Trends in Preoperative Airway Assessment
Abstract
:1. Introduction
- A thorough bedside objective examination based on the current guidelines’ recommendations;
- Obtaining a history of prior airway difficulties;
- Looking for specific preexisting acquired or congenital medical conditions and prior treatments that are likely to complicate airway management;
- Conducting an advanced examination that includes an endoscopy or imagistic tests if there is a problematic airway suspicion;
- Evaluating access to the cricothyroid membrane [10].
2. Methodology
3. Results
3.1. Physical Examination
- Class 0: any part of the epiglottis is visible.
- Class I: soft palate, uvula, and pillars are visible.
- Class II: soft palate and uvula are visible.
- Class III: only the soft palate and base of the uvula are visible.
- Class IV: only the hard palate is visible.
- Class 1: the lower incisors extend beyond the vermilion border of the upper lip;
- Class 2: the lower incisors can bite the lip but cannot extend above the vermilion border;
- Class 3: the lower incisors cannot bite the upper lip.
- Reduced mouth opening;
- Supra- or extraglottic pathology (neck radiation, tumors, cysts, lingual tonsillar hypertrophy);
- Glottic and subglottic pathology;
- Poor dentition;
- Male sex;
- Applied cricoid pressure;
- Obesity;
- Fixed cervical spine flexion deformity;
- Rotation of the head.
3.2. Nasoendoscopy
3.2.1. Introduction
3.2.2. Procedure
3.2.3. Indications
- Persistent hoarseness or stridor;
- Tumors or infections;
- Allergic reactions with possible airway involvement;
- Pre- or post-operative assessment;
- Evaluation of obstructive sleep apnea;
- Deglutition;
- Inspection for a foreign body;
- Acute airway exam: trauma, stridor with respiratory failure, or oropharyngeal bleeding;
- Minor interventions.
3.2.4. Limitations
3.3. Ultrasound
3.3.1. Introduction
3.3.2. Sonoanatomy of the Upper Airway
3.3.3. Ultrasound Assessment in a Difficult Airway
3.4. Radiographic Evaluation
3.5. Computer Tomography, Magnetic Resonance, and Virtual Endoscopy
3.6. Artificial Intelligence
4. Case Scenarios
4.1. Case Scenario 1
4.2. Case Scenario 2
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cook, T.M.; MacDougall-Davis, S.R. Complications and failure of airway management. Br. J. Anaesth. 2012, 109 (Suppl. S1), i68–i85. [Google Scholar] [CrossRef]
- Li, X.; Lian, Y.; Pan, F.; Zhao, H. Global research trends in prediction of difficult airways: A bibliometric and visualization study. Medicine 2023, 102, e33776. [Google Scholar] [CrossRef]
- Nørskov, A.K.; Rosenstock, C.V.; Wetterslev, J.; Astrup, G.; Afshari, A.; Lundstrøm, L.H. Diagnostic accuracy of anaesthesiologists’ prediction of difficult airway management in daily clinical practice: A cohort study of 188 064 patients registered in the Danish Anaesthesia Database. Anaesthesia 2015, 70, 272–281. [Google Scholar] [CrossRef]
- O’Carroll, J.; Endlich, Y.; Ahmad, I. Advanced airway assessment techniques. BJA Educ. 2021, 21, 336–342. [Google Scholar] [CrossRef] [PubMed]
- Roth, D.; Pace, N.L.; Lee, A.; Hovhannisyan, K.; Warenits, A.M.; Arrich, J.; Herkner, H. Bedside tests for predicting difficult airways: An abridged Cochrane diagnostic test accuracy systematic review. Anaesthesia 2019, 74, 915–928. [Google Scholar] [CrossRef] [PubMed]
- Tang, X.; Dong, Z.; Xu, J.; Cheng, P.; Wang, M.; Wang, B.; Jiang, X.; Yao, W. Observation of the validity of the upper lip bite test in predicting difficult intubation. Sci. Rep. 2023, 13, 22160. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.Y.; Zhang, K.D.; Zhang, Z.H.; Zhang, D.X.; Wang, H.L.; Qi, F. Evaluation of the reliability of the upper lip bite test and the modified mallampati test in predicting difficult intubation under direct laryngoscopy in apparently normal patients: A prospective observational clinical study. BMC Anesthesiol. 2022, 22, 314. [Google Scholar] [CrossRef] [PubMed]
- Cook, T.M.; Woodall, N.; Frerk, C. Major complications of airway management in the UK: Results of the Fourth National Audit Project of the Royal College of Anaesthetists and the Difficult Airway Society. Part 1: Anaesthesia. Br. J. Anaesth. 2011, 106, 617–631. [Google Scholar] [CrossRef] [PubMed]
- Joffe, A.M.; Aziz, M.F.; Posner, K.L.; Duggan, L.V.; Mincer, S.L.; Domino, K.B. Management of Difficult Tracheal Intubation: A Closed Claims Analysis. Anesthesiology 2019, 131, 818–829. [Google Scholar] [CrossRef] [PubMed]
- Apfelbaum, J.L.; Hagberg, C.A.; Connis, R.T.; Abdelmalak, B.B.; Agarkar, M.; Dutton, R.P.; Fiadjoe, J.E.; Greif, R.; Klock, P.A.; Mercier, D.; et al. 2022 American Society of Anesthesiologists Practice Guidelines for Management of the Difficult Airway. Anesthesiology 2022, 136, 31–81. [Google Scholar] [CrossRef]
- Hsiao, Y.J.; Chen, C.Y.; Hung, H.T.; Lee, C.H.; Su, Y.Y.; Ng, C.J.; Chou, A.H. Comparison of the outcome of emergency endotracheal intubation in the general ward, intensive care unit and emergency department. Biomed. J. 2021, 44, S110–S118. [Google Scholar] [CrossRef] [PubMed]
- Jarzebowski, M.; Estime, S.; Russotto, V.; Karamchandani, K. Challenges and outcomes in airway management outside the operating room. Curr. Opin. Anaesthesiol. 2022, 35, 109–114. [Google Scholar] [CrossRef] [PubMed]
- Scott, J.A.; Heard, S.O.; Zayaruzny, M.; Walz, J.M. Airway Management in Critical Illness: An Update. Chest 2020, 157, 877–887. [Google Scholar] [CrossRef] [PubMed]
- Yoon, U.; Mojica, J.; Wiltshire, M.; Segna, K.; Block, M.; Pantoja, A.; Torjman, M.; Wolo, E. Emergent airway management outside of the operating room—A retrospective review of patient characteristics, complications and ICU stay. BMC Anesthesiol. 2019, 19, 220. [Google Scholar] [CrossRef] [PubMed]
- Jung, H. A comprehensive review of difficult airway management strategies for patient safety. Anesth. Pain Med. 2023, 18, 331–339. [Google Scholar] [CrossRef] [PubMed]
- Law, J.A.; Duggan, L.V.; Asselin, M.; Baker, P.; Crosby, E.; Downey, A.; Hung, O.R.; Kovacs, G.; Lemay, F.; Noppens, R.; et al. Canadian Airway Focus Group updated consensus-based recommendations for management of the difficult airway: Part 2. Planning and implementing safe management of the patient with an anticipated difficult airway. Can. J. Anaesth. 2021, 68, 1405–1436. [Google Scholar] [CrossRef] [PubMed]
- Bogod, D.; Popat, M. Tracheal intubation. In Fourth National Audit Project of the Royal College of Anaesthetists and the Difficult Airway Society. Major Complications of Airway Management in the United Kingdom; Cook, T.W.N., Frerk, C., Eds.; The Royal College of Anaesthetists: London, UK, 2011; pp. 96–104. [Google Scholar]
- Mouri, M.; Krishnan, S.; Hendrix, J.M.; Maani, C.V. Airway Assessment. In StatPearls; StatPearls Publishing. Copyright © 2024; StatPearls Publishing LLC.: Treasure Island, FL, USA, 2024. [Google Scholar]
- Roth, D.; Pace, N.L.; Lee, A.; Hovhannisyan, K.; Warenits, A.M.; Arrich, J.; Herkner, H. Airway physical examination tests for detection of difficult airway management in apparently normal adult patients. Cochrane Database Syst. Rev. 2018, 5, Cd008874. [Google Scholar] [CrossRef]
- Selvi, A.; Ozayar, E.; Turksal, E.; Kurtay, A.; Kucuk, O. Can chin-nape circumference and the ratio of neck circumference to chin-nape circumference predict difficult mask ventilation or difficult intubation in obese patients? Medicine 2023, 102, e36614. [Google Scholar] [CrossRef]
- Siddiqui, K.M.; Hameed, F.; Ali, M.A. Diagnostic Accuracy of Combined Mallampati and Wilson Score to Predict Difficult Intubation in Obese Patients: A Descriptive Cross-sectional Study. Anesth. Pain Med. 2021, 11, e118626. [Google Scholar] [CrossRef]
- Kheterpal, S.; Han, R.; Tremper, K.K.; Shanks, A.; Tait, A.R.; O’Reilly, M.; Ludwig, T.A. Incidence and predictors of difficult and impossible mask ventilation. Anesthesiology 2006, 105, 885–891. [Google Scholar] [CrossRef]
- Lundstrøm, L.H.; Rosenstock, C.V.; Wetterslev, J.; Nørskov, A.K. The DIFFMASK score for predicting difficult facemask ventilation: A cohort study of 46,804 patients. Anaesthesia 2019, 74, 1267–1276. [Google Scholar] [CrossRef]
- Langeron, O.; Semjen, F.; Bourgain, J.L.; Marsac, A.; Cros, A.M. Comparison of the intubating laryngeal mask airway with the fiberoptic intubation in anticipated difficult airway management. Anesthesiology 2001, 94, 968–972. [Google Scholar] [CrossRef] [PubMed]
- Ramachandran, S.K.; Mathis, M.R.; Tremper, K.K.; Shanks, A.M.; Kheterpal, S. Predictors and clinical outcomes from failed Laryngeal Mask Airway Unique™: A study of 15,795 patients. Anesthesiology 2012, 116, 1217–1226. [Google Scholar] [CrossRef] [PubMed]
- Crawley, S.; Dalton, A. Predicting the difficult airway. BJA Educ. 2014, 15, 253–257. [Google Scholar] [CrossRef]
- Aslani, A.; Ng, S.C.; Hurley, M.; McCarthy, K.F.; McNicholas, M.; McCaul, C.L. Accuracy of identification of the cricothyroid membrane in female subjects using palpation: An observational study. Anesth. Analg. 2012, 114, 987–992. [Google Scholar] [CrossRef] [PubMed]
- Jones, T.M.; De, M.; Foran, B.; Harrington, K.; Mortimore, S. Laryngeal cancer: United Kingdom National Multidisciplinary guidelines. J. Laryngol. Otol. 2016, 130, S75–S82. [Google Scholar] [CrossRef] [PubMed]
- Barclay-Steuart, A.; Großhennig, H.L.; Sasu, P.; Wünsch, V.A.; Stadlhofer, R.; Berger, J.; Stark, M.; Sehner, S.; Zöllner, C.; Petzoldt, M. Transnasal Videoendoscopy for Preoperative Airway Risk Stratification: Development and Validation of a Multivariable Risk Prediction Model. Anesth. Analg. 2023, 136, 1164–1173. [Google Scholar] [CrossRef] [PubMed]
- Sasu, P.B.; Pansa, J.I.; Stadlhofer, R.; Wünsch, V.A.; Loock, K.; Buscher, E.K.; Dankert, A.; Ozga, A.K.; Zöllner, C.; Petzoldt, M. Nasendoscopy to Predict Difficult Videolaryngoscopy: A Multivariable Model Development Study. J. Clin. Med. 2023, 12, 3433. [Google Scholar] [CrossRef]
- Gemma, M.; Buratti, L.; Di Santo, D.; Calvi, M.R.; Ravizza, A.; Bondi, S.; Bussi, M.; Beretta, L. Pre-operative transnasal endoscopy as a predictor of difficult airway: A prospective cohort study. Eur. J. Anaesthesiol. 2020, 37, 98–104. [Google Scholar] [CrossRef]
- Paul, B.C.; Rafii, B.; Achlatis, S.; Amin, M.R.; Branski, R.C. Morbidity and patient perception of flexible laryngoscopy. Ann. Otol. Rhinol. Laryngol. 2012, 121, 708–713. [Google Scholar] [CrossRef]
- Alvi, S.; Harsha, P. Flexible Nasopharyngoscopy. In StatPearls; StatPearls Publishing Copyright © 2024; StatPearls Publishing LLC.: Treasure Island, FL, USA, 2024. [Google Scholar]
- Rosenblatt, W.; Ianus, A.I.; Sukhupragarn, W.; Fickenscher, A.; Sasaki, C. Preoperative endoscopic airway examination (PEAE) provides superior airway information and may reduce the use of unnecessary awake intubation. Anesth. Analg. 2011, 112, 602–607. [Google Scholar] [CrossRef] [PubMed]
- Marchis, I.F.; Zdrehus, C.; Pop, S.; Radeanu, D.; Cosgarea, M.; Mitre, C.I. Awake nasotracheal intubation with a 300-mm working length fiberscope: A prospective observational feasibility trial. Braz. J. Anesthesiol. 2023, 73, 556–562. [Google Scholar] [CrossRef] [PubMed]
- Tsunoda, A.; Kobayashi, Y.; Tou, M.; Sonoda, K.; Arai, S.; Anzai, T.; Matsumoto, F. Emergency videoendoscopic endonasal tracheal intubation for severe upper airway stenosis. Am. J. Otolaryngol. 2021, 42, 102779. [Google Scholar] [CrossRef] [PubMed]
- Bentsianov, B.L.; Parhiscar, A.; Azer, M.; Har-El, G. The role of fiberoptic nasopharyngoscopy in the management of the acute airway in angioneurotic edema. Laryngoscope 2000, 110, 2016–2019. [Google Scholar] [CrossRef] [PubMed]
- Askar, S.M.; El-Anwar, M.W.; Quriba, A.S. Positional awake nasoendoscopic pattern-based surgical decision for correction of retropalatal obstruction in OSA. Eur. Arch. Otorhinolaryngol. 2021, 278, 901–909. [Google Scholar] [CrossRef] [PubMed]
- Tasli, H.; Karaman, N.E.; Isler, D.; Subasi, B. A Predictor of Difficult Airway: The Tasli Classification in Transnasal Flexible Laryngoscopy. J. Voice 2023, 37, 945–950. [Google Scholar] [CrossRef]
- Tasli, H.; Karakoc, O.; Birkent, H. A Grading System for Transnasal Flexible Laryngoscopy. J. Voice 2019, 33, 712–715. [Google Scholar] [CrossRef]
- Osman, A.; Sum, K.M. Role of upper airway ultrasound in airway management. J. Intensive Care 2016, 4, 52. [Google Scholar] [CrossRef]
- Lin, J.; Bellinger, R.; Shedd, A.; Wolfshohl, J.; Walker, J.; Healy, J.; Taylor, J.; Chao, K.; Yen, Y.H.; Tzeng, C.T.; et al. Point-of-Care Ultrasound in Airway Evaluation and Management: A Comprehensive Review. Diagnostics 2023, 13, 1541. [Google Scholar] [CrossRef] [PubMed]
- Kundra, P.; Mishra, S.K.; Ramesh, A. Ultrasound of the airway. Indian. J. Anaesth. 2011, 55, 456–462. [Google Scholar] [CrossRef] [PubMed]
- Jain, K.; Yadav, M.; Gupta, N.; Thulkar, S.; Bhatnagar, S. Ultrasonographic assessment of airway. J. Anaesthesiol. Clin. Pharmacol. 2020, 36, 5–12. [Google Scholar] [CrossRef]
- Fernandez-Vaquero, M.A.; Charco-Mora, P.; Garcia-Aroca, M.A.; Greif, R. Preoperative airway ultrasound assessment in the sniffing position: A prospective observational study. Braz. J. Anesthesiol. 2023, 73, 539–547. [Google Scholar] [CrossRef]
- Falcetta, S.; Cavallo, S.; Gabbanelli, V.; Pelaia, P.; Sorbello, M.; Zdravkovic, I.; Donati, A. Evaluation of two neck ultrasound measurements as predictors of difficult direct laryngoscopy: A prospective observational study. Eur. J. Anaesthesiol. 2018, 35, 605–612. [Google Scholar] [CrossRef]
- Beale, T.; Twigg, V.M.; Horta, M.; Morley, S. High-Resolution Laryngeal US: Imaging Technique, Normal Anatomy, and Spectrum of Disease. Radiographics 2020, 40, 775–790. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Teoh, W.; Kristensen, M. Ultrasound in Airway Management. Curr. Anesthesiol. Rep. 2020, 10, 317–326. [Google Scholar] [CrossRef]
- Hui, C.M.; Tsui, B.C. Sublingual ultrasound as an assessment method for predicting difficult intubation: A pilot study. Anaesthesia 2014, 69, 314–319. [Google Scholar] [CrossRef] [PubMed]
- Bhargava, V.; Rockwell, N.A.; Tawfik, D.; Haileselassie, B.; Petrisor, C.; Su, E. Prediction of Difficult Laryngoscopy Using Ultrasound: A Systematic Review and Meta-Analysis. Crit. Care Med. 2023, 51, 117–126. [Google Scholar] [CrossRef]
- Ning, L.; Zhu, X.; Li, H.C.; Zhou, S.J.; Zhang, Q.W.; Zou, H.Y.; Mao, Q.X.; Yan, H. A quantitative study of airway ultrasound in predicting difficult laryngoscopy: A prospective study. Chin. J. Traumatol. 2023, 26, 351–356. [Google Scholar] [CrossRef] [PubMed]
- Bhagavan, S.; Nelamangala, K. Accuracy of Preoperative Ultrasonographic Airway Assessment in Predicting Difficult Laryngoscopies in Adult Patients. Cureus 2023, 15, e35652. [Google Scholar] [CrossRef] [PubMed]
- Alessandri, F.; Antenucci, G.; Piervincenzi, E.; Buonopane, C.; Bellucci, R.; Andreoli, C.; Alunni Fegatelli, D.; Ranieri, M.V.; Bilotta, F. Ultrasound as a new tool in the assessment of airway difficulties: An observational study. Eur. J. Anaesthesiol. 2019, 36, 509–515. [Google Scholar] [CrossRef] [PubMed]
- Petrisor, C.; Szabo, R.; Constantinescu, C.; Prie, A.; Hagau, N. Ultrasound-based assessment of hyomental distances in neutral, ramped, and maximum hyperextended positions, and derived ratios, for the prediction of difficult airway in the obese population: A pilot diagnostic accuracy study. Anaesthesiol. Intensive Ther. 2018, 50, 110–116. [Google Scholar] [CrossRef]
- Wu, J.; Dong, J.; Ding, Y.; Zheng, J. Role of anterior neck soft tissue quantifications by ultrasound in predicting difficult laryngoscopy. Med. Sci. Monit. 2014, 20, 2343–2350. [Google Scholar] [CrossRef]
- Adhikari, S.; Zeger, W.; Schmier, C.; Crum, T.; Craven, A.; Frrokaj, I.; Pang, H.; Shostrom, V. Pilot study to determine the utility of point-of-care ultrasound in the assessment of difficult laryngoscopy. Acad. Emerg. Med. 2011, 18, 754–758. [Google Scholar] [CrossRef]
- Yao, W.; Wang, B. Can tongue thickness measured by ultrasonography predict difficult tracheal intubation? Br. J. Anaesth. 2017, 118, 601–609. [Google Scholar] [CrossRef] [PubMed]
- Rana, S.; Verma, V.; Bhandari, S.; Sharma, S.; Koundal, V.; Chaudhary, S.K. Point-of-care ultrasound in the airway assessment: A correlation of ultrasonography-guided parameters to the Cormack-Lehane Classification. Saudi J. Anaesth. 2018, 12, 292–296. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Wang, B.; Wang, M.; Yao, W.; Chen, Y. The value of multiparameter combinations for predicting difficult airways by ultrasound. BMC Anesthesiol. 2022, 22, 311. [Google Scholar] [CrossRef] [PubMed]
- Agarwal, R.; Jain, G.; Agarwal, A.; Govil, N. Effectiveness of four ultrasonographic parameters as predictors of difficult intubation in patients without anticipated difficult airway. Korean J. Anesthesiol. 2021, 74, 134–141. [Google Scholar] [CrossRef] [PubMed]
- Yao, W.; Zhou, Y.; Wang, B.; Yu, T.; Shen, Z.; Wu, H.; Jin, X.; Li, Y. Can Mandibular Condylar Mobility Sonography Measurements Predict. Difficult Laryngoscopy? Anesth. Analg. 2017, 124, 800–806. [Google Scholar] [CrossRef]
- Kaul, R.; Singh, D.; Prakash, J.; Priye, S.; Kumar, S.; Bharati. Ultrasound Guided Measurement of Anterior Neck Tissue for the Prediction of Difficult Airway: A Prospective Observational Study. Rom. J. Anaesth. Intensive Care 2021, 28, 105–110. [Google Scholar] [PubMed]
- Udayakumar, G.S.; Priya, L.; Narayanan, V. Comparison of Ultrasound Parameters and Clinical Parameters in Airway Assessment for Prediction of Difficult Laryngoscopy and Intubation: An Observational Study. Cureus 2023, 15, e41392. [Google Scholar] [CrossRef]
- Lin, H.Y.; Tzeng, I.S.; Hsieh, Y.L.; Kao, M.C.; Huang, Y.C. Submental Ultrasound Is Effective in Predicting Difficult Mask Ventilation but Not in Difficult Laryngoscopy. Ultrasound Med. Biol. 2021, 47, 2243–2249. [Google Scholar] [CrossRef]
- Sotoodehnia, M.; Khodayar, M.; Jalali, A.; Momeni, M.; Safaie, A.; Abdollahi, A. Prediction of difficult laryngoscopy/difficult intubation cases using upper airway ultrasound measurements in emergency department: A prospective observational study. BMC Emerg. Med. 2023, 23, 78. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Li, J.; Zhong, L.; Zeng, Z. Development and Internal Validation of a Prediction Model for Difficult Laryngoscopy Using Ultrasound-Derived Factor in Comatose Patients. J. Ultrasound Med. 2023, 42, 1567–1576. [Google Scholar] [CrossRef] [PubMed]
- Han, R.; Tremper, K.K.; Kheterpal, S.; O’Reilly, M. Grading scale for mask ventilation. Anesthesiology 2004, 101, 267. [Google Scholar] [CrossRef] [PubMed]
- Jain, K.; Gupta, N.; Yadav, M.; Thulkar, S.; Bhatnagar, S. Radiological evaluation of airway—What an anaesthesiologist needs to know! Indian. J. Anaesth. 2019, 63, 257–264. [Google Scholar] [CrossRef]
- Lee, H.C.; Kim, M.K.; Kim, Y.H.; Park, H.P. Radiographic Predictors of Difficult Laryngoscopy in Acromegaly Patients. J. Neurosurg. Anesthesiol. 2019, 31, 50–56. [Google Scholar] [CrossRef] [PubMed]
- Kamalipour, H.; Bagheri, M.; Kamali, K.; Taleie, A.; Yarmohammadi, H. Lateral neck radiography for prediction of difficult orotracheal intubation. Eur. J. Anaesthesiol. 2005, 22, 689–693. [Google Scholar] [CrossRef]
- Ji, C.; Ni, Q.; Chen, W. Diagnostic accuracy of radiology (CT, X-ray, US) for predicting difficult intubation in adults: A meta-analysis. J. Clin. Anesth. 2018, 45, 79–87. [Google Scholar] [CrossRef]
- Khan, Z.H.; Arbabi, S. Diagnostic value of the upper lip bite test in predicting difficulty in intubation with head and neck landmarks obtained from lateral neck X-ray. Indian. J. Anaesth. 2013, 57, 381–386. [Google Scholar] [CrossRef] [PubMed]
- Oh, H.; Kim, H.; Yoon, H.K.; Lee, H.C.; Park, H.P. No radiographic index predicts difficult intubation using the Optiscope™ in cervical spine surgery patients: A retrospective study. BMC Anesthesiol. 2020, 20, 47. [Google Scholar] [CrossRef]
- Han, Y.Z.; Tian, Y.; Zhang, H.; Zhao, Y.Q.; Xu, M.; Guo, X.Y. Radiologic indicators for prediction of difficult laryngoscopy in patients with cervical spondylosis. Acta Anaesthesiol. Scand. 2018, 62, 474–482. [Google Scholar] [CrossRef]
- Gupta, K.; Gupta, P.K. Assessment of difficult laryngoscopy by electronically measured maxillo-pharyngeal angle on lateral cervical radiograph: A prospective study. Saudi J. Anaesth. 2010, 4, 158–162. [Google Scholar] [CrossRef]
- Kharrat, I.; Achour, I.; Trabelsi, J.J.; Trigui, M.; Thabet, W.; Mnejja, M.; Hammami, B.; Chakroun, A.; Charfeddine, I. Prediction of difficulty in direct laryngoscopy. Sci. Rep. 2022, 12, 10722. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Han, Y.; Li, Z.; Zhao, Y.; Yang, N.; Liu, T.; Li, M.; Wang, J.; Guo, X.; Xu, M. Preoperative X-ray C(2)C(6)AR is applicable for prediction of difficult laryngoscopy in patients with cervical spondylosis. BMC Anesthesiol. 2021, 21, 111. [Google Scholar] [CrossRef] [PubMed]
- Liu, B.; Song, Y.; Liu, K.; Zhou, F.; Ji, H.; Tian, Y.; Han, Y.Z. Radiological indicators to predict the application of assistant intubation techniques for patients undergoing cervical surgery. BMC Anesthesiol. 2020, 20, 238. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.J.; Min, N.H.; Lee, J.S.; Lee, W.; Kim, D.H. Anterior neck soft tissue measurements on computed tomography to predict difficult laryngoscopy: A retrospective study. Sci. Rep. 2021, 11, 8438. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; An, B.; Jiang, B.; Xu, S.; Liu, H.; Zhao, H. Pharynx volume derived from three-dimensional computed tomography is associated with difficult intubation in spinal deformity surgery: A retrospective cohort study. Medicine 2022, 101, e31139. [Google Scholar] [CrossRef]
- Yasli, S.O.; Canpolat, D.G.; Baydan, E.; Demirbas, A.E. Effectiveness Of Computed Tomography-Guided Nasotracheal Intubation Procedure On Predicting Tube Advancement Difficulty And Preventing Epistaxis: A Prospective Case-Control Study. J. Pak. Med. Assoc. 2023, 73, 1981–1986. [Google Scholar] [CrossRef] [PubMed]
- Mao, Z.; Zhang, N.; Cui, Y. A clinical prediction rule to identify difficult intubation in children with Robin sequence requiring mandibular distraction osteogenesis based on craniofacial CT measures. BMC Anesthesiol. 2019, 19, 215. [Google Scholar] [CrossRef] [PubMed]
- Del Buono, R.; Sabatino, L.; Greco, F. Neck fat volume as a potential indicator of difficult intubation: A pilot study. Saudi J. Anaesth. 2018, 12, 67–71. [Google Scholar] [CrossRef]
- El-Boghdadly, K.; Onwochei, D.N.; Millhoff, B.; Ahmad, I. The effect of virtual endoscopy on diagnostic accuracy and airway management strategies in patients with head and neck pathology: A prospective cohort study. Can. J. Anaesth. 2017, 64, 1101–1110. [Google Scholar] [CrossRef]
- Ormandy, D.; Kolb, B.; Jayaram, S.; Burley, O.; Kyzas, P.; Vallance, H.; Vassiliou, L. Difficult airways: A 3D printing study with virtual fibreoptic endoscopy. Br. J. Oral. Maxillofac. Surg. 2021, 59, e65–e71. [Google Scholar] [CrossRef]
- Li, C.; Cai, Y.; Wang, W.; Sun, Y.; Li, G.; Dimachkieh, A.L.; Tian, W.; Sun, R. Combined application of virtual surgery and 3D printing technology in postoperative reconstruction of head and neck cancers. BMC Surg. 2019, 19, 182. [Google Scholar] [CrossRef]
- Iliff, H.A.; Ahmad, I.; Evans, S.; Ingham, J.; Rees, G.; Woodford, C. Using virtual reality for difficult airway management planning. Anaesth. Rep. 2022, 10, e12175. [Google Scholar] [CrossRef]
- Stramiello, J.A.; Saddawi-Konefka, R.; Ryan, J.; Brigger, M.T. The role of 3D printing in pediatric airway obstruction: A systematic review. Int. J. Pediatr. Otorhinolaryngol. 2020, 132, 109923. [Google Scholar] [CrossRef]
- Malackany, N.; Londono, I.; Bustamante, S.; Dahan, Y.J.; Bribriesco, A.C.; Klatte, R.; Mehta, A. Successful Management of Previously Failed Difficult Airway Using a 3D Printed Airway Model. J. Cardiothorac. Vasc. Anesth. 2023, 37, 1474–1477. [Google Scholar] [CrossRef]
- Ahmad, I.; Millhoff, B.; John, M.; Andi, K.; Oakley, R. Virtual endoscopy—A new assessment tool in difficult airway management. J. Clin. Anesth. 2015, 27, 508–513. [Google Scholar] [CrossRef] [PubMed]
- Ecker, H.; Kolvenbach, S.; Stranz, S.; Herff, H.; Wetsch, W.A. Comparison of the novel VieScope with conventional and video laryngoscope in a difficult airway scenario—A randomized, controlled simulation trial. BMC Emerg. Med. 2021, 21, 90. [Google Scholar] [CrossRef]
- Trent, S.A.; Kaji, A.H.; Carlson, J.N.; McCormick, T.; Haukoos, J.S.; Brown, C.A., 3rd. Video Laryngoscopy Is Associated With First-Pass Success in Emergency Department Intubations for Trauma Patients: A Propensity Score Matched Analysis of the National Emergency Airway Registry. Ann. Emerg. Med. 2021, 78, 708–719. [Google Scholar] [CrossRef] [PubMed]
- Lopes, S.; Rocha, G.; Guimarães-Pereira, L. Artificial intelligence and its clinical application in Anesthesiology: A systematic review. J. Clin. Monit. Comput. 2023. [Google Scholar] [CrossRef] [PubMed]
- Connor, C.W.; Segal, S. Accurate classification of difficult intubation by computerized facial analysis. Anesth. Analg. 2011, 112, 84–93. [Google Scholar] [CrossRef]
- Cuendet, G.L.; Schoettker, P.; Yüce, A.; Sorci, M.; Gao, H.; Perruchoud, C.; Thiran, J.P. Facial Image Analysis for Fully Automatic Prediction of Difficult Endotracheal Intubation. IEEE Trans. Biomed. Eng. 2016, 63, 328–339. [Google Scholar] [CrossRef]
- Hayasaka, T.; Kawano, K.; Kurihara, K.; Suzuki, H.; Nakane, M.; Kawamae, K. Creation of an artificial intelligence model for intubation difficulty classification by deep learning (convolutional neural network) using face images: An observational study. J. Intensive Care 2021, 9, 38. [Google Scholar] [CrossRef] [PubMed]
- Wang, G.; Li, C.; Tang, F.; Wang, Y.; Wu, S.; Zhi, H.; Zhang, F.; Wang, M.; Zhang, J. A fully-automatic semi-supervised deep learning model for difficult airway assessment. Heliyon 2023, 9, e15629. [Google Scholar] [CrossRef]
- Xia, M.; Jin, C.; Zheng, Y.; Wang, J.; Zhao, M.; Cao, S.; Xu, T.; Pei, B.; Irwin, M.G.; Lin, Z.; et al. Deep learning-based facial analysis for predicting difficult videolaryngoscopy: A feasibility study. Anaesthesia 2023, 79, 399–409. [Google Scholar] [CrossRef] [PubMed]
- Pei, B.; Jin, C.; Cao, S.; Ji, N.; Xia, M.; Jiang, H. Geometric morphometrics and machine learning from three-dimensional facial scans for difficult mask ventilation prediction. Front. Med. 2023, 10, 1203023. [Google Scholar] [CrossRef] [PubMed]
- Marchis, I.F. New Methods of Controlling the Difficult Airway in Otorhinolaryngologic Anesthesia. Ph.D. Thesis, “Iuliu Haţieganu” University of Medicine and Pharmacy, Cluj Napoca, Romania, 2022. [Google Scholar]
- Quintard, H.; Higgs, A.; Lyons, G.; Pottecher, J. Critical airway management in the intensive care unit: Homogeneity in practice? Br. J. Anaesth. 2019, 122, 533–536. [Google Scholar] [CrossRef] [PubMed]
- Saul, S.A.; Ward, P.A.; McNarry, A.F. Airway Management: The Current Role of Videolaryngoscopy. J. Pers. Med. 2023, 13, 1327. [Google Scholar] [CrossRef]
- De Jong, A.; Sfara, T.; Pouzeratte, Y.; Pensier, J.; Rolle, A.; Chanques, G.; Jaber, S. Videolaryngoscopy as a first-intention technique for tracheal intubation in unselected surgical patients: A before and after observational study. Br. J. Anaesth. 2022, 129, 624–634. [Google Scholar] [CrossRef]
- Gaszynski, T. A comparison of pre-operative transnasal flexible endoscopic laryngoscopy and actual laryngeal view obtained with videolaryngoscopy in predicted difficult intubations. Eur. J. Anaesthesiol. 2021, 38, 201–202. [Google Scholar] [CrossRef]
- Tonna, J.E.; DeBlieux, P.M. Awake Laryngoscopy in the Emergency Department. J. Emerg. Med. 2017, 52, 324–331. [Google Scholar] [CrossRef]
- Vora, J.; Leslie, D.; Stacey, M. Awake tracheal intubation. BJA Educ. 2022, 22, 298–305. [Google Scholar] [CrossRef]
- Hyman, J.B.; Rosenblatt, W.H. Awake Intubation Techniques, and Why It Is Still an Important Skill to Master. Curr. Anesthesiol. Rep. 2022, 12, 382–389. [Google Scholar] [CrossRef]
- Carsetti, A.; Sorbello, M.; Adrario, E.; Donati, A.; Falcetta, S. Airway Ultrasound as Predictor of Difficult Direct Laryngoscopy: A Systematic Review and Meta-analysis. Anesth. Analg. 2022, 134, 740–750. [Google Scholar] [CrossRef]
- Bouaoud, J.; El Beheiry, M.; Jablon, E.; Schouman, T.; Bertolus, C.; Picard, A.; Masson, J.B.; Khonsari, R.H. DIVA, a 3D virtual reality platform, improves undergraduate craniofacial trauma education. J. Stomatol. Oral. Maxillofac. Surg. 2021, 122, 367–371. [Google Scholar] [CrossRef] [PubMed]
- Zoccali, F.; Colizza, A.; Cialente, F.; Di Stadio, A.; La Mantia, I.; Hanna, C.; Minni, A.; Ralli, M.; Greco, A.; de Vincentiis, M. 3D Printing in Otolaryngology Surgery: Descriptive Review of Literature to Define the State of the Art. Healthcare 2022, 11, 108. [Google Scholar] [CrossRef] [PubMed]
- Aguilar, K.; Alférez, G.H.; Aguilar, C. Detection of difficult airway using deep learning. Mach. Vis. Appl. 2020, 31, 4. [Google Scholar] [CrossRef]
Parameter | 0 Points | 1 Point | 2 Points |
---|---|---|---|
Weight (kg) | <90 | 90–110 | >110 |
Cervical spine mobility | >90 | 90 | <90 |
Impaired jaw mobility | Interincisor gap ≥ 5 cm or able to protrude the lower teeth past the upper teeth | Interincisor gap < 5 cm and only able to protrude the lower teeth to meet the upper teeth | Interincisor gap < 5 cm and unable to protrude the lower teeth to meet the upper teeth |
Retrognathia | Normal | Moderate | Severe |
Prominent incisors | Normal | Moderate | Severe |
Predictors of Difficult Direct Laryngoscopy | Predictors of Difficult Face Mask Ventilation |
---|---|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Congenital | Acquired |
---|---|
Pierre Robin syndrome | Morbid obesity |
Goldenhar syndrome | Pregnancy |
Treacher Collins syndrome | Radiation of face or neck |
Achondroplasia | Infections involving the airway (Ludwig’s angina, epiglottitis, abscess, papillomatosis) |
Mucopolysaccharidoses | Allergic reactions (Quincke’s edema) |
Micrognathia | Obstructive sleep apnea |
Beckwith syndrome | Tumors involving the upper airway |
Down syndrome | Trauma or burns of the head or neck |
Cretinism | Ankylosing spondylitis |
Acromegaly |
Authors, Year | N | Patient Population | Study Design | Main Findings |
---|---|---|---|---|
Barclay-Steuart et al., 2023 [29] | 1099 | Elective ENT surgery patients | Retrospective cohort | Lesions of the vestibular folds, supraglottic region, and arytenoids, viewing restriction of the rima glottidis covering ≥50% of the glottis area, and pharyngeal secretion retention were predictive of difficult airway management. When age, sex, BMI, and Mallampati scores were added, the AUC of the model reached 0.74. Lesions at the vocal cords, epiglottis, or hypopharynx were not predictive of difficult airway management. * |
Sasu et al., 2023 [30] | 252 | Elective ENT and OMF surgery patients | Retrospective cohort | Vestibular fold lesions, epiglottic lesions, pharyngeal secretion retention, and restricted view of the rima glottis covering <50% and ≥50% were associated with a difficult videolaryngoscopy (alert issued by anesthetist after intubation). |
Tasli et al., 2023 [39] | 98 | Rhinological and otologic surgery patients | Prospective cohort | The Tasli classification ** and Cormack–Lehane grade are moderately correlated (Pearson correlation coefficient = 0.582). A Tasli grade of ≥2b had a sensitivity of 73.8% and a specificity of 83.3% in predicting difficult intubation (defined as more than one attempt at successful tracheal intubation). |
Rosenblatt et al., 2011 [34] | 138 | Elective surgery of the upper airway, ASA I-IV | Prospective cohort | When compared to a clinical evaluation of the airway alone, PEAE affected airway management plans for 26% of the patients (28 patients originally planned for AFOI underwent anesthetic induction and laryngoscopy, while 8 patients originally intended for intubation following induction underwent AFOI). |
Authors, Year | N | Patient Population | Study Design | Main Findings |
---|---|---|---|---|
Ning et al., 2023 [51] | 502 | Elective laparoscopic cholecystectomy | prospective observational | Mandible–hyoid bone angle < 125.5°, DGTC > 1.22 cm, and DSEM > 2.20 cm predicted DL with AUCs of 0.930, 0.722, and 0.702, respectively. Tongue width, cross-section area, and volume, mandible–hyoid distance and hyoid–glottis distance were not predictive of difficult laryngoscopy. |
Bhagavan et al., 2023 [52] | 96 | Elective surgery, ASA I-II | prospective observational | DSHB > 0.66 cm and DSEM > 2.03 cm predicted DL with AUCs of 0.974 and 0.888, respectively. |
Alessandri et al., 2019 [53] | 194 | Elective ENT surgery | prospective observational, single blinded | DSHB predicts DMV * (AUC = 0.929) and DL ** (AUC = 0.660). DSTI, DSEM, DSTJ, and DSAC also correlate with DMV and DL. |
Petrisor et al., 2018 [54] | 25 | Elective surgery in morbidly obese patients | prospective observational | HMDR2 has the highest diagnostic accuracy for DL in morbidly obese patients, with a cut-off of 1.23 and an AUC of 0.92. HMDR1 and HMD in the ramped and maximally hyperextended positions were also predictive of difficult intubation, but HMD in neutral position was not. |
Wu et al., 2014 [55] | 203 | Elective surgery | prospective observational | DSHB, DSEM, and DSAC predicted DL with cut-off values of 1.28 cm, 1.78 cm, and 1.1 cm and AUCs of 0.92, 0.90, and 0.85, respectively. |
Adhikari et al., 2011 [56] | 51 | Elective surgery | prospective observational | DSHB and DSME predicted DL, while TT and anterior neck soft-tissue thickness at the level of the vocal cords, thyroid isthmus, and suprasternal notch did not. |
Yao et al., 2017 [57] | 2254 | Elective surgery | prospective observational | TT > 6.1 cm and TT-to-TMD ratio > 0.87 predicted DTI and DL, with an AUC of 0.78 and 0.86 for DTI *** and 0.69 and 0.75 for DL. |
Rana et al., 2018 [58] | 120 | Elective surgery, ASA I-II, non-obese | prospective observational | Pre-E/E-VC > 1.77 cm and HMDR1 < 1.085 predicted DL with AUCs of 0.868 and 0.871, respectively. |
Falcetta et al., 2018 [46] | 301 | Elective surgery | prospective observational, single blinded | mDSE > 2.54 cm and PEA > 5.04 cm2 predicted DL ** with AUCs of 0.906 and 0.93, respectively. |
Xu et al. 2022 [59] | 1000 | Elective surgery, ASA I-III | prospective case-cohort study | Ultrasound model consisting of 3 parameters: TT > 61 mm, mandibular condyle mobility ≤ 10 mm, and HMD ≤ 51 mm (1 point each). Scores > 1 point predicted DTI (Se = 85%; Sp = 81%; AUC = 0.89) and DL (Se = 75% and Sp = 82%; AUC = 0.84) ***. |
Agarwal et al., 2021 [60] | 1043 | Elective surgery, ASA I-III | prospective, observational, double-blinded cohort trial | Ultrasound model consisting of 4 parameters (TT > 5.8 cm, DSHB > 1.4 cm, DSEM > 2.4 cm, and VH) predicted difficult intubation with an AUC = 0.992. |
Yao et al., 2017 [61] | 484 | Elective surgery, ASA I-III | prospective observational | Mandibular condyle mobility ≤ 10 mm predicted DL (Se = 81%; Sp = 91%; AUC = 0.93). |
Kaul et al., 2021 [62] | 100 | Elective surgery, ASA I-II | prospective observational | DSAC > 1.68 cm (Se = 100%; Sp = 95%; AUC = 0.999), DSEM > 1.34 cm (Se = 93%; Sp = 82%; AUC = 0.975) and DSHB > 0.98 cm (Se = 92%; Sp = 69%; AUC = 0.799) predicted DL. |
Udayakumar et al., 2023 [63] | 100 | Elective surgery, ASA I-III | prospective observational | DSEM > 2.03 cm (Se = 97%; Sp = 79%; AUC = 0.91) and DSVC > 1.12 cm (Se = 80%; Sp = 88%; AUC = 0.84) predicted DL. |
Lin et al., 2021 [64] | 41 | Elective surgery, ASA I-III | prospective observational | TT > 6.96 cm was not predictive of DTI but predicted DMV (Se = 50%; Sp = 87%; AUC = 0.72) * |
Sotoodehnia et al., 2023 [65] | 123 | ED, requiring RSI, excluding neck or head trauma or those with airway obstruction | prospective observational | DSAC and DSTI predicted DL and DTI. HV predicted DTI but not DL. DSHB predicted DL but not DTI. DBAC predicted neither. |
Li et al., 2023 [66] | 151 | Comatose patients undergoing emergency intubation | prospective observational | A sum of DSHB and DSAC >1.9 was predictive of DL, with an OR = 7.76. |
Authors, Year | N | Patient Population | Study Design | Main Findings |
---|---|---|---|---|
Khan et al., 2013 [72] | 4500 | Elective surgery, ASA I-III | Prospective | Radiological parameters (atlantooccipital gap, mandibular angle, mandibular depth, and mandibulohyoid distance) had a low predictive power for DL. |
Oh et al., 2020 [73] | 184 | Cervical spine surgery patients intubated with an Optiscope video stylet and manual inline stabilization | Retrospective | No parameters measured on lateral cervical X-ray or RMN correlated with DTI (defined as failure on the first attempt or intubation time > 90 s) |
Han et al., 2018 [74] | 315 | Cervical spine surgery patients | Retrospective | A vertical distance from the superior aspect of the hyoid bone to the mandibular body of ≥20 mm predicted DL. (Se = 77.8; Sp = 71.3; AUC = 0.832). Extension angle of A * ≥ 38° predicted DL. (Se = 74.1; Sp = 65.5; AUC = 0.802) |
Gupta et al., 2010 [75] | 157 | 15–65 years old, elective surgery | Prospective | Maxillo-pharyngeal angle on lateral cervical X-ray correlates with DL. |
Kharrat et al., 2022 [76] | 71 | Elective transoral microsurgery for laryngeal tumors | Prospective | A longer maxilla and shorter atlantooccipital distance on lateral cervical X-ray were correlated with difficult laryngeal exposure (defined as laryngeal exposure limited to the posterior third of the vocal cords or less when suspension direct laryngoscopy was performed by ENT surgeons). |
Zhou et al., 2021 [77] | 270 | Cervical spine surgery patients | Prospective | C2C6AR ** < 1 predicted difficult laryngoscopy with Se = 0.88, Sp = 0.3, and AUC = 0.714. |
Liu et al., 2020 [78] | 104 | Cervical spine surgery patients | Retrospective | Angle E *** < 19.9° (Se = 0. 885; Sp = 0.910; AUC = 0.929), distance from hard palate to upper incisors > 30.1 mm (Se = 0.769; Sp = 0.769; AUC = 0.819) and atlantooccipital gap < 7.3 mm (Se = 0. 731; Sp = 0.564; AUC = 0.636) predicted need for assisted intubation techniques ****. |
Authors, Year | N | Patient Population | Study Design | Parameters Measured | Se (%) | Sp (%) | AUC |
---|---|---|---|---|---|---|---|
Kim et al., 2021 [79] | 281 | Elective thyroidectomy patients for suspected malignancy, ASA I-III | Retrospective | dMV > 2.33 cm | 75.0 | 93.8 | 0.884 |
dME > 3.27 cm | 87.5 | 48.6 | 0.691 | ||||
dSV > 3.37 cm | 77.5 | 65.6 | 0.742 | ||||
dSE > 4.54 cm | 80.0 | 44.4 | 0.635 | ||||
Lee et al., 2019 [69] | 90 | Acromegaly patients undergoing transsphenoidal removal of pituitary tumor | Retrospective | Tongue area > 2600 mm2 | 76 | 61 | 0.68 |
Li * et al., 2022 [80] | 24 | ≥14 years old, surgery for ankylosing spondylitis/idiopathic scoliosis | Retrospective Cohort | Pharyngeal volume < 16 mL | 85.7 | 70.6 | nr |
Yasli * et al., 2023 [81] | 60 | ASA I-II patients undergoing bimaxillary orthognathic surgery | Prospective | Vertical diameter of INV region ≤ 1.09 cm | 75 | 71.43 | 0.77 |
Horizontal diameter of INV region ≤ 0.39 cm | 68.75 | 85.71 | 0.773 | ||||
Mao et al., 2019 [82] | 69 | Children with Robin sequence undergoing MDO | Retrospective | Airway cross-section area at epiglottis tip > 36.97 mm2 | 100 | 62.5 | 0.8125 |
Del Buono et al., 2018 [83] | 37 | Elective surgery ASA I-IV | Retrospective | Neck fat volume | ns | ns | ns |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marchis, I.F.; Negrut, M.F.; Blebea, C.M.; Crihan, M.; Alexa, A.L.; Breazu, C.M. Trends in Preoperative Airway Assessment. Diagnostics 2024, 14, 610. https://doi.org/10.3390/diagnostics14060610
Marchis IF, Negrut MF, Blebea CM, Crihan M, Alexa AL, Breazu CM. Trends in Preoperative Airway Assessment. Diagnostics. 2024; 14(6):610. https://doi.org/10.3390/diagnostics14060610
Chicago/Turabian StyleMarchis, Ioan Florin, Matei Florin Negrut, Cristina Maria Blebea, Mirela Crihan, Alexandru Leonard Alexa, and Caius Mihai Breazu. 2024. "Trends in Preoperative Airway Assessment" Diagnostics 14, no. 6: 610. https://doi.org/10.3390/diagnostics14060610
APA StyleMarchis, I. F., Negrut, M. F., Blebea, C. M., Crihan, M., Alexa, A. L., & Breazu, C. M. (2024). Trends in Preoperative Airway Assessment. Diagnostics, 14(6), 610. https://doi.org/10.3390/diagnostics14060610