis of IgG within the CNS in ‘normal’ subjects from the age of 6 months to 30 years. Acta Paediatr. Scand. 1981, 70, 167–170. [Google Scholar] [CrossRef] [PubMed]
- Statz, A.; Felgenhauer, K. Development of the blood-CSF barrier. Dev. Med. Child Neurol. 1983, 25, 152–161. [Google Scholar] [CrossRef] [PubMed]
- Andersson, M.; Alvarez-Cermeno, J.; Bernardi, G.; Cogato, I.; Fredman, P.; Frederiksen, J.; Fredrikson, S.; Gallo, P.; Grimaldi, L.M.; Gronning, M.; et al. Cerebrospinal fluid in the diagnosis of multiple sclerosis: A consensus report. J. Neurol. Neurosurg. Psychiatry 1994, 57, 897–902. [Google Scholar] [CrossRef] [PubMed]
- Reiber, H. External quality assessment in clinical neurochemistry: Survey of analysis for cerebrospinal fluid (CSF) proteins based on CSF/serum quotients. Clin. Chem. 1995, 41, 256–263. [Google Scholar] [CrossRef] [PubMed]
- Deisenhammer, F.; Bartos, A.; Egg, R.; Gilhus, N.E.; Giovannoni, G.; Rauer, S.; Sellebjerg, F. Guidelines on routine cerebrospinal fluid analysis. Report from an EFNS task force. Eur. J. Neurol. 2006, 13, 913–922. [Google Scholar] [CrossRef] [PubMed]
- Reiber, H. Proteins in cerebrospinal fluid and blood: Barriers, CSF flow rate and source-related dynamics. Restor. Neurol. Neurosci. 2003, 21, 79–96. [Google Scholar]
- Deisenhammer, F.; Egg, R.; Giovannoni, G.; Hemmer, B.; Petzold, A.; Sellebjerg, F.; Teunissen, C.; Tumani, H.; EFSN. EFNS guidelines on disease-specific CSF investigations. Eur. J. Neurol. 2009, 16, 760–770. [Google Scholar] [CrossRef]
- Leen, W.G.; Willemsen, M.A.; Wevers, R.A.; Verbeek, M.M. Cerebrospinal fluid glucose and lactate: Age-specific reference values and implications for clinical practice. PLoS ONE 2012, 7, e42745. [Google Scholar] [CrossRef] [PubMed]
- Govoni, M.; Hanly, J.G. The management of neuropsychiatric lupus in the 21st century: Still so many unmet needs? Rheumatology 2020, 59, v52–v62. [Google Scholar] [CrossRef] [PubMed]
- Bortoluzzi, A.; Silvagni, E.; Furini, F.; Piga, M.; Govoni, M. Peripheral nervous system involvement in systemic lupus erythematosus: A review of the evidence. Clin. Exp. Rheumatol. 2019, 37, 146–155. [Google Scholar] [PubMed]
- Bortoluzzi, A.; Piga, M.; Silvagni, E.; Chessa, E.; Mathieu, A.; Govoni, M. Peripheral nervous system involvement in systemic lupus erythematosus: A retrospective study on prevalence, associated factors and outcome. Lupus 2019, 28, 465–474. [Google Scholar] [CrossRef] [PubMed]
- Monahan, R.C.; Fronczek, R.; Eikenboom, J.; Middelkoop, H.A.M.; Beaart-van de Voorde, L.J.J.; Terwindt, G.M.; van der Wee, N.J.A.; Rosendaal, F.R.; Huizinga, T.W.J.; Kloppenburg, M.; et al. Mortality in patients with systemic lupus erythematosus and neuropsychiatric involvement: A retrospective analysis from a tertiary referral center in the Netherlands. Lupus 2020, 29, 1892–1901. [Google Scholar] [CrossRef] [PubMed]
- Liang, M.H.; Corzillius, M.; Bae, S.C.; Lew, R.A.; Fortin, P.R.; Gordon, C.; Isenberg, D.; Alarcón, G.S.; Straaton, K.V.; Denburg, J.; et al. The American College of Rheumatology nomenclature and case definitions for neuropsychiatric lupus syndromes. Arthritis Rheum. 1999, 42, 599–608. [Google Scholar] [CrossRef]
- Bertsias, G.K.; Ioannidis, J.P.; Aringer, M.; Bollen, E.; Bombardieri, S.; Bruce, I.N.; Cervera, R.; Dalakas, M.; Doria, A.; Hanly, J.G.; et al. EULAR recommendations for the management of systemic lupus erythematosus with neuropsychiatric manifestations: Report of a task force of the EULAR standing committee for clinical affairs. Ann. Rheum. Dis. 2010, 69, 2074–2082. [Google Scholar] [CrossRef]
- Hanly, J.G.; Urowitz, M.B.; Gordon, C.; Bae, S.C.; Romero-Diaz, J.; Sanchez-Guerrero, J.; Bernatsky, S.; Clarke, A.E.; Wallace, D.J.; Isenberg, D.A.; et al. Neuropsychiatric events in systemic lupus erythematosus: A longitudinal analysis of outcomes in an international inception cohort using a multistate model approach. Ann. Rheum. Dis. 2020, 79, 356–362. [Google Scholar] [CrossRef]
- Hanly, J.G.; Urowitz, M.B.; Su, L.; Bae, S.C.; Gordon, C.; Wallace, D.J.; Clarke, A.; Bernatsky, S.; Isenberg, D.; Rahman, A.; et al. Prospective analysis of neuropsychiatric events in an international disease inception cohort of patients with systemic lupus erythematosus. Ann. Rheum. Dis. 2010, 69, 529–535. [Google Scholar] [CrossRef]
- Bortoluzzi, A.; Fanouriakis, A.; Appenzeller, S.; Costallat, L.; Scirè, C.A.; Murphy, E.; Bertsias, G.; Hanly, J.; Govoni, M. Validity of the Italian algorithm for the attribution of neuropsychiatric events in systemic lupus erythematosus: A retrospective multicentre international diagnostic cohort study. BMJ Open 2017, 7, e015546. [Google Scholar] [CrossRef]
- Bortoluzzi, A.; Scirè, C.A.; Bombardieri, S.; Caniatti, L.; Conti, F.; De Vita, S.; Doria, A.; Ferraccioli, G.; Gremese, E.; Mansutti, E.; et al. Development and validation of a new algorithm for attribution of neuropsychiatric events in systemic lupus erythematosus. Rheumatology 2015, 54, 891–898. [Google Scholar] [CrossRef] [PubMed]
- Magro-Checa, C.; Zirkzee, E.J.; Beaart-van de Voorde, L.J.J.; Middelkoop, H.A.; van der Wee, N.J.; Huisman, M.V.; Eikenboom, J.; Kruyt, N.D.; van Buchem, M.A.; Huizinga, T.W.J.; et al. Value of multidisciplinary reassessment in attribution of neuropsychiatric events to systemic lupus erythematosus: Prospective data from the Leiden NPSLE cohort. Rheumatology 2017, 56, 1676–1683. [Google Scholar] [CrossRef]
- Fanouriakis, A.; Kostopoulou, M.; Andersen, J.; Aringer, M.; Arnaud, L.; Bae, S.C.; Boletis, J.; Bruce, I.N.; Cervera, R.; Doria, A.; et al. EULAR recommendations for the management of systemic lupus erythematosus: 2023 update. Ann. Rheum. Dis. 2023, 83, 15–29. [Google Scholar] [CrossRef]
- Fanouriakis, A.; Kostopoulou, M.; Alunno, A.; Aringer, M.; Bajema, I.; Boletis, J.N.; Cervera, R.; Doria, A.; Gordon, C.; Govoni, M.; et al. 2019 update of the EULAR recommendations for the management of systemic lupus erythematosus. Ann. Rheum. Dis. 2019, 78, 736–745. [Google Scholar] [CrossRef] [PubMed]
- Magro-Checa, C.; Zirkzee, E.J.; Huizinga, T.W.; Steup-Beekman, G.M. Management of Neuropsychiatric Systemic Lupus Erythematosus: Current Approaches and Future Perspectives. Drugs 2016, 76, 459–483. [Google Scholar] [CrossRef] [PubMed]
- Tektonidou, M.G.; Andreoli, L.; Limper, M.; Amoura, Z.; Cervera, R.; Costedoat-Chalumeau, N.; Cuadrado, M.J.; Dörner, T.; Ferrer-Oliveras, R.; Hambly, K.; et al. EULAR recommendations for the management of antiphospholipid syndrome in adults. Ann. Rheum. Dis. 2019, 78, 1296–1304. [Google Scholar] [CrossRef]
- Silvagni, E.; Chessa, E.; Bergossi, F.; D’Amico, M.E.; Furini, F.; Guerrini, G.; Cauli, A.; Scirè, C.A.; Bertsias, G.; Govoni, M.; et al. Relevant domains and outcome measurement instruments in neuropsychiatric systemic lupus erythematosus: A systematic literature review. Rheumatology 2021, 61, 8–23. [Google Scholar] [CrossRef]
- Ho, R.C.; Ong, H.; Thiaghu, C.; Lu, Y.; Ho, C.S.; Zhang, M.W. Genetic Variants That Are Associated with Neuropsychiatric Systemic Lupus Erythematosus. J. Rheumatol. 2016, 43, 541–551. [Google Scholar] [CrossRef]
- Cohen, D.; Rijnink, E.C.; Nabuurs, R.J.; Steup-Beekman, G.M.; Versluis, M.J.; Emmer, B.J.; Zandbergen, M.; van Buchem, M.A.; Allaart, C.F.; Wolterbeek, R.; et al. Brain histopathology in patients with systemic lupus erythematosus: Identification of lesions associated with clinical neuropsychiatric lupus syndromes and the role of complement. Rheumatology 2017, 56, 77–86. [Google Scholar] [CrossRef]
- Sibbitt, W.L.; Brooks, W.M.; Kornfeld, M.; Hart, B.L.; Bankhurst, A.D.; Roldan, C.A. Magnetic resonance imaging and brain histopathology in neuropsychiatric systemic lupus erythematosus. Semin. Arthritis Rheum. 2010, 40, 32–52. [Google Scholar] [CrossRef]
- Cohen, D.; Buurma, A.; Goemaere, N.N.; Girardi, G.; le Cessie, S.; Scherjon, S.; Bloemenkamp, K.W.; de Heer, E.; Bruijn, J.A.; Bajema, I.M. Classical complement activation as a footprint for murine and human antiphospholipid antibody-induced fetal loss. J. Pathol. 2011, 225, 502–511. [Google Scholar] [CrossRef]
- Stock, A.D.; Gelb, S.; Pasternak, O.; Ben-Zvi, A.; Putterman, C. The blood brain barrier and neuropsychiatric lupus: New perspectives in light of advances in understanding the neuroimmune interface. Autoimmun. Rev. 2017, 16, 612–619. [Google Scholar] [CrossRef]
- Schwartz, N.; Stock, A.D.; Putterman, C. Neuropsychiatric lupus: New mechanistic insights and future treatment directions. Nat. Rev. Rheumatol. 2019, 15, 137–152. [Google Scholar] [CrossRef] [PubMed]
- Moore, E.; Huang, M.W.; Putterman, C. Advances in the diagnosis, pathogenesis and treatment of neuropsychiatric systemic lupus erythematosus. Curr. Opin. Rheumatol. 2020, 32, 152–158. [Google Scholar] [CrossRef]
- Nestor, J.; Arinuma, Y.; Huerta, T.S.; Kowal, C.; Nasiri, E.; Kello, N.; Fujieda, Y.; Bialas, A.; Hammond, T.; Sriram, U.; et al. Lupus antibodies induce behavioral changes mediated by microglia and blocked by ACE inhibitors. J. Exp. Med. 2018, 215, 2554–2566. [Google Scholar] [CrossRef] [PubMed]
- Cocco, C.; Manca, E.; Corda, G.; Angioni, M.M.; Noli, B.; Congia, M.; Loy, F.; Isola, M.; Chessa, E.; Floris, A.; et al. Brain-reactive autoantibodies in neuropsychiatric systemic lupus erythematosus. Front. Immunol. 2023, 14, 1157149. [Google Scholar] [CrossRef] [PubMed]
- Stock, A.D.; Wen, J.; Putterman, C. Neuropsychiatric Lupus, the Blood Brain Barrier, and the TWEAK/Fn14 Pathway. Front. Immunol. 2013, 4, 484. [Google Scholar] [CrossRef]
- Sato, T.; Fujii, T.; Yokoyama, T.; Fujita, Y.; Imura, Y.; Yukawa, N.; Kawabata, D.; Nojima, T.; Ohmura, K.; Usui, T.; et al. Anti-U1 RNP antibodies in cerebrospinal fluid are associated with central neuropsychiatric manifestations in systemic lupus erythematosus and mixed connective tissue disease. Arthritis Rheum. 2010, 62, 3730–3740. [Google Scholar] [CrossRef]
- Nishimura, K.; Harigai, M.; Omori, M.; Sato, E.; Hara, M. Blood-brain barrier damage as a risk factor for corticosteroid-induced psychiatric disorders in systemic lupus erythematosus. Psychoneuroendocrinology 2008, 33, 395–403. [Google Scholar] [CrossRef]
- McLean, B.N.; Miller, D.; Thompson, E.J. Oligoclonal banding of IgG in CSF, blood-brain barrier function, and MRI findings in patients with sarcoidosis, systemic lupus erythematosus, and Behçet’s disease involving the nervous system. J. Neurol. Neurosurg. Psychiatry 1995, 58, 548–554. [Google Scholar] [CrossRef]
- Piga, M.; Chessa, E.; Peltz, M.T.; Floris, A.; Mathieu, A.; Cauli, A. Demyelinating syndrome in SLE encompasses different subtypes: Do we need new classification criteria? Pooled results from systematic literature review and monocentric cohort analysis. Autoimmun. Rev. 2017, 16, 244–252. [Google Scholar] [CrossRef]
- Margaretten, M. Neurologic Manifestations of Primary Sjögren Syndrome. Rheum. Dis. Clin. N. Am. 2017, 43, 519–529. [Google Scholar] [CrossRef] [PubMed]
- Alunno, A.; Carubbi, F.; Bartoloni, E.; Cipriani, P.; Giacomelli, R.; Gerli, R. The kaleidoscope of neurological manifestations in primary Sjögren’s syndrome. Clin. Exp. Rheumatol. 2019, 37 (Suppl. 118), 192–198. [Google Scholar] [PubMed]
- Moutsopoulos, H.M.; Sarmas, J.H.; Talal, N. Is central nervous system involvement a systemic manifestation of primary Sjögren’s syndrome? Rheum. Dis. Clin. N. Am. 1993, 19, 909–912. [Google Scholar] [CrossRef]
- Carvajal Alegria, G.; Guellec, D.; Mariette, X.; Gottenberg, J.E.; Dernis, E.; Dubost, J.J.; Trouvin, A.P.; Hachulla, E.; Larroche, C.; Le Guern, V.; et al. Epidemiology of neurological manifestations in Sjögren’s syndrome: Data from the French ASSESS Cohort. RMD Open 2016, 2, e000179. [Google Scholar] [CrossRef] [PubMed]
- Tezcan, M.E.; Kocer, E.B.; Haznedaroglu, S.; Sonmez, C.; Mercan, R.; Yucel, A.A.; Irkec, C.; Bitik, B.; Goker, B. Primary Sjögren’s syndrome is associated with significant cognitive dysfunction. Int. J. Rheum. Dis. 2016, 19, 981–988. [Google Scholar] [CrossRef] [PubMed]
- Segal, B.M.; Pogatchnik, B.; Holker, E.; Liu, H.; Sloan, J.; Rhodus, N.; Moser, K.L. Primary Sjogren’s syndrome: Cognitive symptoms, mood, and cognitive performance. Acta Neurol. Scand. 2012, 125, 272–278. [Google Scholar] [CrossRef]
- Vitali, C.; Del Papa, N. Pain in primary Sjögren’s syndrome. Best Pract. Res. Clin. Rheumatol. 2015, 29, 63–70. [Google Scholar] [CrossRef]
- Ye, W.; Chen, S.; Huang, X.; Qin, W.; Zhang, T.; Zhu, X.; Lin, C.; Wang, X. Clinical features and risk factors of neurological involvement in Sjögren’s syndrome. BMC Neurosci. 2018, 19, 26. [Google Scholar] [CrossRef]
- Pavlakis, P.P.; Alexopoulos, H.; Kosmidis, M.L.; Mamali, I.; Moutsopoulos, H.M.; Tzioufas, A.G.; Dalakas, M.C. Peripheral neuropathies in Sjögren’s syndrome: A critical update on clinical features and pathogenetic mechanisms. J. Autoimmun. 2012, 39, 27–33. [Google Scholar] [CrossRef]
- Sène, D.; Jallouli, M.; Lefaucheur, J.P.; Saadoun, D.; Costedoat-Chalumeau, N.; Maisonobe, T.; Diemert, M.C.; Musset, L.; Haroche, J.; Piette, J.C.; et al. Peripheral neuropathies associated with primary Sjögren syndrome: Immunologic profiles of nonataxic sensory neuropathy and sensorimotor neuropathy. Medicine 2011, 90, 133–138. [Google Scholar] [CrossRef]
- Mori, K.; Iijima, M.; Koike, H.; Hattori, N.; Tanaka, F.; Watanabe, H.; Katsuno, M.; Fujita, A.; Aiba, I.; Ogata, A.; et al. The wide spectrum of clinical manifestations in Sjögren’s syndrome-associated neuropathy. Brain 2005, 128, 2518–2534. [Google Scholar] [CrossRef] [PubMed]
- Kawagashira, Y.; Koike, H.; Fujioka, Y.; Hashimoto, R.; Tomita, M.; Morozumi, S.; Iijima, M.; Katsuno, M.; Tanaka, F.; Sobue, G. Differential, size-dependent sensory neuron involvement in the painful and ataxic forms of primary Sjögren’s syndrome-associated neuropathy. J. Neurol. Sci. 2012, 319, 139–146. [Google Scholar] [CrossRef] [PubMed]
- Ramos-Casals, M.; Brito-Zerón, P.; Bombardieri, S.; Bootsma, H.; De Vita, S.; Dörner, T.; Fisher, B.A.; Gottenberg, J.E.; Hernandez-Molina, G.; Kocher, A.; et al. EULAR recommendations for the management of Sjögren’s syndrome with topical and systemic therapies. Ann. Rheum. Dis. 2020, 79, 3–18. [Google Scholar] [CrossRef] [PubMed]
- Van Schaik, I.N.; Eftimov, F.; van Doorn, P.A.; Brusse, E.; van den Berg, L.H.; van der Pol, W.L.; Faber, C.G.; van Oostrom, J.C.; Vogels, O.J.; Hadden, R.D.; et al. Pulsed high-dose dexamethasone versus standard prednisolone treatment for chronic inflammatory demyelinating polyradiculoneuropathy (PREDICT study): A double-blind, randomised, controlled trial. Lancet Neurol. 2010, 9, 245–253. [Google Scholar] [CrossRef]
- Rist, S.; Sellam, J.; Hachulla, E.; Sordet, C.; Puéchal, X.; Hatron, P.Y.; Benhamou, C.L.; Sibilia, J.; Mariette, X.; Club Rheumatismes et Inflammation. Experience of intravenous immunoglobulin therapy in neuropathy associated with primary Sjögren’s syndrome: A national multicentric retrospective study. Arthritis Care Res. 2011, 63, 1339–1344. [Google Scholar] [CrossRef] [PubMed]
- Alexander, E.L.; Lijewski, J.E.; Jerdan, M.S.; Alexander, G.E. Evidence of an immunopathogenic basis for central nervous system disease in primary Sjögren’s syndrome. Arthritis Rheum. 1986, 29, 1223–1231. [Google Scholar] [CrossRef] [PubMed]
- Molina, R.; Provost, T.T.; Alexander, E.L. Peripheral inflammatory vascular disease in Sjögren’s syndrome. Association with nervous system complications. Arthritis Rheum. 1985, 28, 1341–1347. [Google Scholar] [CrossRef]
- Tobón, G.J.; Pers, J.O.; Devauchelle-Pensec, V.; Youinou, P. Neurological Disorders in Primary Sjögren’s Syndrome. Autoimmune Dis. 2012, 2012, 645967. [Google Scholar] [CrossRef]
- Pars, K.; Pul, R.; Schwenkenbecher, P.; Suhs, K.W.; Wurster, U.; Witte, T.; Bronzlik, P.; Stangel, M.; Skripuletz, T. Cerebrospinal Fluid Findings in Neurological Diseases Associated with Sjogren’s Syndrome. Eur. Neurol. 2017, 77, 91–102. [Google Scholar] [CrossRef]
- Delalande, S.; de Seze, J.; Fauchais, A.L.; Hachulla, E.; Stojkovic, T.; Ferriby, D.; Dubucquoi, S.; Pruvo, J.P.; Vermersch, P.; Hatron, P.Y. Neurologic manifestations in primary Sjögren syndrome: A study of 82 patients. Medicine 2004, 83, 280–291. [Google Scholar] [CrossRef] [PubMed]
- Pavlakis, P.P. Rheumatologic Disorders and the Nervous System. Continuum 2020, 26, 591–610. [Google Scholar] [CrossRef] [PubMed]
- Choy, E.H.S.; Calabrese, L.H. Neuroendocrine and neurophysiological effects of interleukin 6 in rheumatoid arthritis. Rheumatology 2018, 57, 1885–1895. [Google Scholar] [CrossRef]
- Zhou, Y.Q.; Liu, Z.; Liu, Z.H.; Chen, S.P.; Li, M.; Shahveranov, A.; Ye, D.W.; Tian, Y.K. Interleukin-6: An emerging regulator of pathological pain. J. Neuroinflamm. 2016, 13, 141. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.L.; Chang, C.H.; Hu, L.Y.; Tsai, S.J.; Yang, A.C.; You, Z.H. Risk of developing depressive disorders following rheumatoid arthritis: A nationwide population-based study. PLoS ONE 2014, 9, e107791. [Google Scholar] [CrossRef] [PubMed]
- Matcham, F.; Rayner, L.; Steer, S.; Hotopf, M. The prevalence of depression in rheumatoid arthritis: A systematic review and meta-analysis. Rheumatology 2013, 52, 2136–2148. [Google Scholar] [CrossRef]
- Simos, P.; Ktistaki, G.; Dimitraki, G.; Papastefanakis, E.; Kougkas, N.; Fanouriakis, A.; Gergianaki, I.; Bertsias, G.; Sidiropoulos, P.; Karademas, E.C. Cognitive deficits early in the course of rheumatoid arthritis. J. Clin. Exp. Neuropsychol. 2016, 38, 820–829. [Google Scholar] [CrossRef]
- Starosta, M.A.; Brandwein, S.R. Clinical manifestations and treatment of rheumatoid pachymeningitis. Neurology 2007, 68, 1079–1080. [Google Scholar] [CrossRef]
- Villa, E.; Sarquis, T.; de Grazia, J.; Núñez, R.; Alarcón, P.; Villegas, R.; Guevara, C. Rheumatoid meningitis: A systematic review and meta-analysis. Eur. J. Neurol. 2021, 28, 3201–3210. [Google Scholar] [CrossRef]
- Kurne, A.; Karabudak, R.; Karadag, O.; Yalcin-Cakmakli, G.; Karli-Oguz, K.; Yavuz, K.; Calgüneri, M.; Topcuoglu, M.A. An unusual central nervous system involvement in rheumatoid arthritis: Combination of pachymeningitis and cerebral vasculitis. Rheumatol. Int. 2009, 29, 1349–1353. [Google Scholar] [CrossRef]
- Kato, T.; Hoshi, K.; Sekijima, Y.; Matsuda, M.; Hashimoto, T.; Otani, M.; Suzuki, A.; Ikeda, S. Rheumatoid meningitis: An autopsy report and review of the literature. Clin. Rheumatol. 2003, 22, 475–480. [Google Scholar] [CrossRef]
- Matsushima, M.; Yaguchi, H.; Niino, M.; Akimoto-Tsuji, S.; Yabe, I.; Onishi, K.; Sasaki, H. MRI and pathological findings of rheumatoid meningitis. J. Clin. Neurosci. 2010, 17, 129–132. [Google Scholar] [CrossRef]
- Parsons, A.M.; Aslam, F.; Grill, M.F.; Aksamit, A.J.; Goodman, B.P. Rheumatoid Meningitis: Clinical Characteristics, Diagnostic Evaluation, and Treatment. Neurohospitalist 2020, 10, 88–94. [Google Scholar] [CrossRef] [PubMed]
- Agca, R.; Heslinga, S.C.; Rollefstad, S.; Heslinga, M.; McInnes, I.B.; Peters, M.J.; Kvien, T.K.; Dougados, M.; Radner, H.; Atzeni, F.; et al. EULAR recommendations for cardiovascular disease risk management in patients with rheumatoid arthritis and other forms of inflammatory joint disorders: 2015/2016 update. Ann. Rheum. Dis. 2017, 76, 17–28. [Google Scholar] [CrossRef]
- Argnani, L.; Zanetti, A.; Carrara, G.; Silvagni, E.; Guerrini, G.; Zambon, A.; Scirè, C.A. Rheumatoid Arthritis and Cardiovascular Risk: Retrospective Matched-Cohort Analysis Based on the RECORD Study of the Italian Society for Rheumatology. Front. Med. 2021, 8, 745601. [Google Scholar] [CrossRef]
- Alshekhlee, A.; Basiri, K.; Miles, J.D.; Ahmad, S.A.; Katirji, B. Chronic inflammatory demyelinating polyneuropathy associated with tumor necrosis factor-alpha antagonists. Muscle Nerve 2010, 41, 723–727. [Google Scholar] [CrossRef] [PubMed]
- Joaquim, A.F.; Appenzeller, S. Neuropsychiatric manifestations in rheumatoid arthritis. Autoimmun. Rev. 2015, 14, 1116–1122. [Google Scholar] [CrossRef] [PubMed]
- Lush, B.; Crowley, M.F.; Fletcher, E.; Buchan, J.F. Total and differential protein levels in the blood and cerebrospinal fluid in rheumatoid arthritis. Ann. Rheum. Dis. 1951, 10, 153–162. [Google Scholar] [CrossRef] [PubMed]
- Boland, E.W.; Headley, N.E.; Hench, P.S. The cerebrospinal fluid in rheumatoid spondylitis. Ann. Rheum. Dis. 1948, 7, 195–199. [Google Scholar] [CrossRef]
- Bolek, E.C.; Sari, A.; Kilic, L.; Kalyoncu, U.; Kurne, A.; Oguz, K.K.; Topcuoglu, M.A.; Ertenli, I.; Karadag, O. Clinical features and disease course of neurological involvement in Behcet’s disease: HUVAC experience. Mult. Scler. Relat. Disord. 2020, 38, 101512. [Google Scholar] [CrossRef]
- Kidd, D.; Steuer, A.; Denman, A.M.; Rudge, P. Neurological complications in Behçet’s syndrome. Brain 1999, 122 Pt 11, 2183–2194. [Google Scholar] [CrossRef] [PubMed]
- Conca, W.; Kamel, S.A.; Venne, D.; Corr, P. Transient involvement of the cerebral cortex in a flare of Behçet’s syndrome. Rheumatol. Int. 2012, 32, 791–794. [Google Scholar] [CrossRef] [PubMed]
- Akman-Demir, G.; Serdaroglu, P.; Tasçi, B. Clinical patterns of neurological involvement in Behçet’s disease: Evaluation of 200 patients. The Neuro-Behçet Study Group. Brain 1999, 122 Pt 11, 2171–2182. [Google Scholar] [CrossRef] [PubMed]
- Borhani-Haghighi, A.; Kardeh, B.; Banerjee, S.; Yadollahikhales, G.; Safari, A.; Sahraian, M.A.; Shapiro, L. Neuro-Behcet’s disease: An update on diagnosis, differential diagnoses, and treatment. Mult. Scler. Relat. Disord. 2020, 39, 101906. [Google Scholar] [CrossRef] [PubMed]
- Saip, S.; Akman-Demir, G.; Siva, A. Neuro-Behçet syndrome. Handb. Clin. Neurol. 2014, 121, 1703–1723. [Google Scholar] [CrossRef] [PubMed]
- Ildan, F.; Göçer, A.I.; Bağdatoğlu, H.; Tuna, M.; Karadayi, A. Intracranial arterial aneurysm complicating Behçet’s disease. Neurosurg. Rev. 1996, 19, 53–56. [Google Scholar] [CrossRef] [PubMed]
- Hatemi, G.; Christensen, R.; Bang, D.; Bodaghi, B.; Celik, A.F.; Fortune, F.; Gaudric, J.; Gul, A.; Kötter, I.; Leccese, P.; et al. 2018 update of the EULAR recommendations for the management of Behçet’s syndrome. Ann. Rheum. Dis. 2018, 77, 808–818. [Google Scholar] [CrossRef] [PubMed]
- Yazici, H.; Pazarli, H.; Barnes, C.G.; Tüzün, Y.; Ozyazgan, Y.; Silman, A.; Serdaroğlu, S.; Oğuz, V.; Yurdakul, S.; Lovatt, G.E. A controlled trial of azathioprine in Behçet’s syndrome. N. Engl. J. Med. 1990, 322, 281–285. [Google Scholar] [CrossRef]
- Bolek, E.C.; Sari, A.; Kilic, L.; Karadag, O. Interferon alpha might be an alternative therapeutic choice for refractory Neuro-Behçet’s disease. Mult. Scler. Relat. Disord. 2019, 29, 153. [Google Scholar] [CrossRef]
- Addimanda, O.; Pipitone, N.; Pazzola, G.; Salvarani, C. Tocilizumab for severe refractory neuro-Behçet: Three cases IL-6 blockade in neuro-Behçet. Semin. Arthritis Rheum. 2015, 44, 472–475. [Google Scholar] [CrossRef]
- Emmi, G.; Talarico, R.; Lopalco, G.; Cimaz, R.; Cantini, F.; Viapiana, O.; Olivieri, I.; Goldoni, M.; Vitale, A.; Silvestri, E.; et al. Efficacy and safety profile of anti-interleukin-1 treatment in Behçet’s disease: A multicenter retrospective study. Clin. Rheumatol. 2016, 35, 1281–1286. [Google Scholar] [CrossRef] [PubMed]
- Hirohata, S.; Kikuchi, H.; Sawada, T.; Nagafuchi, H.; Kuwana, M.; Takeno, M.; Ishigatsubo, Y. Clinical characteristics of neuro-Behcet’s disease in Japan: A multicenter retrospective analysis. Mod. Rheumatol. 2012, 22, 405–413. [Google Scholar] [CrossRef] [PubMed]
- Hirohata, S. Histopathology of central nervous system lesions in Behçet’s disease. J. Neurol. Sci. 2008, 267, 41–47. [Google Scholar] [CrossRef] [PubMed]
- Banerjee, S.; Hamzoui, K.; Safari, A.; Borhani-Haghighi, A. The Cerebrospinal Fluid Presentations of Neuro-Bechet Disease, a Way to Know the Etiopathogenesis and Improve Armamentarium. Iran. J. Immunol. 2021, 18, 170–178. [Google Scholar] [CrossRef] [PubMed]
- Kalra, S.; Silman, A.; Akman-Demir, G.; Bohlega, S.; Borhani-Haghighi, A.; Constantinescu, C.S.; Houman, H.; Mahr, A.; Salvarani, C.; Sfikakis, P.P.; et al. Diagnosis and management of Neuro-Behçet’s disease: International consensus recommendations. J. Neurol. 2014, 261, 1662–1676. [Google Scholar] [CrossRef] [PubMed]
- Hellmich, B.; Agueda, A.; Monti, S.; Buttgereit, F.; de Boysson, H.; Brouwer, E.; Cassie, R.; Cid, M.C.; Dasgupta, B.; Dejaco, C.; et al. 2018 Update of the EULAR recommendations for the management of large vessel vasculitis. Ann. Rheum. Dis. 2020, 79, 19–30. [Google Scholar] [CrossRef] [PubMed]
- Hellmich, B.; Sanchez-Alamo, B.; Schirmer, J.H.; Berti, A.; Blockmans, D.; Cid, M.C.; Holle, J.U.; Hollinger, N.; Karadag, O.; Kronbichler, A.; et al. EULAR recommendations for the management of ANCA-associated vasculitis: 2022 update. Ann. Rheum. Dis. 2023, 83, 30–47. [Google Scholar] [CrossRef] [PubMed]
- Nissen, M.S.; Nilsson, A.C.; Forsberg, J.; Milthers, J.; Wirenfeldt, M.; Bonde, C.; Byg, K.E.; Ellingsen, T.; Blaabjerg, M. Use of Cerebrospinal Fluid Biomarkers in Diagnosis and Monitoring of Rheumatoid Meningitis. Front. Neurol. 2019, 10, 666. [Google Scholar] [CrossRef]
Parameters | Normal/Reference Value | Conditions |
---|---|---|
Appearance | Clear/colorless | Altered in: |
intracerebral hemorrhage, | ||
subarachnoid hemorrhage, | ||
infection (mainly bacterial), | ||
inflammation | ||
Total protein | 450/500 mg/L | Increased in: |
infection (bacterial, viral), | ||
inflammation, | ||
metastasis | ||
Cellular content | <5 cells/μL (mainly lymphocytes and monocytes) | Increased in: |
infection (bacterial, viral), | ||
inflammation, | ||
metastasis. | ||
Lactate | <1.0–2.9 mmol/L | Increased in: |
infection (bacterial) | ||
Glucose ratio | >0.4–0.5 | Reduced in: |
infection (bacterial). | ||
Albumin quotient (QAlb) | <6.5, age 15–40 years, | Increased in: |
<8.0, age 41–60 years | blood-CSF barrier dysfunction, | |
<9.0 over 60 years | infection (bacterial, viral) | |
Or age/15 + 4 | inflammation. | |
Intrathecal IgG synthesis | Absent | Present in: |
inflammation (acute/chronic), | ||
infection (mainly viral), | ||
tumors. |
Central NPSLE | Peripheral NPSLE |
---|---|
Aseptic meningitis | Guillain-Barré syndrome |
Cerebrovascular disease | Autonomic neuropathy |
Demyelinating Syndrome | Mononeuropathy (single/multiplex) |
Headache | Myasthenia gravis |
Movement disorder | Cranial neuropathy |
Myelopathy | Plexopathy |
Seizure disorders | Polyneuropathy |
Acute confusional state | |
Anxiety disorder | |
Cognitive dysfunction | |
Mood disorder | |
Psychosis |
Central Nervous System | Peripheral Nervous System |
---|---|
Focal/multifocal involvement | Distal axonal sensory polyneuropathy (DASP) (the most frequent) |
Stroke | Axonal sensory-motor polyneuropathy |
NMOSD | Sensory neuronopathy (most typical, but rare): [non-length-dependent sensory neuropathy] |
MS-like syndromes | Small fiber neuropathy (SFN) |
ALS-like syndrome | Mononeuritis, multiple mononeuropathy |
Diffuse abnormalities | Chronic inflammatory demyelinating polyneuropathy (CIDP) |
Cognitive dysfunction | Cranial neuropathies |
Dementia | Autonomic neuropathy (Adie’s pupils, gastrointestinal abnormal motor activity, bladder dysfunction, orthostatic hypotension, heart arrhythmia, secretomotor dysfunction, anhidrosis) |
Psychiatric abnormalities | |
Aseptic meningoencephalitis |
Central Nervous System | Peripheral Nervous System |
---|---|
Sleep disturbances, stress, fatigue | Mononeuritis multiplex |
Mood disorders (anxiety, depression) | Distal symmetric axonal sensory neuropathy |
Cognitive dysfunction | Distal symmetric axonal sensorimotor neuropathy |
Rheumatoid pachymeningitis | Demyelinating peripheral neuropathy |
Cerebrovascular disease and accelerated atherosclerosis | Autoimmune autonomic ganglionopathy |
Intracranial multiple rheumatoid nodules | |
Optic neuritis | |
Normal-pressure hydrocephalus | |
CNS vasculitis |
Total Proteins | Albumin Quotient | Pleocytosis | Intrathecal IgG Synthesis | Other Parameters | |
---|---|---|---|---|---|
Neuropsychiatric Systemic Lupus Erythematosus | ↑ | ↑ (30–60%) | ↑ (30/44%) | Present (30–60%) | |
Sjogren’s syndrome | ↑ (25–30%) | ↑ (<25%) | ↑ (25–30%) | Present (25–50%) | |
Rheumatoid arthritis | ↑ (40% of cases) (75%: in meningitis) | ↑ (80%: in meningitis) | Present * | ||
Neuro-Behçet (parenchymal) | ↑ (mildly) | ↑ (40%) | ↑ (<200/μL) | Present (15–20%) | |
Neuro-Behçet (associated with venous sinus thrombosis) | ↑ (CSF pressure) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Castellazzi, M.; Candeloro, R.; Pugliatti, M.; Govoni, M.; Silvagni, E.; Bortoluzzi, A. Cerebrospinal Fluid Analysis in Rheumatological Diseases with Neuropsychiatric Complications and Manifestations: A Narrative Review. Diagnostics 2024, 14, 242. https://doi.org/10.3390/diagnostics14030242
Castellazzi M, Candeloro R, Pugliatti M, Govoni M, Silvagni E, Bortoluzzi A. Cerebrospinal Fluid Analysis in Rheumatological Diseases with Neuropsychiatric Complications and Manifestations: A Narrative Review. Diagnostics. 2024; 14(3):242. https://doi.org/10.3390/diagnostics14030242
Chicago/Turabian StyleCastellazzi, Massimiliano, Raffaella Candeloro, Maura Pugliatti, Marcello Govoni, Ettore Silvagni, and Alessandra Bortoluzzi. 2024. "Cerebrospinal Fluid Analysis in Rheumatological Diseases with Neuropsychiatric Complications and Manifestations: A Narrative Review" Diagnostics 14, no. 3: 242. https://doi.org/10.3390/diagnostics14030242
APA StyleCastellazzi, M., Candeloro, R., Pugliatti, M., Govoni, M., Silvagni, E., & Bortoluzzi, A. (2024). Cerebrospinal Fluid Analysis in Rheumatological Diseases with Neuropsychiatric Complications and Manifestations: A Narrative Review. Diagnostics, 14(3), 242. https://doi.org/10.3390/diagnostics14030242