Value of Non-Coding RNA Expression in Biofluids to Identify Patients at Low Risk of Pathologies Associated with Pregnancy
Abstract
:1. Introduction
2. ncRNAs
3. ncRNAs and Human Placenta
4. Pathologies Associated with Pregnancy
4.1. Early and Late Miscarriages
4.2. Hypertension and Pre-Eclampsia
4.2.1. Expression of miRNAs in Biofluids and PE
4.2.2. Expression of circRNAs in Biofluids and PE
4.2.3. Expression of lncRNAs in Biofluids and PE
4.3. Intrauterine Growth Restriction (IUGR)
4.3.1. Expression of miRNAs in Biofluids and IUGR
4.3.2. Expression of lncRNAs in Biofluids and IUGR
4.4. Gestational Diabetes Mellitus (GDM)
4.4.1. Expression of miRNAs in Biofluids and GDM
4.4.2. Expression of circRNAs in Biofluids and GDM
4.4.3. Expression of lncRNAs in Biofluids and GDM
4.5. Preterm Birth (PTB)
4.5.1. Expression of miRNAs in Biofluids and PTB
4.5.2. Expression of circRNAs in Biofluids and PTB
4.5.3. Expression of lncRNAs in Biofluids and PTB
5. Perspectives and Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ined—Institut National D’études Démographiques [Internet]. Tous les Pays du Monde (2019)—Population et Sociétés–Ined Editions. Available online: https://www.ined.fr/fr/publications/editions/population-et-societes/tous-les-pays-du-monde-2019/ (accessed on 20 January 2024).
- Lean, S.C.; Derricott, H.; Jones, R.L.; Heazell, A.E.P. Advanced maternal age and adverse pregnancy outcomes: A systematic review and meta-analysis. PLoS ONE 2017, 12, e0186287. [Google Scholar] [CrossRef] [PubMed]
- Cavoretto, P.; Candiani, M.; Giorgione, V.; Inversetti, A.; Abu-Saba, M.M.; Tiberio, F.; Sigismondi, C.; Farina, A. Risk of spontaneous preterm birth in singleton pregnancies conceived after IVF/ICSI treatment: Meta-analysis of cohort studies. Ultrasound Obstet. Gynecol. 2018, 51, 43–53. [Google Scholar] [CrossRef] [PubMed]
- Santos, S.; Voerman, E.; Amiano, P.; Barros, H.; Beilin, L.J.; Bergström, A.; Charles, M.A.; Chatzi, L.; Chevrier, C.; Chrousos, G.P.; et al. Impact of maternal body mass index and gestational weight gain on pregnancy complications: An individual participant data meta-analysis of European, North American and Australian cohorts. Int. J. Obstet. Gynaecol. 2019, 126, 984–995. [Google Scholar] [CrossRef] [PubMed]
- Breintoft, K.; Pinnerup, R.; Henriksen, T.B.; Rytter, D.; Uldbjerg, N.; Forman, A.; Arendt, L.H. Endometriosis and Risk of Adverse Pregnancy Outcome: A Systematic Review and Meta-Analysis. J. Clin. Med. 2021, 10, 667. [Google Scholar] [CrossRef] [PubMed]
- Boerma, T.; Campbell, O.M.R.; Amouzou, A.; Blumenberg, C.; Blencowe, H.; Moran, A.; Lawn, J.E.; Ikilezi, G. Maternal mortality, stillbirths, and neonatal mortality: A transition model based on analyses of 151 countries. Lancet Glob. Health 2023, 11, e1024–e1031. [Google Scholar] [CrossRef] [PubMed]
- Haute Autorité de Santé [Internet]. Suivi et Orientation des Femmes Enceintes en Fonction des Situations à Risque Identifiées. Available online: https://www.has-sante.fr/jcms/c_547976/fr/suivi-et-orientation-des-femmes-enceintes-en-fonction-des-situations-a-risque-identifiees (accessed on 20 January 2024).
- Wright, D.; Syngelaki, A.; Akolekar, R.; Poon, L.C.; Nicolaides, K.H. Competing risks model in screening for preeclampsia by maternal characteristics and medical history. Am. J. Obstet. Gynecol. 2015, 213, 62.e1–62.e10. [Google Scholar] [CrossRef] [PubMed]
- Chen, A.; Yu, R.; Jiang, S.; Xia, Y.; Chen, Y. Recent Advances of MicroRNAs, Long Non-coding RNAs, and Circular RNAs in Preeclampsia. Front. Physiol. 2021, 12, 659638. [Google Scholar] [CrossRef] [PubMed]
- Zhang, P.; Wu, W.; Chen, Q.; Chen, M. Non-Coding RNAs and their Integrated Networks. J Integr. Bioinform. 2019, 16, 20190027. [Google Scholar] [CrossRef] [PubMed]
- Toden, S.; Zumwalt, T.J.; Goel, A. Non-coding RNAs and potential therapeutic targeting in cancer. Biochim. Biophys. Acta Rev. Cancer 2021, 1875, 188491. [Google Scholar] [CrossRef] [PubMed]
- Manna, I.; Quattrone, A.; De Benedittis, S.; Iaccino, E.; Quattrone, A. Roles of Non-Coding RNAs as Novel Diagnostic Biomarkers in Parkinson’s Disease. J. Park. Dis. 2021, 11, 1475–1489. [Google Scholar] [CrossRef] [PubMed]
- Singh, V.K.; Thakral, D.; Gupta, R. Regulatory noncoding RNAs: Potential biomarkers and therapeutic targets in acute myeloid leukemia. Am. J. Blood Res. 2021, 11, 504–519. [Google Scholar]
- Shi, Y.; Wang, Q.; Song, R.; Kong, Y.; Zhang, Z. Non-coding RNAs in depression: Promising diagnostic and therapeutic biomarkers. EBioMedicine 2021, 71, 103569. [Google Scholar] [CrossRef] [PubMed]
- Roso-Mares, A.; Andújar, I.; Díaz Corpas, T.; Sun, B.K. Non-coding RNAs as skin disease biomarkers, molecular signatures, and therapeutic targets. Hum. Genet. 2023, 1–12. [Google Scholar] [CrossRef]
- Tan, C.; Cao, J.; Chen, L.; Xi, X.; Wang, S.; Zhu, Y.; Yang, L.; Ma, L.; Wang, D.; Yin, J.; et al. Noncoding RNAs Serve as Diagnosis and Prognosis Biomarkers for Hepatocellular Carcinoma. Clin. Chem. 2019, 65, 905–915. [Google Scholar] [CrossRef] [PubMed]
- Le, P.; Romano, G.; Nana-Sinkam, P.; Acunzo, M. Non-Coding RNAs in Cancer Diagnosis and Therapy: Focus on Lung Cancer. Cancers 2021, 13, 1372. [Google Scholar] [CrossRef] [PubMed]
- Žarković, M.; Hufsky, F.; Markert, U.R.; Marz, M. The Role of Non-Coding RNAs in the Human Placenta. Cells 2022, 11, 1588. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, A.; Morales-Prieto, D.M.; Pastuschek, J.; Fröhlich, K.; Markert, U.R. Only humans have human placentas: Molecular differences between mice and humans. J. Reprod. Immunol. 2015, 108, 65–71. [Google Scholar] [CrossRef] [PubMed]
- Lee, R.C.; Feinbaum, R.L.; Ambros, V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 1993, 75, 843–854. [Google Scholar] [CrossRef] [PubMed]
- Hosseini, M.K.; Gunel, T.; Gumusoglu, E.; Benian, A.; Aydinli, K. MicroRNA expression profiling in placenta and maternal plasma in early pregnancy loss. Mol. Med. Rep. 2018, 17, 4941–4952. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Niu, Z.; Li, Q.; Pang, R.T.K.; Chiu, P.C.N.; Yeung, W.S.B. MicroRNA and Embryo Implantation. Am. J. Reprod. Immunol. 2016, 75, 263–271. [Google Scholar] [CrossRef] [PubMed]
- Cai, M.; Kolluru, G.K.; Ahmed, A. Small Molecule, Big Prospects: MicroRNA in Pregnancy and Its Complications. J. Pregnancy 2017, 2017, 6972732. [Google Scholar] [CrossRef] [PubMed]
- Hayder, H.; O’Brien, J.; Nadeem, U.; Peng, C. MicroRNAs: Crucial regulators of placental development. Reproduction 2018, 155, R259–R271. [Google Scholar] [CrossRef] [PubMed]
- Xu, P.; Ma, Y.; Wu, H.; Wang, Y.L. Placenta-Derived MicroRNAs in the Pathophysiology of Human Pregnancy. Front. Cell Dev. Biol. 2021, 9, 646326. [Google Scholar] [CrossRef] [PubMed]
- Morales-Prieto, D.M.; Ospina-Prieto, S.; Schmidt, A.; Chaiwangyen, W.; Markert, U.R. Elsevier Trophoblast Research Award Lecture: Origin, evolution and future of placenta miRNAs. Placenta 2014, 35, S39–S45. [Google Scholar] [CrossRef] [PubMed]
- Escudero, C.A.; Herlitz, K.; Troncoso, F.; Acurio, J.; Aguayo, C.; Roberts, J.M.; Truong, G.; Duncombe, G.; Rice, G.; Salomon, C. Role of Extracellular Vesicles and microRNAs on Dysfunctional Angiogenesis during Preeclamptic Pregnancies. Front. Physiol. 2016, 7, 98. [Google Scholar] [CrossRef] [PubMed]
- McAninch, D.; Roberts, C.T.; Bianco-Miotto, T. Mechanistic Insight into Long Noncoding RNAs and the Placenta. Int. J. Mol. Sci. 2017, 18, 1371. [Google Scholar] [CrossRef] [PubMed]
- Majewska, M.; Lipka, A.; Paukszto, L.; Jastrzebski, J.P.; Gowkielewicz, M.; Jozwik, M.; Majewski, M.K. Preliminary RNA-Seq Analysis of Long Non-Coding RNAs Expressed in Human Term Placenta. Int. J. Mol. Sci. 2018, 19, 1894. [Google Scholar] [CrossRef] [PubMed]
- Yan, L.; Feng, J.; Cheng, F.; Cui, X.; Gao, L.; Chen, Y.; Wang, F.; Zhong, T.; Li, Y.; Liu, L. Circular RNA expression profiles in placental villi from women with gestational diabetes mellitus. Biochem. Biophys. Res. Commun. 2018, 498, 743–750. [Google Scholar] [CrossRef] [PubMed]
- Zhou, W.; Wang, H.; Wu, X.; Long, W.; Zheng, F.; Kong, J.; Yu, B. The profile analysis of circular RNAs in human placenta of preeclampsia. Exp. Biol. Med. 2018, 243, 1109–1117. [Google Scholar] [CrossRef] [PubMed]
- Hu, X.; Ao, J.; Li, X.; Zhang, H.; Wu, J.; Cheng, W. Competing endogenous RNA expression profiling in pre-eclampsia identifies hsa_circ_0036877 as a potential novel blood biomarker for early pre-eclampsia. Clin. Epigenetics 2018, 10, 48. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Yang, H.; Zhang, Y.; Shi, J.; Chen, R. circCRAMP1L is a novel biomarker of preeclampsia risk and may play a role in preeclampsia pathogenesis via regulation of the MSP/RON axis in trophoblasts. BMC Pregnancy Childbirth 2020, 20, 652. [Google Scholar] [CrossRef] [PubMed]
- Raposo, G.; Stoorvogel, W. Extracellular vesicles: Exosomes, microvesicles, and friends. J. Cell Biol. 2013, 200, 373–383. [Google Scholar] [CrossRef] [PubMed]
- Delabaere, A.; Huchon, C.; Deffieux, X.; Beucher, G.; Gallot, V.; Nedellec, S.; Vialard, F.; Carcopino, X.; Quibel, T.; Subtil, D.; et al. [Epidemiology of loss pregnancy]. J. Gynecol. Obstet. Biol. Reprod. 2014, 43, 764–775. [Google Scholar] [CrossRef] [PubMed]
- Garrido-Gimenez, C.; Alijotas-Reig, J. Recurrent miscarriage: Causes, evaluation and management. Postgrad. Med J. 2015, 91, 151–162. [Google Scholar] [CrossRef]
- Balogun, O.O.; da Silva Lopes, K.; Ota, E.; Takemoto, Y.; Rumbold, A.; Takegata, M.; Mori, R. Vitamin supplementation for preventing miscarriage. Cochrane Database Syst. Rev. 2016, 2016, CD004073. [Google Scholar] [CrossRef] [PubMed]
- Omeljaniuk, W.J.; Laudański, P.; Miltyk, W. The role of miRNA molecules in the miscarriage process. Biol. Reprod. 2023, 109, 29–44. [Google Scholar] [CrossRef] [PubMed]
- Hong, L.; Yu, T.; Xu, H.; Hou, N.; Cheng, Q.; Lai, L.; Wang, Q.; Sheng, J.; Huang, H. Down-regulation of miR-378a-3p induces decidual cell apoptosis: A possible mechanism for early pregnancy loss. Hum. Reprod. 2018, 33, 11–22. [Google Scholar] [CrossRef] [PubMed]
- Cui, S.; Zhang, J.; Li, J.; Wu, H.; Zhang, H.; Yu, Q.; Zhou, Y.; Lv, X.; Zhong, Y.; Luo, S.; et al. Circulating microRNAs from serum exosomes as potential biomarkers in patients with spontaneous abortion. Am. J. Transl. Res. 2021, 13, 4197–4210. [Google Scholar] [PubMed]
- Hromadnikova, I.; Kotlabova, K.; Krofta, L. First-Trimester Screening for Miscarriage or Stillbirth-Prediction Model Based on MicroRNA Biomarkers. Int. J. Mol. Sci. 2023, 24, 10137. [Google Scholar] [CrossRef] [PubMed]
- Enquête Nationale Périnatale [Internet]. Available online: https://enp.inserm.fr/ (accessed on 20 January 2024).
- Li, F.; Wang, T.; Chen, L.; Zhang, S.; Chen, L.; Qin, J. Adverse pregnancy outcomes among mothers with hypertensive disorders in pregnancy: A meta-analysis of cohort studies. Pregnancy Hypertens. 2021, 24, 107–117. [Google Scholar] [CrossRef] [PubMed]
- ACOG Committee on Obstetric Practice. ACOG practice bulletin. Diagnosis and management of preeclampsia and eclampsia. Number 33, January 2002. American College of Obstetricians and Gynecologists. Int. J. Gynaecol. Obstet. 2002, 77, 67–75. [Google Scholar] [CrossRef]
- Jairajpuri, D.S.; Malalla, Z.H.; Mahmood, N.; Khan, F.; Almawi, W.Y. Differentially expressed circulating microRNAs associated with idiopathic recurrent pregnancy loss. Gene 2021, 768, 145334. [Google Scholar] [CrossRef] [PubMed]
- Hromadnikova, I.; Kotlabova, K.; Hympanova, L.; Krofta, L. Gestational hypertension, preeclampsia and intrauterine growth restriction induce dysregulation of cardiovascular and cerebrovascular disease associated microRNAs in maternal whole peripheral blood. Thromb. Res. 2016, 137, 126–140. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Olson, E.N. AngiomiRs—Key regulators of angiogenesis. Curr. Opin. Genet. Dev. 2009, 19, 205–211. [Google Scholar] [CrossRef] [PubMed]
- Hans, F.P.; Moser, M.; Bode, C.; Grundmann, S. MicroRNA Regulation of Angiogenesis and Arteriogenesis. Trends Cardiovasc. Med. 2010, 20, 253–262. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez Santa, L.M.; González Teshima, L.Y.; Forero Forero, J.V.; Castillo Giraldo, A.O. AngiomiRs: Potential Biomarkers of Pregnancy’s Vascular Pathologies. J. Pregnancy 2015, 2015, e320386. [Google Scholar] [CrossRef] [PubMed]
- Jairajpuri, D.S.; Malalla, Z.H.; Mahmood, N.; Almawi, W.Y. Circulating microRNA expression as predictor of preeclampsia and its severity. Gene 2017, 627, 543–548. [Google Scholar] [CrossRef] [PubMed]
- Yin, Y.; Liu, M.; Yu, H.; Zhang, J.; Zhou, R. Circulating microRNAs as biomarkers for diagnosis and prediction of preeclampsia: A systematic review and meta-analysis. Eur. J. Obstet. Gynecol. Reprod. Biol. 2020, 253, 121–132. [Google Scholar] [CrossRef] [PubMed]
- Tsochandaridis, M.; Nasca, L.; Toga, C.; Levy-Mozziconacci, A. Circulating MicroRNAs as Clinical Biomarkers in the Predictions of Pregnancy Complications. Biomed. Res. Int. 2015, 2015, 294954. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Zhou, Y.; Zhang, Z. MiR-210: An important player in the pathogenesis of preeclampsia? J. Cell Mol. Med. 2012, 16, 943–944. [Google Scholar] [CrossRef] [PubMed]
- Anton, L.; Olarerin-George, A.O.; Schwartz, N.; Srinivas, S.; Bastek, J.; Hogenesch, J.B.; Elovitz, M.A. miR-210 inhibits trophoblast invasion and is a serum biomarker for preeclampsia. Am. J. Pathol. 2013, 183, 1437–1445. [Google Scholar] [CrossRef] [PubMed]
- Mavreli, D.; Lykoudi, A.; Lambrou, G.; Papaioannou, G.; Vrachnis, N.; Kalantaridou, S.; Papantoniou, N.; Kolialexi, A. Deep Sequencing Identified Dysregulated Circulating MicroRNAs in Late Onset Preeclampsia. Vivo 2020, 34, 2317–2324. [Google Scholar] [CrossRef] [PubMed]
- Timofeeva, A.V.; Gusar, V.A.; Kan, N.E.; Prozorovskaya, K.N.; Karapetyan, A.O.; Bayev, O.R.; Chagovets, V.V.; Kliver, S.F.; Iakovishina, D.Y.; Frankevich, V.E.; et al. Identification of potential early biomarkers of preeclampsia. Placenta 2018, 61, 61–71. [Google Scholar] [CrossRef] [PubMed]
- Chamberlain, F.; Grammatopoulos, D. Methodology for Isolation of miRNA From the Serum of Women Investigated for Pre-eclampsia. Cureus 2023, 15, e46181. [Google Scholar] [CrossRef] [PubMed]
- Jiang, M.; Lash, G.E.; Zhao, X.; Long, Y.; Guo, C.; Yang, H. CircRNA-0004904, CircRNA-0001855, and PAPP-A: Potential Novel Biomarkers for the Prediction of Preeclampsia. Cell Physiol. Biochem. 2018, 46, 2576–2586. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.G.; Yang, H.L.; Long, Y.; Li, W.L. Circular RNA in blood corpuscles combined with plasma protein factor for early prediction of pre-eclampsia. BJOG Int. J. Obstet. Gynaecol. 2016, 123, 2113–2118. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Hou, Y.; Lv, N.; Liu, Q.; Lin, N.; Zhao, S.; Chu, X.; Chen, X.; Cheng, G.; Li, P. Circulating lncRNA BC030099 Increases in Preeclampsia Patients. Mol. Ther. Nucleic Acids 2019, 14, 562–566. [Google Scholar] [CrossRef] [PubMed]
- Luo, X.; Li, X. Long Non-Coding RNAs Serve as Diagnostic Biomarkers of Preeclampsia and Modulate Migration and Invasiveness of Trophoblast Cells. Med. Sci. Monit. 2018, 24, 84–91. [Google Scholar] [CrossRef] [PubMed]
- Dai, C.; Zhao, C.; Xu, M.; Sui, X.; Sun, L.; Liu, Y.; Su, M.; Wang, H.; Yuan, Y.; Zhang, S.; et al. Serum lncRNAs in early pregnancy as potential biomarkers for the prediction of pregnancy-induced hypertension, including preeclampsia. Mol. Ther. Nucleic Acids 2021, 24, 416–425. [Google Scholar] [CrossRef] [PubMed]
- Dong, N.; Li, D.; Cai, H.; Shi, L.; Huang, L. Expression of lncRNA MIR193BHG in serum of preeclampsia patients and its clinical significance. J. Gynecol. Obstet. Hum. Reprod. 2022, 51, 102357. [Google Scholar] [CrossRef] [PubMed]
- Abdelazim, S.A.; Shaker, O.G.; Aly, Y.A.H.; Senousy, M.A. Uncovering serum placental-related non-coding RNAs as possible biomarkers of preeclampsia risk, onset and severity revealed MALAT-1, miR-363 and miR-17. Sci. Rep. 2022, 12, 1249. [Google Scholar] [CrossRef] [PubMed]
- Lawn, J.E.; Ohuma, E.O.; Bradley, E.; Idueta, L.S.; Hazel, E.; Okwaraji, Y.B.; Erchick, D.J.; Yargawa, J.; Katz, J.; Lee, A.C.C.; et al. Small babies, big risks: Global estimates of prevalence and mortality for vulnerable newborns to accelerate change and improve counting. Lancet 2023, 401, 1707–1719. [Google Scholar] [CrossRef] [PubMed]
- Ali, A.; Hadlich, F.; Abbas, M.W.; Iqbal, M.A.; Tesfaye, D.; Bouma, G.J.; Winger, Q.A.; Ponsuksili, S. MicroRNA–mRNA Networks in Pregnancy Complications: A Comprehensive Downstream Analysis of Potential Biomarkers. Int. J. Mol. Sci. 2021, 22, 2313. [Google Scholar] [CrossRef] [PubMed]
- Kochhar, P.; Vukku, M.; Rajashekhar, R.; Mukhopadhyay, A. microRNA signatures associated with fetal growth restriction: A systematic review. Eur. J. Clin. Nutr. 2022, 76, 1088–1102. [Google Scholar] [CrossRef] [PubMed]
- Hromadnikova, I.; Kotlabova, K.; Krofta, L. Cardiovascular Disease-Associated MicroRNA Dysregulation during the First Trimester of Gestation in Women with Chronic Hypertension and Normotensive Women Subsequently Developing Gestational Hypertension or Preeclampsia with or without Fetal Growth Restriction. Biomedicines 2022, 10, 256. [Google Scholar] [CrossRef] [PubMed]
- Tagliaferri, S.; Cepparulo, P.; Vinciguerra, A.; Campanile, M.; Esposito, G.; Maruotti, G.M.; Zullo, F.; Annunziato, L.; Pignataro, G. miR-16-5p, miR-103-3p, and miR-27b-3p as Early Peripheral Biomarkers of Fetal Growth Restriction. Front. Pediatr. 2021, 9, 611112. [Google Scholar] [CrossRef] [PubMed]
- Pei, J.; Li, Y.; Min, Z.; Dong, Q.; Ruan, J.; Wu, J.; Hua, X. MiR-590-3p and its targets VEGF, PIGF, and MMP9 in early, middle, and late pregnancy: Their longitudinal changes and correlations with risk of fetal growth restriction. Ir. J. Med. Sci. 2022, 191, 1251–1257. [Google Scholar] [CrossRef]
- Rodosthenous, R.S.; Burris, H.H.; Sanders, A.P.; Just, A.C.; Dereix, A.E.; Svensson, K.; Solano, M.; Téllez-Rojo, M.M.; Wright, R.O.; Baccarelli, A.A. Second trimester extracellular microRNAs in maternal blood and fetal growth: An exploratory study. Epigenetics 2017, 12, 804–810. [Google Scholar] [CrossRef] [PubMed]
- Terstappen, F.; Calis, J.J.A.; Paauw, N.D.; Joles, J.A.; van Rijn, B.B.; Mokry, M.; Plösch, T.; Lely, A.T. Developmental programming in human umbilical cord vein endothelial cells following fetal growth restriction. Clin. Epigenetics 2020, 12, 185. [Google Scholar] [CrossRef] [PubMed]
- Global Report on Diabetes [Internet]. Available online: https://www.who.int/publications-detail-redirect/9789241565257 (accessed on 20 January 2024).
- ACOG Practice Bulletin No. 190: Gestational Diabetes Mellitus. Obstet. Gynecol. 2018, 131, e49–e64. [CrossRef]
- American Diabetes Association Professional Practice Committee. 15. Management of Diabetes in Pregnancy: Standards of Medical Care in Diabetes-2022. Diabetes Care 2022, 45 (Suppl. S1), S232–S243. [Google Scholar] [CrossRef] [PubMed]
- US Preventive Services Task Force; Davidson, K.W.; Barry, M.J.; Mangione, C.M.; Cabana, M.; Caughey, A.B.; Davis, E.M.; Donahue, K.E.; Doubeni, C.A.; Kubik, M.; et al. Screening for Gestational Diabetes: US Preventive Services Task Force Recommendation Statement. JAMA 2021, 326, 531–538. [Google Scholar] [CrossRef] [PubMed]
- Sovio, U.; Murphy, H.R.; Smith, G.C.S. Accelerated Fetal Growth Prior to Diagnosis of Gestational Diabetes Mellitus: A Prospective Cohort Study of Nulliparous Women. Diabetes Care 2016, 39, 982–987. [Google Scholar] [CrossRef] [PubMed]
- Immanuel, J.; Simmons, D. Screening and Treatment for Early-Onset Gestational Diabetes Mellitus: A Systematic Review and Meta-analysis. Curr. Diabetes Rep. 2017, 17, 115. [Google Scholar] [CrossRef] [PubMed]
- Riskin-Mashiah, S.; Younes, G.; Damti, A.; Auslender, R. First-trimester fasting hyperglycemia and adverse pregnancy outcomes. Diabetes Care 2009, 32, 1639–1643. [Google Scholar] [CrossRef] [PubMed]
- Bhavadharini, B.; Anjana, R.M.; Deepa, M.; Pradeepa, R.; Uma, R.; Saravanan, P.; Mohan, V. Association between number of abnormal glucose values and severity of fasting plasma glucose in IADPSG criteria and maternal outcomes in women with gestational diabetes mellitus. Acta Diabetol. 2022, 59, 349–357. [Google Scholar] [CrossRef] [PubMed]
- Vasu, S.; Kumano, K.; Darden, C.M.; Rahman, I.; Lawrence, M.C.; Naziruddin, B. MicroRNA Signatures as Future Biomarkers for Diagnosis of Diabetes States. Cells 2019, 8, 1533. [Google Scholar] [CrossRef] [PubMed]
- Dias, S.; Pheiffer, C.; Abrahams, Y.; Rheeder, P.; Adam, S. Molecular Biomarkers for Gestational Diabetes Mellitus. Int. J. Mol. Sci. 2018, 19, 2926. [Google Scholar] [CrossRef]
- Filardi, T.; Catanzaro, G.; Mardente, S.; Zicari, A.; Santangelo, C.; Lenzi, A.; Morano, S.; Ferretti, E. Non-Coding RNA: Role in Gestational Diabetes Pathophysiology and Complications. Int. J. Mol. Sci. 2020, 21, 4020. [Google Scholar] [CrossRef] [PubMed]
- Cao, Y.L.; Jia, Y.J.; Xing, B.H.; Shi, D.D.; Dong, X.J. Plasma microRNA-16-5p, -17-5p and -20a-5p: Novel diagnostic biomarkers for gestational diabetes mellitus. J. Obstet. Gynaecol. Res. 2017, 43, 974–981. [Google Scholar] [CrossRef] [PubMed]
- Sebastiani, G.; Guarino, E.; Grieco, G.E.; Formichi, C.; Delli Poggi, C.; Ceccarelli, E.; Dotta, F. Circulating microRNA (miRNA) Expression Profiling in Plasma of Patients with Gestational Diabetes Mellitus Reveals Upregulation of miRNA miR-330-3p. Front. Endocrinol. 2017, 8, 345. [Google Scholar] [CrossRef] [PubMed]
- Joshi, A.; Azuma, R.; Akumuo, R.; Goetzl, L.; Pinney, S.E. Gestational diabetes and maternal obesity are associated with sex-specific changes in miRNA and target gene expression in the fetus. Int. J. Obes. 2020, 44, 1497–1507. [Google Scholar] [CrossRef] [PubMed]
- Lazarus, G.; Dirjayanto, V.J.; Sambowo, N.B.; Vianca, E. Detection of gestational diabetes mellitus by circulating plasma and serum microRNAs: A systematic review and meta-analysis. Diabetes Metab. Syndr. 2022, 16, 102383. [Google Scholar] [CrossRef] [PubMed]
- Lewis, K.A.; Chang, L.; Cheung, J.; Aouizerat, B.E.; Jelliffe-Pawlowski, L.L.; McLemore, M.R.; Piening, B.; Rand, L.; Ryckman, K.K.; Flowers, E. Systematic review of transcriptome and microRNAome associations with gestational diabetes mellitus. Front. Endocrinol. 2022, 13, 971354. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.P.; Ye, S.Z.; Li, Y.X.; Chen, J.L.; Zhang, Y.S. Research Advances in the Roles of Circular RNAs in Pathophysiology and Early Diagnosis of Gestational Diabetes Mellitus. Front. Cell Dev. Biol. 2021, 9, 739511. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Li, D.; Cheng, X. The association between expression of lncRNAs in patients with, G.D.M. Endocr Connect. 2021, 10, 1080–1090. [Google Scholar] [CrossRef] [PubMed]
- Bian, G.; Xue, Y.; Liu, Y.; Xu, Y.; Chen, G.; Wu, H. Role of lncRNA-MEG8/miR-296-3p axis in gestational diabetes mellitus. Nephrology 2022, 27, 994–1002. [Google Scholar] [CrossRef] [PubMed]
- Tang, G.Y.; Yu, P.; Zhang, C.; Deng, H.Y.; Lu, M.X.; Le, J.H. The Neuropeptide-Related HERC5/TAC1 Interactions May Be Associated with the Dysregulation of lncRNA GAS5 Expression in Gestational Diabetes Mellitus Exosomes. Dis. Markers 2022, 2022, 8075285. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H. Mechanism associated with aberrant lncRNA MEG3 expression in gestational diabetes mellitus. Exp. Ther. Med. 2019, 18, 3699–3706. [Google Scholar] [CrossRef] [PubMed]
- Leng, B.; Chen, F.; Li, M.; Yin, H.; Sun, G.; Zhao, Y. Plasma Lnc-UCA1/miR-138 axis as a potential biomarker for gestational diabetes mellitus and neonatal prognosis. Ginekol. Pol. 2023, 94, 845–851. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Wu, H.; Wang, F.; Ye, M.; Zhu, H.; Bu, S. Long non-coding RNA MALAT1 expression in patients with gestational diabetes mellitus. Int. J. Gynaecol. Obstet. 2018, 140, 164–169. [Google Scholar] [CrossRef] [PubMed]
- Su, R.; Wu, X.; Ke, F. Long Non-Coding RNA HOTAIR Expression and Clinical Significance in Patients with Gestational Diabetes. Int. J. Gen. Med. 2021, 14, 9945–9950. [Google Scholar] [CrossRef]
- Li, J.; Du, B.; Geng, X.; Zhou, L. lncRNA SNHG17 is Downregulated in Gestational Diabetes Mellitus (GDM) and Has Predictive Values. Diabetes Metab. Syndr. Obes. 2021, 14, 831–838. [Google Scholar] [CrossRef] [PubMed]
- WHO. Recommended definitions, terminology and format for statistical tables related to the perinatal period and use of a new certificate for cause of perinatal deaths. Modifications recommended by FIGO as amended October 14, 1976. Acta Obstet. Gynecol. Scand. 1977, 56, 247–253. [Google Scholar]
- Perin, J.; Mulick, A.; Yeung, D.; Villavicencio, F.; Lopez, G.; Strong, K.L.; Prieto-Merino, D.; Cousens, S.; E Black, R.; Liu, L. Global, regional, and national causes of under-5 mortality in 2000–19: An updated systematic analysis with implications for the Sustainable Development Goals. Lancet Child Adolesc. Health 2022, 6, 106–115. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Oza, S.; Hogan, D.; Chu, Y.; Perin, J.; Zhu, J.; Lawn, J.E.; Cousens, S.; Mathers, C.; Black, R.E. Global, regional, and national causes of under-5 mortality in 2000–15: An updated systematic analysis with implications for the Sustainable Development Goals. Lancet 2016, 388, 3027–3035. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.; Ma, Q.; Wang, Y.; Tang, Z. Clinical application of exosomes and circulating microRNAs in the diagnosis of pregnancy complications and foetal abnormalities. J. Transl. Med. 2020, 18, 32. [Google Scholar] [CrossRef]
- Gray, C.; McCowan, L.M.; Patel, R.; Taylor, R.S.; Vickers, M.H. Maternal plasma miRNAs as biomarkers during mid-pregnancy to predict later spontaneous preterm birth: A pilot study. Sci. Rep. 2017, 7, 815. [Google Scholar] [CrossRef] [PubMed]
- Dixon, C.L.; Sheller-Miller, S.; Saade, G.R.; Fortunato, S.J.; Lai, A.; Palma, C.; Guanzon, D.; Salomon, C.; Menon, R. Amniotic Fluid Exosome Proteomic Profile Exhibits Unique Pathways of Term and Preterm Labor. Endocrinology 2018, 159, 2229–2240. [Google Scholar] [CrossRef]
- Cantonwine, D.E.; Zhang, Z.; Rosenblatt, K.; Goudy, K.S.; Doss, R.C.; Ezrin, A.M.; Page, G.; Brohman, B.; McElrath, T.F. Evaluation of proteomic biomarkers associated with circulating microparticles as an effective means to stratify the risk of spontaneous preterm birth. Am. J. Obstet. Gynecol. 2016, 214, 631.e1–631.e11. [Google Scholar] [CrossRef]
- Menon, R.; Dixon, C.L.; Sheller-Miller, S.; Fortunato, S.J.; Saade, G.R.; Palma, C.; Lai, A.; Guanzon, D.; Salomon, C. Quantitative Proteomics by SWATH-MS of Maternal Plasma Exosomes Determine Pathways Associated With Term and Preterm Birth. Endocrinology 2019, 160, 639–650. [Google Scholar] [CrossRef] [PubMed]
- Menon, R.; Debnath, C.; Lai, A.; Guanzon, D.; Bhatnagar, S.; Kshetrapal, P.K.; Sheller-Miller, S.; Salomon, C.; The Garbhini Study Team. Circulating Exosomal miRNA Profile During Term and Preterm Birth Pregnancies: A Longitudinal Study. Endocrinology 2019, 160, 249–275. [Google Scholar] [CrossRef] [PubMed]
- Illarionov, R.A.; Pachuliia, O.V.; Vashukova, E.S.; Tkachenko, A.A.; Maltseva, A.R.; Postnikova, T.B.; Nasykhova, Y.A.; Bespalova, O.N.; Glotov, A.S. Plasma miRNA Profile in High Risk of Preterm Birth during Early and Mid-Pregnancy. Genes 2022, 13, 2018. [Google Scholar] [CrossRef] [PubMed]
- Mavreli, D.; Theodora, M.; Avgeris, M.; Papantoniou, N.; Antsaklis, P.; Daskalakis, G.; Kolialexi, A. First Trimester Maternal Plasma Aberrant miRNA Expression Associated with Spontaneous Preterm Birth. Int. J. Mol. Sci. 2022, 23, 14972. [Google Scholar] [CrossRef] [PubMed]
- Cook, J.; Bennett, P.R.; Kim, S.H.; Teoh, T.G.; Sykes, L.; Kindinger, L.M.; Garrett, A.; Binkhamis, R.; MacIntyre, D.A.; Terzidou, V. First Trimester Circulating MicroRNA Biomarkers Predictive of Subsequent Preterm Delivery and Cervical Shortening. Sci. Rep. 2019, 9, 5861. [Google Scholar] [CrossRef] [PubMed]
- Winger, E.E.; Reed, J.L.; Ji, X.; Gomez-Lopez, N.; Pacora, P.; Romero, R. MicroRNAs isolated from peripheral blood in the first trimester predict spontaneous preterm birth. PLoS ONE 2020, 15, e0236805. [Google Scholar] [CrossRef] [PubMed]
- Ran, Y.; Chen, R.; Huang, D.; Qin, Y.; Liu, Z.; He, J.; Mei, Y.; Zhou, Y.; Yin, N.; Qi, H. The landscape of circular RNA in preterm birth. Front. Immunol. 2022, 13, 879487. [Google Scholar] [CrossRef] [PubMed]
- Zhou, G.; Holzman, C.; Chen, B.; Wang, P.; Heng, Y.J.; Kibschull, M.; Lye, S.J.; Kasten, E.P. EBF1-Correlated Long Non-coding RNA Transcript Levels in 3rd Trimester Maternal Blood and Risk of Spontaneous Preterm Birth. Reprod. Sci. 2021, 28, 541–549. [Google Scholar] [CrossRef] [PubMed]
- Dabi, Y.; Suisse, S.; Marie, Y.; Delbos, L.; Poilblanc, M.; Descamps, P.; Golfier, F.; Jornea, L.; Forlani, S.; Bouteiller, D.; et al. New class of RNA biomarker for endometriosis diagnosis: The potential of salivary piRNA expression. Eur. J. Obstet. Gynecol. Reprod. Biol. 2023, 291, 88–95. [Google Scholar] [CrossRef] [PubMed]
- Dabi, Y.; Suisse, S.; Jornea, L.; Bouteiller, D.; Touboul, C.; Puchar, A.; Daraï, E.; Bendifallah, S. Clues for Improving the Pathophysiology Knowledge for Endometriosis Using Serum Micro-RNA Expression. Diagnostics 2022, 12, 175. [Google Scholar] [CrossRef] [PubMed]
- Robotti, M.; Scebba, F.; Angeloni, D. Circulating Biomarkers for Cancer Detection: Could Salivary microRNAs Be an Opportunity for Ovarian Cancer Diagnostics? Biomedicines 2023, 11, 652. [Google Scholar] [CrossRef] [PubMed]
Author | Year | Number of Patients | Type of ncRNA | Type of Sample |
---|---|---|---|---|
Hosseini et al. [21] | 2018 | 16 | Upregulated: Let-7c, miRNA-122 Downregulated: miRNA-135a | Plasma |
Hong et al. [39] | 2018 | 100 | Downregulated: miRNA-378a-3p | Decidua |
Cui et al. [40] | 2021 | 68 | Upregulated: miRNA-371a-5p Downregulated: miR-206 | Serum |
Hromadnikova et al. [41] | 2023 | 181 | Upregulated: miRNA-1-3p, miRNA-16-5p, miRNA-17-5p, miRNA-26a-5p, miRNA-146a-5p, miRNA-181a-5p Downregulated: miRNA-130b-3p, miRNA-195-5p | Peripheral venous blood |
Author | Year | Number of Patients | Type of ncRNA | Type of Sample |
---|---|---|---|---|
Timofeeva et al. [56] | 2017 | 54 | Placenta downregulated miRNA-532-5p, miRNA-423-5p, miRNA-127-3p, miRNA-539-5p, miRNA-519a-3p, and miRNA-629-5p and let-7c-5p Plasma upregulated miRNA-423-5p, miRNA-519a-3p, and miRNA-629-5p and let-7c-5p | Placenta Plasma |
Mavreli et al. [55] | 2020 | 10 | miRNA-23b-5p miRNA-99b-5p downregulated | Plasma |
Chamberlain et al. [57] | 2023 | 23 | Not enough materiel | Serum |
Author | Year | Number of Patients | Type of circRNA | Type of Sample |
---|---|---|---|---|
Zhang et al. [59] | 2016 | 82 | Upregulated: circ-101222 | Red blood cells |
Min Jiang et al. [58] | 2018 | 10 | Significantly upregulated: circ-0004904, circ-0001855 | Maternal blood |
Zhang et al. [33] | 2020 | 128 | Downregulated: circ-CRAMP1L | Plasma |
Author | Year | Number of Patients | Type of lncRNA | Type of Sample |
---|---|---|---|---|
Sun et al. [60] | 2019 | 72 | Upregulated: BC030099 | Maternal blood |
Luo et al. [61] | 2019 | 162 | Upregulated: AF085938 Downregulated: G36948 and AK002210 | Serum |
Daï et al. [62] | 2021 | 10 | NR-002187, ENST00000398554, ENST00000586560, TCONS_00008014, ENST00000546789, ENST00000610270, ENST00000527727 | Serum |
Na Dong et al. [63] | 2022 | 166 | Upregulated: MIR193BHG | Serum |
Abdelazim et al. [64] | 2022 | 160 | Downregulated: MALAT-1 | Serum |
Author | Year | Number of Patients | Type of miRNA | Type of Sample |
---|---|---|---|---|
Rodosthenous et al. [71] | 2017 | 100 | Upregulated: miRNA-20b-5p, miRNA-942-5p, miRNA-324-3p, miRNA-223-5p, miRNA-127-3p | Maternal serum |
Tagliaferri et al. [69] | 2021 | 77 | miRNA-16-5p, miRNA-103-3p, miRNA-107-3p, miRNA-27b-3p | Maternal plasma |
Hromadnikova et al. [68] | 2022 | 258 | Upregulated: miRNA-1-3p, miRNA-20b-5p, miRNA-126-3p, miRNA-130b-3p, and miRNA-499a-5p | Maternal blood |
Pei et al. [70] | 2022 | 970 | Upregulated: miRNA-590-3p | Maternal blood |
Author | Year | Number of Patients | Type of lncRNA | Type of Sample |
---|---|---|---|---|
Terstappen et al. [72] | 2020 | 19 | Upregulated: lincRNA RP5-855F14.1 | Umbilical cord vein endothelial cells |
Dai et al. [62] | 2021 | 10 | ENST00000527727, ENST00000415029 | Maternal serum |
Author | Year | Number of Patients | Type of miRNA | Type of Sample |
---|---|---|---|---|
Cao et al. [84] | 2017 | 157 | Upregulated: miRNA-16-5p, miRNA-17-5p, miRNA-20a-5p | Maternal plasma |
Sebastiani et al. [85] | 2017 | 31 | Upregulated: miRNA-330-3p | Maternal plasma |
Lewis et al. [88] | 2023 | 1355 | 135 miRNAs associated with GDM | Maternal plasma/serum |
Author | Year | Number of Patients | Type of lncRNA | Type of Sample |
---|---|---|---|---|
Yisheng Zhang et al. [95] | 2017 | 97 | Upregulated: l lncRNA MALAT1 | Maternal serum |
Ruifen Su et al. [96] | 2021 | 198 | Upregulated: l lncRNA HOTAIR | Maternal blood |
Jingjun Li et al. [97]. | 2021 | 360 | Downregulated: lncRNA SNHG17 | Maternal blood |
Author | Year | Number of Patients | Type of miRNA | Type of Sample |
---|---|---|---|---|
Gray et al. [102] | 2017 | 16 | Upregulated: miRNA-223 Downregulated: miRNA-302b, miRNA-548, miRNA-1253 | Maternal plasma |
Menon et al. [106] | 2019 | 30 | A total of 167 and 153 miRNAs were found to be differentially expressed (p < 0.05) | Maternal plasma |
Cook et al. [109]. | 2019 | 43 and then validation with 131 patients | 9 miRNAs differentially expressed: let-7a-5p, miRNA-374a-5p, miRNA-15b-5p, miRNA-19b-3p, miRNA-23a-3p, miRNA-93-5p, miRNA-150-5p, miRNA-185-5p, miRNA-191-5p | Maternal plasma |
Winger et al. [110] | 2020 | 157 | 45 miRNAs | Maternal blood |
Illarionov et al. [107]. | 2022 | 24 | Upregulated: miRNA-122-5p, miRNA-34a-5p, miRNA-34c-5p Downregulated: miRNA-487b-3p, miRNA-493-3p, miRNA-432-5p, miRNA-323b-3p, miRNA-369-3p, miRNA-134-5p, miRNA-431-5p, miRNA-485-5p, miRNA-382-5p, miRNA-369-5p, miRNA-485-3p, miRNA-127-3p | Maternal plasma |
Mavreli et al. [108] | 2022 | 5 | Upregulated: miRNA-4732-5p Downregulated: miRNA-23b-5p, miRNA-125a-3p | Maternal plasma |
Hromadnikova et al. [68]. | 2022 | 6440 patients including 41 with PTB and 65 with PROM | Downregulated: miRNA-16-5p, miRNA-20b-5p, miRNA-21-5p, miRNA-24-3p, miRNA-26a-5p, miRNA-92a-3p, miRNA-126-3p, miRNA- 133a-3p, miRNA-145-5p, miRNA-146a-5p, miRNA-155-5p, miRNA-210-3p, miRNA-221-3p, miRNA-342-3p. | Maternal plasma |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cordier, A.-G.; Zerbib, E.; Favier, A.; Dabi, Y.; Daraï, E. Value of Non-Coding RNA Expression in Biofluids to Identify Patients at Low Risk of Pathologies Associated with Pregnancy. Diagnostics 2024, 14, 729. https://doi.org/10.3390/diagnostics14070729
Cordier A-G, Zerbib E, Favier A, Dabi Y, Daraï E. Value of Non-Coding RNA Expression in Biofluids to Identify Patients at Low Risk of Pathologies Associated with Pregnancy. Diagnostics. 2024; 14(7):729. https://doi.org/10.3390/diagnostics14070729
Chicago/Turabian StyleCordier, Anne-Gael, Elie Zerbib, Amélia Favier, Yohann Dabi, and Emile Daraï. 2024. "Value of Non-Coding RNA Expression in Biofluids to Identify Patients at Low Risk of Pathologies Associated with Pregnancy" Diagnostics 14, no. 7: 729. https://doi.org/10.3390/diagnostics14070729
APA StyleCordier, A. -G., Zerbib, E., Favier, A., Dabi, Y., & Daraï, E. (2024). Value of Non-Coding RNA Expression in Biofluids to Identify Patients at Low Risk of Pathologies Associated with Pregnancy. Diagnostics, 14(7), 729. https://doi.org/10.3390/diagnostics14070729