Saliva as a Biological Fluid in SARS-CoV-2 Detection
Abstract
:1. Introduction
2. Materials and Methods
2.1. Samples Description
2.2. Ethical Approval
2.3. Viral RNA Extraction
2.4. SARS-CoV-2 RT-qPCR Assay
2.5. Limit of Detection (LoD) Determination
2.6. Comparison of CT Values and Vaccination Status
2.7. Cost Comparison
2.8. Statistical Analysis
3. Results
3.1. Detection of SARS-CoV-2 in Saliva and NPS Samples
3.2. Bland–Altman Agreement Analysis
3.3. Limit of Detection (LoD)
3.4. Cycle Threshold versus Status Vaccinal of 159 Saliva Samples
3.5. Cost Comparison Analysis: Swab vs. Saliva
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Pratelli, A.; Lucente, M.S.; Mari, V.; Cordisco, M.; Sposato, A.; Capozza, P.; Lanave, G.; Martella, V.; Buonavoglia, A. A simple pooling salivary test for SARS-CoV-2 diagnosis: A Columbus’ egg? Virus Res. 2021, 305, 198575. [Google Scholar] [CrossRef]
- McPhillips, L.; MacSharry, J. Saliva as an alternative specimen to nasopharyngeal swabs for COVID-19 diagnosis: Review. Access Microbiol. 2022, 4, 000366. [Google Scholar] [CrossRef] [PubMed]
- Nasiri, K.; Dimitrova, A. Comparing saliva and nasopharyngeal swab specimens in the detection of COVID-19: A systematic review and meta-analysis. J. Dent. Sci. 2021, 16, 799–805. [Google Scholar] [CrossRef] [PubMed]
- Roque, M.; Proudfoot, K.; Mathys, V.; Yu, S.; Krieger, N.; Gernon, T.; Gokli, K.; Hamilton, S.; Cook, C.; Fong, Y. A review of nasopharyngeal swab and saliva tests for SARS-CoV-2 infection: Disease timelines, relative sensitivities, and test optimization. J. Surg. Oncol. 2021, 124, 465–475. [Google Scholar] [CrossRef] [PubMed]
- Pasomsub, E.; Watcharananan, S.P.; Watthanachockchai, T.; Rakmanee, K.; Tassaneetrithep, B.; Kiertiburanakul, S.; Phuphuakrat, A. Saliva sample pooling for the detection of SARS-CoV-2. J. Med. Virol. 2021, 93, 1506–1511. [Google Scholar] [CrossRef] [PubMed]
- Herrera, L.A.; Hidalgo-Miranda, A.; Reynoso-Noverón, N.; Meneses-García, A.A.; Mendoza-Vargas, A.; Reyes-Grajeda, J.P.; Vadillo-Ortega, F.; Cedro-Tanda, A.; Peñaloza, F.; Frías-Jimenez, E.; et al. Saliva is a reliable and accessible source for the detection of SARS-CoV-2. Int. J. Infect. Dis. 2021, 105, 83–90. [Google Scholar] [CrossRef] [PubMed]
- Teo, A.K.; Choudhury, Y.; Tan, I.B.; Cher, C.Y.; Chew, S.H.; Wan, Z.Y.; Cheng, L.T.E.; Oon, L.L.E.; Tan, M.H.; Chan, K.S.; et al. Saliva is more sensitive than nasopharyngeal or nasal swabs for diagnosis of asymptomatic and mild COVID-19 infection. Sci. Rep. 2021, 11, 3134. [Google Scholar] [CrossRef] [PubMed]
- Tutuncu, E.E.; Ozgur, D.; Karamese, M. Saliva samples for detection of SARS-CoV-2 in mildly symptomatic and asymptomatic patients. J. Med. Virol. 2021, 93, 2932–2937. [Google Scholar] [CrossRef] [PubMed]
- Girón-Pérez, D.A.; Ruiz-Manzano, R.A.; Benitez-Trinidad, A.B.; Ventura-Ramón, G.H.M.; Covantes-Rosales, C.E.; Ojeda-Durán, A.J.M.; Mercado-Salgado, U.M.; Toledo-Ibarra, G.A.M.; Díaz-Reséndiz, K.J.; Girón-Pérez, M.I. Saliva Pooling Strategy for the Large-Scale Detection of SARS-CoV-2, through Working-Groups Testing of Asymptomatic Subjects for Potential Applications in Different Workplaces. J. Occup. Environ. Med. 2021, 63, 541–547. [Google Scholar] [CrossRef]
- Saal-Bauernschubert, L.; Wagner, C.; Fomenko, A.; Daehne, T.; Bora, A.M.; Janka, H.; Stangl, S.; Skoetz, N.; Weibel, S. Impact of sampling site on diagnostic test accuracy of RT-PCR in diagnosing Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) infection since the emergence of omicron: A systematic review and meta-analysis. medRxiv 2023. [Google Scholar] [CrossRef]
- RcmdrMisc: R Commander Miscellaneous Functions. Available online: https://CRAN.R-project.org/package=RcmdrMisc (accessed on 18 February 2024).
- Avila, J.A.J.; de Freitas, V.M. Numerical solution of the temporal dynamics of SARS-CoV-2 infection in patients with severe or critical clinical manifestations of COVID-19. REMAT Rev. Eletrônica Matemática 2023, 9, e3003. [Google Scholar] [CrossRef]
- Saluzzo, F.; Mantegani, P.; de Chaurand, V.P.; Cugnata, F.; Rovere-Querini, P.; Cilla, M.; Erba, P.P.; Racca, S.; Tresoldi, C.; Uberti-Foppa, C.; et al. Saliva molecular testing for SARS-CoV-2: Simplifying the diagnosis without losing accuracy. Eur. Respir. J. 2021, 58, 2102099. [Google Scholar] [CrossRef] [PubMed]
- Azzi, L.; Dalla Gasperina, D.; Veronesi, G.; Shallak, M.; Ietto, G.; Iovino, D.; Baj, A.; Gianfagna, F.; Maurino, V.; Focosi, D.; et al. Mucosal immune response in BNT162b2 COVID-19 vaccine recipients. eBioMedicine 2022, 75, 103788. [Google Scholar] [CrossRef] [PubMed]
- Sagredo-Olivares, K.; Morales-Gómez, C.; Aitken-Saavedra, J. Evaluation of saliva as a complementary technique to the diagnosis of COVID-19: A systematic review. Med. Oral Patol. Oral Cir. Bucal 2021, 26, e526–e532. [Google Scholar] [CrossRef] [PubMed]
- de Paula Eduardo, F.; Bezinelli, L.M.; de Araujo, C.A.R.; Moraes, J.V.V.; Birbrair, A.; Pinho, J.R.R.; Hamerschlak, N.; Al-Hashimi, I.; Heller, D. Self-collected unstimulated saliva, oral swab, and nasopharyngeal swab specimens in the detection of SARS-CoV-2. Clin. Oral Investig. 2022, 26, 1561–1567. [Google Scholar] [CrossRef] [PubMed]
- De Santi, C.; Jacob, B.; Kroich, P.; Doyle, S.; Ward, R.; Li, B.; Donnelly, O.; Dykes, A.; Neelakant, T.; Neary, D.; et al. Concordance between PCR-based extraction-free saliva and nasopharyngeal swabs for SARS-CoV-2 testing. HRB Open Res. 2021, 4, 85. [Google Scholar] [CrossRef] [PubMed]
- Johnson, A.J.; Zhou, S.; Hoops, S.L.; Hillmann, B.; Schomaker, M.; Kincaid, R.; Daniel, J.; Beckman, K.; Gohl, D.M.; Yohe, S.; et al. Saliva Testing Is Accurate for Early-Stage and Presymptomatic COVID-19. Microbiol. Spectr. 2021, 9, e0008621. [Google Scholar] [CrossRef] [PubMed]
- Pierri, B.; Tafuro, M.; Cuomo, M.C.; Di Concilio, D.; Vassallo, L.; Pierri, A.; Ferro, A.; Rofrano, G.; Gallo, A.; Di Stasio, A.; et al. Assessment of Saliva Specimens’ Reliability for COVID-19 Surveillance. Front. Public Health 2022, 10, 840996. [Google Scholar] [CrossRef] [PubMed]
- Hoffmann, M.; Kleine-Weber, H.; Schroeder, S.; Krüger, N.; Herrler, T.; Erichsen, S.; Schiergens, T.S.; Herrler, G.; Wu, N.-H.; Nitsche, A.; et al. SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor. Cell 2020, 181, 271–280. [Google Scholar] [CrossRef]
- Matuck, B.F.; Dolhnikoff, M.; Duarte-Neto, A.N.; Maia, G.; Gomes, S.C.; Sendyk, D.I.; Zarpellon, A.; de Andrade, N.P.; Monteiro, R.A.; Pinho, J.R.R.; et al. Salivary glands are a target for SARS-CoV-2: A source for saliva contamination. J. Pathol. 2021, 254, 239–243. [Google Scholar] [CrossRef]
- Hur, K.-H.; Park, K.; Lim, Y.; Jeong, Y.S.; Sung, H.; Kim, M.-N. Evaluation of Four Commercial Kits for SARS-CoV-2 Real-Time Reverse-Transcription Polymerase Chain Reaction Approved by Emergency-Use-Authorization in Korea. Front. Med. 2020, 7, 521. [Google Scholar] [CrossRef] [PubMed]
- Peterson, K.L.; Snyder, J.P.; Despres, H.W.; Schmidt, M.M.; Eckstrom, K.M.; Unger, A.L.; Carmolli, M.P.; Sevigny, J.L.; Shirley, D.J.; Dragon, J.A.; et al. Determining the impact of vaccination on SARS-CoV-2 RT-PCR cycle threshold values and infectious viral titres. Access Microbiol. 2023, 5, 000597.v3. [Google Scholar] [CrossRef] [PubMed]
- Komiazyk, M.; Walory, J.; Gawor, J.; Ksiazek, I.; Gromadka, R.; Baraniak, A. Case Report of COVID-19 after Full Vaccination: Viral Loads and Anti-SARS-CoV-2 Antibodies. Diagnostics 2021, 11, 1815. [Google Scholar] [CrossRef] [PubMed]
Saliva | NPS 1 | |
---|---|---|
Positives/Total | 19/20 | 20/20 |
RNA concentration 2 | 15.48 | 14.37 |
Average of CT 3 | 36.3 | 36.6 |
Standard deviation of CT | 0.85 | 1.35 |
Vaccinal Status/CT | <20 | Between 20 and 30 | >30 |
---|---|---|---|
No vaccination | 3 | 7 | 1 |
Three doses with the same vaccine type | 1 | 4 | 3 |
At least two different vaccine types | 13 | 89 | 38 |
Collection Stage (598 Samples/Month) & | ||
Material/Human resources | Saliva | Swab |
Conical Tubes (unit) | - | USD 93.23 |
Swab Rayon (unit) | - | USD 205.70 |
Microtubes (unit) | USD 44.73 | - |
Saline | USD 0.81 | USD 4.88 |
Nursing Technician Professional | - | USD 625.00 × 4 £ = 2500 |
Total | USD 45.48 | USD 2803.88 |
Total/Sample | USD 0.075 | USD 4.68 |
Separation and processing stage (30 samples/day) * | ||
Material | Saliva | Swab |
Tips 200 µL | USD 3.21 | - |
Pasteur Pipette 3 mL | - | USD 0.78 |
Cylindrical Tube 4 mL | - | USD 0.33 |
Full Sleeve Disposable Apron (unit) | USD 0.65 | USD 0.65 |
Disposable Nitrile Gloves (pair) | USD 0.045 | USD 0.045 |
N95 Disposable Mask (unit) | USD 0.18 | USD 0.18 |
Disposable Caps (unit) | USD 0.016 | USD 0.016 |
Total | USD 4.11 | USD 2.02 |
Total/Sample | USD 0.13 | USD 0.06 |
Viral RNA extraction step (same method for saliva e swab) 96 samples | ||
Material | Cost | |
Tire Encapsulation Magnetics | USD 9.39 | |
Plate Deep Well 2.2 mL viral RNA extraction Loccus Extracta 96 | USD 5.46 | |
Tips 1000 µL | USD 12.21 | |
Plate Sealing Film (Non-Optical) | USD 1.46 | |
Magnetics Beads | USD 10.10 | |
Sodium Chloride | USD 0.18 | |
Triton x-100 | USD 0.36 | |
Guanidine Thiocyanate | USD 3.96 | |
Polyethyleneglycol | USD 1.80 | |
Total | USD 44.96 | |
Total/Sample | USD 0.46 | |
RT-qPCR (same method for saliva e swab) 96 samples | ||
Material | Cost | |
Kit Allplex™ SARS-CoV-2 Assay | USD 499.19 # | |
Tips 0.5–10 µL | USD 10.33 | |
96-well plates for real time PCR-100 µL wells | USD 3.74 | |
PCR Plate Sealing Film | USD 1.87 | |
Full Sleeve Disposable Apron (unit) | USD 0.65 | |
Disposable Nitrile Gloves (pair) | USD 0.24 | |
N95 Disposable Mask (unit) | USD 0.045 | |
Disposable Caps (unit) | USD 0.016 | |
Total | USD 516.05 | |
Total/Sample | USD 5.37 | |
Totals Costs | ||
Stage | Saliva | Swab |
Collect | USD 0.075 | USD 4.68 |
Separation and processing | USD 0.13 | USD 0.06 |
Viral RNA extraction | USD 0.46 | USD 0.46 |
RT-qPCR | USD 5.37 | USD 5.37 |
Total/Sample | USD 6.05 | USD 10.59 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Silva, E.T.T.; Furtado, F.B.; Silveira, R.A.d.; Tasca, K.I.; Silva, C.N.; Godoy, A.T.; Moraes, L.N.d.; Hong, M.V.; Alves, C.G.; Simões, R.P.; et al. Saliva as a Biological Fluid in SARS-CoV-2 Detection. Diagnostics 2024, 14, 922. https://doi.org/10.3390/diagnostics14090922
Silva ETT, Furtado FB, Silveira RAd, Tasca KI, Silva CN, Godoy AT, Moraes LNd, Hong MV, Alves CG, Simões RP, et al. Saliva as a Biological Fluid in SARS-CoV-2 Detection. Diagnostics. 2024; 14(9):922. https://doi.org/10.3390/diagnostics14090922
Chicago/Turabian StyleSilva, Emily Thalia Teixeira, Fabiana Barcelos Furtado, Rosana Antunes da Silveira, Karen Ingrid Tasca, Cristiane Nonato Silva, Amanda Thais Godoy, Leonardo Nazario de Moraes, Michelle Venancio Hong, Camila Gonçalves Alves, Rafael Plana Simões, and et al. 2024. "Saliva as a Biological Fluid in SARS-CoV-2 Detection" Diagnostics 14, no. 9: 922. https://doi.org/10.3390/diagnostics14090922
APA StyleSilva, E. T. T., Furtado, F. B., Silveira, R. A. d., Tasca, K. I., Silva, C. N., Godoy, A. T., Moraes, L. N. d., Hong, M. V., Alves, C. G., Simões, R. P., Kubo, A. M. S., Fortaleza, C. M. C. B., Pereira-Lima, M. C., Valente, G. T., & Grotto, R. M. T. (2024). Saliva as a Biological Fluid in SARS-CoV-2 Detection. Diagnostics, 14(9), 922. https://doi.org/10.3390/diagnostics14090922