Application of Artificial Intelligence to Advance Individualized Diagnosis and Treatment in Emergency and Critical Care Medicine
Funding
Conflicts of Interest
List of Contributions
- Aygun, U.; Yagin, F.H.; Yagin, B.; Yasar, S.; Colak, C.; Ozkan, A.S.; Ardigò, L.P. Assessment of Sepsis Risk at Admission to the Emergency Department: Clinical Interpretable Prediction Model. Diagnostics 2024, 14, 457. https://doi.org/10.3390/diagnostics14050457.
- Tuncyurek, O.; Kadam, K.; Uzun, B.; Uzun Ozsahin, D. Applicability of American College of Radiology Appropriateness Criteria Decision-Making Model for Acute Appendicitis Diagnosis in Children. Diagnostics 2022, 12, 2915. https://doi.org/10.3390/diagnostics12122915.
- Liu, H.-H.; Wang, Y.-T.; Yang, M.-H.; Lin, W.-S.K.; Oyang, Y.-J. Exploiting Machine Learning Technologies to Study the Compound Effects of Serum Creatinine and Electrolytes on the Risk of Acute Kidney Injury in Intensive Care Units. Diagnostics 2023, 13, 2551. https://doi.org/10.3390/diagnostics13152551.
- Rambaud, J.; Sajedi, M.; Al Omar, S.; Chomtom, M.; Sauthier, M.; De Montigny, S.; Jouvet, P. Clinical Decision Support System to Detect the Occurrence of Ventilator-Associated Pneumonia in Pediatric Intensive Care. Diagnostics 2023, 13, 2983. https://doi.org/10.3390/diagnostics13182983.
- Tu, K.-C.; Tau, E.n.t.; Chen, N.-C.; Chang, M.-C.; Yu, T.-C.; Wang, C.-C.; Liu, C.-F.; Kuo, C.-L. Machine Learning Algorithm Predicts Mortality Risk in Intensive Care Unit for Patients with Traumatic Brain Injury. Diagnostics 2023, 13, 3016. https://doi.org/10.3390/diagnostics13183016.
- Yeh, C.-C.; Lin, Y.-S.; Chen, C.-C.; Liu, C.-F. Implementing AI Models for Prognostic Predictions in High-Risk Burn Patients. Diagnostics 2023, 13, 2984. https://doi.org/10.3390/diagnostics13182984.
- Pang, K.; Li, L.; Ouyang, W.; Liu, X.; Tang, Y. Establishment of ICU Mortality Risk Prediction Models with Machine Learning Algorithm Using MIMIC-IV Database. Diagnostics 2022, 12, 1068. https://doi.org/10.3390/diagnostics12051068
- Islam, K.R.; Kumar, J.; Tan, T.L.; Reaz, M.B.I.; Rahman, T.; Khandakar, A.; Abbas, T.; Hossain, M.S.A.; Zughaier, S.M.; Chowdhury, M.E.H. Prognostic Model of ICU Admission Risk in Patients with COVID-19 Infection Using Machine Learning. Diagnostics 2022, 12, 2144. https://doi.org/10.3390/diagnostics12092144.
- Chen, X.; Zhu, H.; Mei, L.; Shu, Q.; Cheng, X.; Luo, F.; Zhao, Y.; Chen, S.; Pan, Y. Video-Based versus On-Site Neonatal Pain Assessment in Neonatal Intensive Care Units: The Impact of Video-Based Neonatal Pain Assessment in Real-World Scenario on Pain Diagnosis and Its Artificial Intelligence Application. Diagnostics 2023, 13, 2661. https://doi.org/10.3390/diagnostics13162661.
- Cheng, X.; Zhu, H.; Mei, L.; Luo, F.; Chen, X.; Zhao, Y.; Chen, S.; Pan, Y. Artificial Intelligence Based Pain Assessment Technology in Clinical Application of Real-World Neonatal Blood Sampling. Diagnostics 2022, 12, 1831. https://doi.org/10.3390/diagnostics12081831.
References
- Crawford, A.M.; Shiferaw, A.A.; Ntambwe, P.; Milan, A.O.; Khalid, K.; Rubio, R.; Nizeyimana, F.; Ariza, F.; Mohammed, A.D.; Baker, T.; et al. Global critical care: A call to action. Crit. Care 2023, 27, 28. [Google Scholar] [CrossRef] [PubMed]
- Pandit, J.A.; Pawelek, J.B.; Leff, B.; Topol, E.J. The hospital at home in the USA: Current status and future prospects. NPJ Digit. Med. 2024, 7, 48. [Google Scholar] [CrossRef] [PubMed]
- Rampton, V. Artificial intelligence versus clinicians. BMJ 2020, 369, m1326. [Google Scholar] [CrossRef] [PubMed]
- He, X.; Liu, X.; Zuo, F.; Shi, H.; Jing, J. Artificial intelligence-based multi-omics analysis fuels cancer precision medicine. Semin. Cancer Biol. 2023, 88, 187–200. [Google Scholar] [CrossRef] [PubMed]
- Komorowski, M.; Celi, L.A.; Badawi, O.; Gordon, A.C.; Faisal, A.A. The Artificial Intelligence Clinician learns optimal treatment strategies for sepsis in intensive care. Nat. Med. 2018, 24, 1716–1720. [Google Scholar] [CrossRef]
- Devis, L.; Catry, E.; Honore, P.M.; Mansour, A.; Lippi, G.; Mullier, F.; Closset, M. Interventions to improve appropriateness of laboratory testing in the intensive care unit: A narrative review. Ann. Intensive Care 2024, 14, 9. [Google Scholar] [CrossRef] [PubMed]
- Myszczynska, M.A.; Ojamies, P.N.; Lacoste, A.M.B.; Neil, D.; Saffari, A.; Mead, R.; Hautbergue, G.M.; Holbrook, J.D.; Ferraiuolo, L. Applications of machine learning to diagnosis and treatment of neurodegenerative diseases. Nat. Rev. Neurol. 2020, 16, 440–456. [Google Scholar] [CrossRef] [PubMed]
- Ngiam, K.Y.; Khor, I.W. Big data and machine learning algorithms for health-care delivery. Lancet Oncol. 2019, 20, e262–e273. [Google Scholar] [CrossRef] [PubMed]
- Goecks, J.; Jalili, V.; Heiser, L.M.; Gray, J.W. How Machine Learning Will Transform Biomedicine. Cell 2020, 181, 92–101. [Google Scholar] [CrossRef] [PubMed]
- Denny, J.C.; Collins, F.S. Precision medicine in 2030—Seven ways to transform healthcare. Cell 2021, 184, 1415–1419. [Google Scholar] [CrossRef] [PubMed]
- Tjoa, E.; Guan, C. A Survey on Explainable Artificial Intelligence (XAI): Toward Medical XAI. IEEE Trans. Neural Netw. Learn. Syst. 2021, 32, 4793–4813. [Google Scholar] [CrossRef] [PubMed]
- Chronopoulos, A.; Rosner, M.H.; Cruz, D.N.; Ronco, C. Acute kidney injury in elderly intensive care patients: A review. Intensive Care Med. 2010, 36, 1454–1464. [Google Scholar] [CrossRef] [PubMed]
- Kellum, J.A.; Prowle, J.R. Paradigms of acute kidney injury in the intensive care setting. Nat. Rev. Nephrol. 2018, 14, 217–230. [Google Scholar] [CrossRef] [PubMed]
- Komorowski, M. Clinical management of sepsis can be improved by artificial intelligence: Yes. Intensive Care Med. 2020, 46, 375–377. [Google Scholar] [CrossRef] [PubMed]
- Gutierrez, G. Artificial Intelligence in the Intensive Care Unit. Crit. Care 2020, 24, 101. [Google Scholar] [CrossRef] [PubMed]
- Goodman, K.; Zandi, D.; Reis, A.; Vayena, E. Balancing risks and benefits of artificial intelligence in the health sector. Bull. World Health Organ. 2020, 98, 230. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, J.; Zhang, B.; Jiang, X.; Huang, J.; Hong, Y.; Ni, H.; Zhang, Z. Application of Artificial Intelligence to Advance Individualized Diagnosis and Treatment in Emergency and Critical Care Medicine. Diagnostics 2024, 14, 687. https://doi.org/10.3390/diagnostics14070687
Yang J, Zhang B, Jiang X, Huang J, Hong Y, Ni H, Zhang Z. Application of Artificial Intelligence to Advance Individualized Diagnosis and Treatment in Emergency and Critical Care Medicine. Diagnostics. 2024; 14(7):687. https://doi.org/10.3390/diagnostics14070687
Chicago/Turabian StyleYang, Jie, Bo Zhang, Xiaocong Jiang, Jiajie Huang, Yucai Hong, Hongying Ni, and Zhongheng Zhang. 2024. "Application of Artificial Intelligence to Advance Individualized Diagnosis and Treatment in Emergency and Critical Care Medicine" Diagnostics 14, no. 7: 687. https://doi.org/10.3390/diagnostics14070687
APA StyleYang, J., Zhang, B., Jiang, X., Huang, J., Hong, Y., Ni, H., & Zhang, Z. (2024). Application of Artificial Intelligence to Advance Individualized Diagnosis and Treatment in Emergency and Critical Care Medicine. Diagnostics, 14(7), 687. https://doi.org/10.3390/diagnostics14070687