Automatic Active Lesion Tracking in Multiple Sclerosis Using Unsupervised Machine Learning
Abstract
:1. Introduction
2. Materials and Methods
2.1. Dimensionality Reduction
2.2. Linear Dimensionality Reduction
Multidimensional Scaling
2.3. Non-Linear Dimensionality Reduction
2.3.1. Isometric Feature Mapping
2.3.2. Locally Linear Embedding (LLE)
2.3.3. Applications of Non-Linear Dimensionality Reduction
2.4. Patients
2.5. Image Dataset
2.6. Multiparametric Brain MRI
2.7. Performance Evaluation
3. Results
4. Discussion
5. Conclusions
6. Patents
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dobson, R.; Giovannoni, G. Multiple sclerosis—A review. Eur. J. Neurol. 2019, 26, 27–40. [Google Scholar] [CrossRef] [PubMed]
- Dilokthornsakul, P.; Valuck, R.J.; Nair, K.V.; Corboy, J.R.; Allen, R.R.; Campbell, J.D. Multiple sclerosis prevalence in the United States commercially insured population. Neurology 2016, 86, 1014–1021. [Google Scholar] [CrossRef] [PubMed]
- Sadigh, G.; Saindane, A.; Waldman, A.; Lava, N.; Hu, R. Comparison of unenhanced and gadolinium-enhanced imaging in multiple sclerosis: Is contrast needed for routine follow-up MRI? Am. J. Neuroradiol. 2019, 40, 1476–1480. [Google Scholar] [CrossRef] [PubMed]
- Saade, C.; Bou-Fakhredin, R.; Yousem, D.M.; Asmar, K.; Naffaa, L.; El-Merhi, F. Gadolinium and multiple sclerosis: Vessels, barriers of the brain, and glymphatics. Am. J. Neuroradiol. 2018, 39, 2168–2176. [Google Scholar] [CrossRef] [PubMed]
- Datta, S.; Sajja, B.R.; He, R.; Gupta, R.K.; Wolinsky, J.S.; Narayana, P.A. Segmentation of gadolinium-enhanced lesions on MRI in multiple sclerosis. J. Magn. Reson. Imaging Off. J. Int. Soc. Magn. Reson. Med. 2007, 25, 932–937. [Google Scholar] [CrossRef]
- Warntjes, J.; Tisell, A.; Landtblom, A.M.; Lundberg, P. Effects of gadolinium contrast agent administration on automatic brain tissue classification of patients with multiple sclerosis. Am. J. Neuroradiol. 2014, 35, 1330–1336. [Google Scholar] [CrossRef] [PubMed]
- Rudie, J.D.; Mattay, R.R.; Schindler, M.; Steingall, S.; Cook, T.S.; Loevner, L.A.; Schnall, M.D.; Mamourian, A.C.; Bilello, M. An Initiative to Reduce Unnecessary Gadolinium-Based Contrast in Multiple Sclerosis Patients. J. Am. Coll. Radiol. 2019, 16, 1158–1164. [Google Scholar] [CrossRef]
- Karimian-Jazi, K.; Wildemann, B.; Diem, R.; Schwarz, D.; Hielscher, T.; Wick, W.; Bendszus, M.; Breckwoldt, M.O. Gd contrast administration is dispensable in patients with MS without new T2 lesions on follow-up MRI. Neurol.-Neuroimmunol. Neuroinflamm. 2018, 5, e480. [Google Scholar] [CrossRef]
- Rovira, À.; Doniselli, F.M.; Auger, C.; Haider, L.; Hodel, J.; Severino, M.; Wattjes, M.P.; van der Molen, A.J.; Jasperse, B.; Mallio, C.A.; et al. Use of gadolinium-based contrast agents in multiple sclerosis: A review by the ESMRMB-GREC and ESNR Multiple Sclerosis Working Group. Eur. Radiol. 2023, 34, 1726–1735. [Google Scholar]
- Zeng, C.; Gu, L.; Liu, Z.; Zhao, S. Review of deep learning approaches for the segmentation of multiple sclerosis lesions on brain MRI. Front. Neuroinform. 2020, 14, 610967. [Google Scholar] [CrossRef]
- Starekova, J.; Pirasteh, A.; Reeder, S.B. Update on Gadolinium Based Contrast Agent Safety, From the AJR Special Series on Contrast Media. Am. J. Roentgenol. 2023. [Google Scholar] [CrossRef]
- FDA Drug Safety Communication. FDA Warns That Gadolinium-Based Contrast Agents (GBCAs) Are Retained in the Body. 2018. Available online: https://www.fda.gov/drugs/drug-safety-and-availability/fda-drug-safety-communication-fda-warns-gadolinium-based-contrast-agents-gbcas-are-retained-body (accessed on 1 March 2024).
- Eichinger, P.; Schön, S.; Pongratz, V.; Wiestler, H.; Zhang, H.; Bussas, M.; Hoshi, M.M.; Kirschke, J.; Berthele, A.; Zimmer, C.; et al. Accuracy of unenhanced MRI in the detection of new brain lesions in multiple sclerosis. Radiology 2019, 291, 429–435. [Google Scholar] [CrossRef]
- Moraal, B.; Meier, D.S.; Poppe, P.A.; Geurts, J.J.; Vrenken, H.; Jonker, W.M.; Knol, D.L.; van Schijndel, R.A.; Pouwels, P.J.; Pohl, C.; et al. Subtraction MR images in a multiple sclerosis multicenter clinical trial setting. Radiology 2009, 250, 506–514. [Google Scholar] [CrossRef]
- Narayana, P.A.; Coronado, I.; Sujit, S.J.; Wolinsky, J.S.; Lublin, F.D.; Gabr, R.E. Deep Learning for Predicting Enhancing Lesions in Multiple Sclerosis from Noncontrast MRI. Radiology 2020, 294, 398–404. [Google Scholar] [CrossRef]
- Schlaeger, S.; Shit, S.; Eichinger, P.; Hamann, M.; Opfer, R.; Krüger, J.; Dieckmeyer, M.; Schön, S.; Mühlau, M.; Zimmer, C.; et al. AI-based detection of contrast-enhancing MRI lesions in patients with multiple sclerosis. Insights Into Imaging 2023, 14, 123. [Google Scholar] [CrossRef]
- Coronado, I.; Gabr, R.E.; Narayana, P.A. Deep learning segmentation of gadolinium-enhancing lesions in multiple sclerosis. Mult. Scler. J. 2021, 27, 519–527. [Google Scholar] [CrossRef]
- Karimaghaloo, Z.; Shah, M.; Francis, S.J.; Arnold, D.L.; Collins, D.L.; Arbel, T. Automatic detection of gadolinium-enhancing multiple sclerosis lesions in brain MRI using conditional random fields. IEEE Trans. Med. Imaging 2012, 31, 1181–1194. [Google Scholar] [CrossRef]
- Gaj, S.; Ontaneda, D.; Nakamura, K. Automatic segmentation of gadolinium-enhancing lesions in multiple sclerosis using deep learning from clinical MRI. PLoS ONE 2021, 16, e0255939. [Google Scholar] [CrossRef]
- Russell, S.J.; Norvig, P. Artificial Intelligence: A Modern Approach, 3rd ed.; Pearson: London, UK, 2010. [Google Scholar]
- Liu, N.; Chee, M.L.; Koh, Z.X.; Leow, S.L.; Ho, A.F.W.; Guo, D.; Ong, M.E.H. Utilizing machine learning dimensionality reduction for risk stratification of chest pain patients in the emergency department. BMC Med. Res. Methodol. 2021, 21, 74. [Google Scholar] [CrossRef]
- Tenenbaum, J.B.; Silva, V.d.; Langford, J.C. A global geometric framework for nonlinear dimensionality reduction. Science 2000, 290, 2319–2323. [Google Scholar] [CrossRef]
- Sorzano, C.O.S.; Vargas, J.; Montano, A.P. A survey of dimensionality reduction techniques. arXiv 2014, arXiv:1403.2877. [Google Scholar]
- Meilă, M.; Zhang, H. Manifold learning: What, how, and why. Annu. Rev. Stat. Its Appl. 2023, 11. [Google Scholar] [CrossRef]
- Akhbardeh, A.; Jacobs, M.A. Comparative analysis of nonlinear dimensionality reduction techniques for breast MRI segmentation. Med. Phys. 2012, 39, 2275–2289. [Google Scholar] [CrossRef]
- Linting, M.; Meulman, J.J.; Groenen, P.J.; van der Koojj, A.J. Nonlinear principal components analysis: Introduction and application. Psychol. Methods 2007, 12, 336. [Google Scholar] [CrossRef]
- Knezek, G.; Gibson, D.; Christensen, R.; Trevisan, O.; Carter, M. Assessing approaches to learning with nonparametric multidimensional scaling. Br. J. Educ. Technol. 2023, 54, 126–141. [Google Scholar] [CrossRef]
- Malone, S.; Prewitt, K.; Hackett, R.; Lin, J.C.; McKay, V.; Walsh-Bailey, C.; Luke, D.A. The clinical sustainability assessment tool: Measuring organizational capacity to promote sustainability in healthcare. Implement. Sci. Commun. 2021, 2, 1–12. [Google Scholar] [CrossRef]
- Patra, S.S.; Harshvardhan, G.; Gourisaria, M.K.; Mohanty, J.R.; Choudhury, S. Emerging healthcare problems in high-dimensional data and dimension reduction. In Advanced Prognostic Predictive Modelling in Healthcare Data Analytics; Springer: Singapore, 2021; pp. 25–49. [Google Scholar]
- Law, M.H.; Jain, A.K. Incremental nonlinear dimensionality reduction by manifold learning. IEEE Trans. Pattern Anal. Mach. Intell. 2006, 28, 377–391. [Google Scholar] [CrossRef] [PubMed]
- Roweis, S.T.; Saul, L.K. Nonlinear dimensionality reduction by locally linear embedding. Science 2000, 290, 2323–2326. [Google Scholar] [CrossRef]
- Kim, J.; Kim, B.S.; Savarese, S. Comparing image classification methods: K-nearest-neighbor and support-vector-machines. In Proceedings of the 6th WSEAS International Conference on Computer Engineering and Applications, and Proceedings of the 2012 American Conference on Applied Mathematics, Stevens Point, WI, USA, 25–27 January 2012; pp. 133–138. [Google Scholar]
- Shamai, G.; Kimmel, R. Geodesic distance descriptors. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 6410–6418. [Google Scholar]
- Crane, K.; Livesu, M.; Puppo, E.; Qin, Y. A survey of algorithms for geodesic paths and distances. arXiv 2020, arXiv:2007.10430. [Google Scholar]
- Steyvers, M. Multidimensional scaling. In Encyclopedia of Cognitive Science; Nature Publishing Group: Berlin, Germany, 2002; Volume 1, pp. 160–165. [Google Scholar]
- Toroslu, I.H. Improving the floyd-warshall all pairs shortest paths algorithm. arXiv 2021, arXiv:2109.01872. [Google Scholar]
- Wang, X.Z. The comparison of three algorithms in shortest path issue. J. Phys. Conf. Ser. 2018, 1087, 022011. [Google Scholar] [CrossRef]
- Sharma, R.; Mahanti, G.K.; Panda, G.; Rath, A.; Dash, S.; Mallik, S.; Hu, R. A framework for detecting thyroid cancer from ultrasound and histopathological images using deep learning, meta-heuristics, and MCDM algorithms. J. Imaging 2023, 9, 173. [Google Scholar] [CrossRef] [PubMed]
- Lublin, F.D.; Cofield, S.S.; Cutter, G.R.; Conwit, R.; Narayana, P.A.; Nelson, F.; Salter, A.R.; Gustafson, T.; Wolinsky, J.S.; Investigators, C. Randomized study combining interferon and glatiramer acetate in multiple sclerosis. Ann. Neurol. 2013, 73, 327–340. [Google Scholar] [CrossRef] [PubMed]
- Sajja, B.R.; Datta, S.; He, R.; Mehta, M.; Gupta, R.K.; Wolinsky, J.S.; Narayana, P.A. Unified approach for multiple sclerosis lesion segmentation on brain MRI. Ann. Biomed. Eng. 2006, 34, 142–151. [Google Scholar] [CrossRef] [PubMed]
- Datta, S.; Sajja, B.R.; He, R.; Wolinsky, J.S.; Gupta, R.K.; Narayana, P.A. Segmentation and quantification of black holes in multiple sclerosis. Neuroimage 2006, 29, 467–474. [Google Scholar] [CrossRef]
- Bedell, B.J.; Narayana, P.A. Implementation and evaluation of a new pulse sequence for rapid acquisition of double inversion recovery images for simultaneous suppression of white matter and CSF. J. Magn. Reson. Imaging 1998, 8, 544–547. [Google Scholar] [CrossRef]
- Bokhovkin, A.; Burnaev, E. Boundary loss for remote sensing imagery semantic segmentation. In Proceedings of the International Symposium on Neural Networks, Moscow, Russia, 10–12 July 2019; Springer: Berlin, Germany, 2019; pp. 388–401. [Google Scholar]
- Falk Delgado, A.; Van Westen, D.; Nilsson, M.; Knutsson, L.; Sundgren, P.C.; Larsson, E.M.; Falk Delgado, A. Diagnostic value of alternative techniques to gadolinium-based contrast agents in MR neuroimaging—A comprehensive overview. Insights Into Imaging 2019, 10, 1–15. [Google Scholar] [CrossRef]
- Rogosnitzky, M.; Branch, S. Gadolinium-based contrast agent toxicity: A review of known and proposed mechanisms. Biometals 2016, 29, 365–376. [Google Scholar] [CrossRef] [PubMed]
- Donatelli, G.; Cecchi, P.; Migaleddu, G.; Cencini, M.; Frumento, P.; D’Amelio, C.; Peretti, L.; Buonincontri, G.; Pasquali, L.; Tosetti, M.; et al. Quantitative T1 mapping detects blood–brain barrier breakdown in apparently non-enhancing multiple sclerosis lesions. NeuroImage Clin. 2023, 40, 103509. [Google Scholar] [CrossRef]
- Liguori, M.; Meier, D.S.; Hildenbrand, P.; Healy, B.C.; Chitnis, T.; Baruch, N.F.; Khoury, S.J.; Weiner, H.L.; Bakshi, R.; Barkhof, F.; et al. One year activity on subtraction MRI predicts subsequent 4 year activity and progression in multiple sclerosis. J. Neurol. Neurosurg. Psychiatry 2011, 82, 1125–1131. [Google Scholar] [CrossRef]
- Schlaeger, S.; Li, H.B.; Baum, T.; Zimmer, C.; Moosbauer, J.; Byas, S.; Mühlau, M.; Wiestler, B.; Finck, T. Longitudinal Assessment of Multiple Sclerosis Lesion Load With Synthetic Magnetic Resonance Imaging—A Multicenter Validation Study. Investig. Radiol. 2023, 58, 320–326. [Google Scholar] [CrossRef] [PubMed]
- Parekh, V.S.; Jacobs, J.R.; Jacobs, M.A. Unsupervised nonlinear dimensionality reduction machine learning methods applied to multiparametric MRI in cerebral ischemia: Preliminary results. In Proceedings of the Medical Imaging 2014: Image Processing, San Diego, CA, USA, 16–18 February 2014; Volume 9034, pp. 681–689. [Google Scholar]
- Park, H.; The ADNI. ISOMAP induced manifold embedding and its application to Alzheimer’s disease and mild cognitive impairment. Neurosci. Lett. 2012, 513, 141–145. [Google Scholar] [CrossRef] [PubMed]
- Silva, V.; Tenenbaum, J. Global versus local methods in nonlinear dimensionality reduction. Adv. Neural Inf. Process. Syst. 2002, 15, 721–728. [Google Scholar]
- Chen, Y.; Crawford, M.; Ghosh, J. Improved nonlinear manifold learning for land cover classification via intelligent landmark selection. In Proceedings of the 2006 IEEE International Symposium on Geoscience and Remote Sensing, Denver, CO, USA, 31 July–4 August 2006; pp. 545–548. [Google Scholar]
- Shi, H.; Yin, B.; Bao, Y.; Lei, Y. A novel landmark point selection method for L-ISOMAP. In Proceedings of the 2016 12th IEEE International Conference on Control and Automation (ICCA), Kathmandu, Nepal, 1–3 June 2016; pp. 621–625. [Google Scholar]
- Braverman, V.; Feldman, D.; Lang, H.; Statman, A.; Zhou, S. Efficient coreset constructions via sensitivity sampling. In Proceedings of the Asian Conference on Machine Learning, Virtual, 17–19 November 2021; pp. 948–963. [Google Scholar]
Demographics and Clinical Data on the CombiRx Cohort | ||
---|---|---|
Age (yrs) | 37.7 ± 9.7 | |
Female/Male (ratio) | 72/28 | |
Caucasian | 87.6 | |
Race (%) | African American | 7.2 |
Other | 5.2 | |
Hispanic | 6.3 | |
Ethnicity (%) | Non-Hispanic | 89.5 |
Other | 4.3 | |
Symptom Duration (yrs) | 4.8 ± 5.6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Uwaeze, J.; Narayana, P.A.; Kamali, A.; Braverman, V.; Jacobs, M.A.; Akhbardeh, A. Automatic Active Lesion Tracking in Multiple Sclerosis Using Unsupervised Machine Learning. Diagnostics 2024, 14, 632. https://doi.org/10.3390/diagnostics14060632
Uwaeze J, Narayana PA, Kamali A, Braverman V, Jacobs MA, Akhbardeh A. Automatic Active Lesion Tracking in Multiple Sclerosis Using Unsupervised Machine Learning. Diagnostics. 2024; 14(6):632. https://doi.org/10.3390/diagnostics14060632
Chicago/Turabian StyleUwaeze, Jason, Ponnada A. Narayana, Arash Kamali, Vladimir Braverman, Michael A. Jacobs, and Alireza Akhbardeh. 2024. "Automatic Active Lesion Tracking in Multiple Sclerosis Using Unsupervised Machine Learning" Diagnostics 14, no. 6: 632. https://doi.org/10.3390/diagnostics14060632
APA StyleUwaeze, J., Narayana, P. A., Kamali, A., Braverman, V., Jacobs, M. A., & Akhbardeh, A. (2024). Automatic Active Lesion Tracking in Multiple Sclerosis Using Unsupervised Machine Learning. Diagnostics, 14(6), 632. https://doi.org/10.3390/diagnostics14060632