Post-Diagnostic Aspirin Use in Breast Cancer Treatment: A Systematic Review and Meta-Analysis of Survival Outcomes with Trial Sequential Analysis Validation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Data Sources
2.2. Eligibility Criteria
2.3. Study Selection Process
2.4. Data Extraction
2.5. Quality Assessment
2.6. Meta-Regression Analysis
2.7. Statistical Analysis
3. Results
3.1. Study Selection and Inclusion Summary
3.2. Study and Participant Characteristics
3.3. Forest Plot Analysis and TSA of Survival Outcomes
3.4. Risk of Bias and Publication Bias Assessment
3.5. Result of Meta-Regression Analysis
4. Discussion
4.1. Underlying Biological Mechanisms
4.2. Age-Dependent Effects on Mortality Outcomes
4.3. Disease Stage and Treatment Efficacy
4.4. Hormone Receptor Status and Treatment Response
4.5. Comparative Analysis with Previous Studies
4.6. Study Limitations and Future Directions
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef] [PubMed]
- Bibbins-Domingo, K. U.S. Preventive Services Task Force. Aspirin Use for the Primary Prevention of Cardiovascular Disease and Colorectal Cancer: U.S. Preventive Services Task Force Recommendation Statement. Ann. Intern. Med. 2016, 164, 836–845. [Google Scholar] [CrossRef]
- Chen, W.Y.; Holmes, M.D. Role of Aspirin in Breast Cancer Survival. Curr. Oncol. Rep. 2017, 19, 48. [Google Scholar] [CrossRef] [PubMed]
- Lichtenberger, L.M.; Vijayan, K.V. Are Platelets the Primary Target of Aspirin’s Remarkable Anticancer Activity? Cancer Res. 2019, 79, 3820–3823. [Google Scholar] [CrossRef] [PubMed]
- Tao, D.L.; Tassi Yunga, S.; Williams, C.D.; McCarty, O.J.T. Aspirin and Antiplatelet Treatments in Cancer. Blood 2021, 137, 3201–3211. [Google Scholar] [CrossRef]
- Hou, J.; Karin, M.; Sun, B. Targeting Cancer-Promoting Inflammation—Have Anti-Inflammatory Therapies Come of Age? Nat. Rev. Clin. Oncol. 2021, 18, 261–279. [Google Scholar] [CrossRef]
- Cook, N.R.; Lee, I.-M.; Zhang, S.M.; Moorthy, M.V.; Buring, J.E. Alternate-Day, Low-Dose Aspirin and Cancer Risk: Long-Term Observational Follow-up of a Randomized Trial. Ann. Intern. Med. 2013, 159, 77–85. [Google Scholar] [CrossRef]
- Rothwell, P.M.; Wilson, M.; Price, J.F.; Belch, J.F.F.; Meade, T.W.; Mehta, Z. Effect of Daily Aspirin on Risk of Cancer Metastasis: A Study of Incident Cancers during Randomised Controlled Trials. Lancet 2012, 379, 1591–1601. [Google Scholar] [CrossRef]
- Zhong, S.; Zhang, X.; Chen, L.; Ma, T.; Tang, J.; Zhao, J. Association between Aspirin Use and Mortality in Breast Cancer Patients: A Meta-Analysis of Observational Studies. Breast Cancer Res. Treat. 2015, 150, 199–207. [Google Scholar] [CrossRef]
- Huang, X.; Gao, P.; Sun, J.; Song, Y.; Tsai, C.; Liu, J.; Chen, X.; Chen, P.; Xu, H.; Wang, Z. Aspirin and Nonsteroidal Anti-Inflammatory Drugs after but Not before Diagnosis Are Associated with Improved Breast Cancer Survival: A Meta-Analysis. Cancer Causes Control 2015, 26, 589–600. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 Statement: An Updated Guideline for Reporting Systematic Reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef] [PubMed]
- Sterne, J.A.C.; Savović, J.; Page, M.J.; Elbers, R.G.; Blencowe, N.S.; Boutron, I.; Cates, C.J.; Cheng, H.-Y.; Corbett, M.S.; Eldridge, S.M.; et al. RoB 2: A Revised Tool for Assessing Risk of Bias in Randomised Trials. BMJ 2019, 366, l4898. [Google Scholar] [CrossRef] [PubMed]
- Sterne, J.A.; Hernán, M.A.; Reeves, B.C.; Savović, J.; Berkman, N.D.; Viswanathan, M.; Henry, D.; Altman, D.G.; Ansari, M.T.; Boutron, I.; et al. ROBINS-I: A Tool for Assessing Risk of Bias in Non-Randomised Studies of Interventions. BMJ 2016, 355, i4919. [Google Scholar] [CrossRef] [PubMed]
- Lin, L.; Chu, H. Quantifying Publication Bias in Meta-Analysis. Biometrics 2018, 74, 785–794. [Google Scholar] [CrossRef]
- Huedo-Medina, T.B.; Sánchez-Meca, J.; Marín-Martínez, F.; Botella, J. Assessing Heterogeneity in Meta-Analysis: Q Statistic or I2 Index? Psychol. Methods 2006, 11, 193–206. [Google Scholar] [CrossRef]
- Balduzzi, S.; Rücker, G.; Schwarzer, G. How to Perform a Meta-Analysis with R: A Practical Tutorial. Evid. Based Ment. Health 2019, 22, 153–160. [Google Scholar] [CrossRef]
- Kang, H. Trial Sequential Analysis: Novel Approach for Meta-Analysis. Anesth. Pain Med. 2021, 16, 138–150. [Google Scholar] [CrossRef]
- Miladinovic, B.; Hozo, I.; Djulbegovic, B. Trial Sequential Boundaries for Cumulative Meta-Analyses. Stata J. 2013, 13, 77–91. [Google Scholar] [CrossRef]
- Blair, C.K.; Sweeney, C.; Anderson, K.E.; Folsom, A.R. NSAID Use and Survival after Breast Cancer Diagnosis in Post-Menopausal Women. Breast Cancer Res. Treat. 2007, 101, 191–197. [Google Scholar] [CrossRef]
- Holmes, M.D.; Chen, W.Y.; Li, L.; Hertzmark, E.; Spiegelman, D.; Hankinson, S.E. Aspirin Intake and Survival After Breast Cancer. J. Clin. Oncol. 2010, 28, 1467–1472. [Google Scholar] [CrossRef]
- Wernli, K.J.; Hampton, J.M.; Trentham-Dietz, A.; Newcomb, P.A. Use of Antidepressants and NSAIDs in Relation to Mortality in Long-Term Breast Cancer Survivors. Pharmacoepidemiol. Drug Saf. 2011, 20, 131–137. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Brasky, T.M.; Nie, J.; Ambrosone, C.B.; McCann, S.E.; Shields, P.G.; Trevisan, M.; Edge, S.B.; Freudenheim, J.L. Use of Non-Steroidal Anti-Inflammatory Drugs and Survival Following Breast Cancer Diagnosis. Cancer Epidemiol. Biomark. Prev. 2012, 21, 239–242. [Google Scholar] [CrossRef] [PubMed]
- Barron, T.I.; Flahavan, E.M.; Sharp, L.; Bennett, K.; Visvanathan, K. Recent Prediagnostic Aspirin Use, Lymph Node Involvement, and 5-Year Mortality in Women with Stage I-III Breast Cancer: A Nationwide Population-Based Cohort Study. Cancer Res. 2014, 74, 4065–4077. [Google Scholar] [CrossRef] [PubMed]
- Fraser, D.M.; Sullivan, F.M.; Thompson, A.M.; McCowan, C. Aspirin Use and Survival after the Diagnosis of Breast Cancer: A Population-Based Cohort Study. Br. J. Cancer 2014, 111, 623–627. [Google Scholar] [CrossRef]
- Holmes, M.D.; Olsson, H.; Pawitan, Y.; Holm, J.; Lundholm, C.; Andersson, T.M.-L.; Adami, H.-O.; Askling, J.; Smedby, K.E. Aspirin Intake and Breast Cancer Survival—A Nation-Wide Study Using Prospectively Recorded Data in Sweden. BMC Cancer 2014, 14, 391. [Google Scholar] [CrossRef]
- Murray, L.J.; Cooper, J.A.; Hughes, C.M.; Powe, D.G.; Cardwell, C.R. Post-Diagnostic Prescriptions for Low-Dose Aspirin and Breast Cancer-Specific Survival: A Nested Case-Control Study in a Breast Cancer Cohort from the UK Clinical Practice Research Datalink. Breast Cancer Res. 2014, 16, R34. [Google Scholar] [CrossRef]
- Barron, T.I.; Murphy, L.M.; Brown, C.; Bennett, K.; Visvanathan, K.; Sharp, L. De Novo Post-Diagnosis Aspirin Use and Mortality in Women with Stage I-III Breast Cancer. Cancer Epidemiol. Biomark. Prev. 2015, 24, 898–904. [Google Scholar] [CrossRef]
- Cronin-Fenton, D.P.; Heide-Jørgensen, U.; Ahern, T.P.; Lash, T.L.; Christiansen, P.; Ejlertsen, B.; Sørensen, H.T. Low-Dose Aspirin, Nonsteroidal Anti-Inflammatory Drugs, Selective COX-2 Inhibitors and Breast Cancer Recurrence. Epidemiology 2016, 27, 586–593. [Google Scholar] [CrossRef]
- Mc Menamin, Ú.C.; Cardwell, C.R.; Hughes, C.M.; Murray, L.J. Low-Dose Aspirin Use and Survival in Breast Cancer Patients: A Nationwide Cohort Study. Cancer Epidemiol. 2017, 47, 20–27. [Google Scholar] [CrossRef]
- Shiao, J.; Thomas, K.M.; Rahimi, A.S.; Rao, R.; Yan, J.; Xie, X.-J.; DaSilva, M.; Spangler, A.; Leitch, M.; Wooldridge, R.; et al. Aspirin/Antiplatelet Agent Use Improves Disease-Free Survival and Reduces the Risk of Distant Metastases in Stage II and III Triple-Negative Breast Cancer Patients. Breast Cancer Res. Treat. 2017, 161, 463–471. [Google Scholar] [CrossRef]
- Frisk, G.; Ekberg, S.; Lidbrink, E.; Eloranta, S.; Sund, M.; Fredriksson, I.; Lambe, M.; Smedby, K.E. No Association between Low-Dose Aspirin Use and Breast Cancer Outcomes Overall: A Swedish Population-Based Study. Breast Cancer Res. 2018, 20, 142. [Google Scholar] [CrossRef] [PubMed]
- Strasser-Weippl, K.; Higgins, M.J.; Chapman, J.-A.W.; Ingle, J.N.; Sledge, G.W.; Budd, G.T.; Ellis, M.J.; Pritchard, K.I.; Clemons, M.J.; Badovinac-Crnjevic, T.; et al. Effects of Celecoxib and Low-Dose Aspirin on Outcomes in Adjuvant Aromatase Inhibitor-Treated Patients: CCTG MA.27. J. Natl. Cancer Inst. 2018, 110, 1003–1008. [Google Scholar] [CrossRef] [PubMed]
- Williams, A.D.; Li, Y.R.; So, A.; Steel, L.; Carrigan, E.; Ro, V.; Nguyen, J.; Tchou, J. The Impact of Aspirin Use on Breast Cancer Subtype and Clinical Course. J. Surg. Res. 2018, 230, 71–79. [Google Scholar] [CrossRef]
- Zhou, Y.; Simmons, J.; Jordan, C.D.; Sonbol, M.B.; Maihle, N.; Tang, S.-C. Aspirin Treatment Effect and Association with PIK3CA Mutation in Breast Cancer: A Biomarker Analysis. Clin. Breast Cancer 2019, 19, 354–362.e7. [Google Scholar] [CrossRef]
- Li, P.; Ning, Y.; Li, M.; Cai, P.; Siddiqui, A.D.; Liu, E.Y.; Hadley, M.; Wu, F.; Pan, S.; Dixon, R.A.F.; et al. Aspirin Is Associated With Reduced Rates of Venous Thromboembolism in Older Patients With Cancer. J. Cardiovasc. Pharmacol. Ther. 2020, 25, 456–465. [Google Scholar] [CrossRef]
- McCarthy, A.M.; Kumar, N.P.; He, W.; Regan, S.; Welch, M.; Moy, B.; Iafrate, A.J.; Chan, A.T.; Bardia, A.; Armstrong, K. Different Associations of Tumor PIK3CA Mutations and Clinical Outcomes According to Aspirin Use among Women with Metastatic Hormone Receptor Positive Breast Cancer. BMC Cancer 2020, 20, 347. [Google Scholar] [CrossRef]
- Johns, C.; Montalvo, S.K.; Cauble, M.; Liu, Y.-L.; All, S.; Rahimi, A.S.; Alluri, P.G.; Leitch, M.; Unni, N.; Wooldridge, R.; et al. Aspirin Use Is Associated with Improvement in Distant Metastases Outcome in Patients with Residual Disease after Neoadjuvant Chemotherapy. Breast Cancer Res. Treat. 2023, 199, 381–387. [Google Scholar] [CrossRef]
- Chen, W.Y.; Ballman, K.V.; Partridge, A.H.; Hahn, O.M.; Briccetti, F.M.; Irvin, W.J.; Symington, B.; Visvanathan, K.; Pohlmann, P.R.; Openshaw, T.H.; et al. Aspirin vs. Placebo as Adjuvant Therapy for Breast Cancer: The Alliance A011502 Randomized Trial. JAMA 2024, 331, 1714–1721. [Google Scholar] [CrossRef]
- Neil, J.R.; Johnson, K.M.; Nemenoff, R.A.; Schiemann, W.P. Cox-2 Inactivates Smad Signaling and Enhances EMT Stimulated by TGF-β through a PGE2-Dependent Mechanisms. Carcinogenesis 2008, 29, 2227–2235. [Google Scholar] [CrossRef]
- Leahy, K.M.; Ornberg, R.L.; Wang, Y.; Zweifel, B.S.; Koki, A.T.; Masferrer, J.L. Cyclooxygenase-2 Inhibition by Celecoxib Reduces Proliferation and Induces Apoptosis in Angiogenic Endothelial Cells in Vivo. Cancer Res. 2002, 62, 625–631. [Google Scholar]
- Lucotti, S.; Cerutti, C.; Soyer, M.; Gil-Bernabé, A.M.; Gomes, A.L.; Allen, P.D.; Smart, S.; Markelc, B.; Watson, K.; Armstrong, P.C.; et al. Aspirin Blocks Formation of Metastatic Intravascular Niches by Inhibiting Platelet-Derived COX-1/Thromboxane A2. J. Clin. Investig. 2019, 129, 1845–1862. [Google Scholar] [CrossRef] [PubMed]
- Guirguis-Blake, J.M.; Evans, C.V.; Perdue, L.A.; Bean, S.I.; Senger, C.A. Aspirin Use to Prevent Cardiovascular Disease and Colorectal Cancer: Updated Evidence Report and Systematic Review for the US Preventive Services Task Force. JAMA 2022, 327, 1585–1597. [Google Scholar] [CrossRef] [PubMed]
- Greten, F.R.; Grivennikov, S.I. Inflammation and Cancer: Triggers, Mechanisms, and Consequences. Immunity 2019, 51, 27–41. [Google Scholar] [CrossRef] [PubMed]
- Maity, G.; De, A.; Das, A.; Banerjee, S.; Sarkar, S.; Banerjee, S.K. Aspirin Blocks Growth of Breast Tumor Cells and Tumor-Initiating Cells and Induces Reprogramming Factors of Mesenchymal to Epithelial Transition. Lab. Investig. 2015, 95, 702–717. [Google Scholar] [CrossRef] [PubMed]
- Sopik, V.; Narod, S.A. The Relationship between Tumour Size, Nodal Status and Distant Metastases: On the Origins of Breast Cancer. Breast Cancer Res. Treat. 2018, 170, 647–656. [Google Scholar] [CrossRef]
- Agrawal, A.; Fentiman, I.S. NSAIDs and Breast Cancer: A Possible Prevention and Treatment Strategy. Int. J. Clin. Pract. 2008, 62, 444–449. [Google Scholar] [CrossRef]
- Crew, K.D.; Neugut, A.I. Aspirin and NSAIDs: Effects in Breast and Ovarian Cancers. Curr. Opin. Obstet. Gynecol. 2006, 18, 71–75. [Google Scholar] [CrossRef]
- Baker, A.; Kartsonaki, C. Aspirin Use and Survival Among Patients With Breast Cancer: A Systematic Review and Meta-Analysis. Oncologist 2023, 29, e1–e14. [Google Scholar] [CrossRef]
First Author, Year | Study Type | Sample Size | Median Follow-Up | Aspirin Dose | Population Characteristics | Country | Years of Recruitment | Period |
---|---|---|---|---|---|---|---|---|
Blair, 2007 [19] | Cohort study | 591 | Median follow-up of 8.3 years | Aspirin | Postmenopausal patients with invasive breast cancer | USA | 1986–1992 | Post-diagnostic |
Holmes, 2010 [20] | Cohort study | 4164 | NA | Aspirin | Patients with stage I–III breast cancer | USA | 1976–2002 | Post-diagnostic |
Wernli, 2011 [21] | Cohort study | 3058 | Mean follow-up of 7.2 years | Aspirin | Patients with primary, invasive breast cancer | USA | 1988–1999 | Post-diagnostic |
Li, 2012 [22] | Cohort study | 1024 | NA | Low-dose aspirin | Patients with primary, invasive breast cancer | USA | 1996–2001 | Pre- and post-diagnostic |
Barron, 2014 [23] | Cohort study | 2796 | NA | Aspirin (75 mg for 85.7% of prescriptions, 300 mg for 10.8%) | Patients with stage I–III breast cancer | Ireland | 2001–2006 | Pre- and post-diagnostic |
Fraser, 2014 [24] | Cohort study | 4627 | Median follow-up of 5.7 years | Low-dose aspirin, 75 mg | Patients diagnosed with primary invasive breast cancer | UK | 1993–2008 | Pre- and post-diagnostic |
Holmes, 2014 [25] | Cohort study | 27424 | Median follow-up of 2.6 years | Low-dose aspirin (75 mg or 160 mg) | Patients with a first-incident breast cancer diagnosis | Sweden | 2005–2009 | Post-diagnostic |
Murray, 2014 [26] | Cohort study | 9817 | Mean follow-up of 6.9 years | Low-dose aspirin, mainly 75 mg | Patients diagnosed with primary invasive breast cancer | UK | 1998–2007 | Post-diagnostic |
Barron, 2015 [27] | Cohort study | 4540 | NA | Aspirin (<150 mg/day for 95.5% of cohort, 150 mg for 4.5%) | Patients aged 50–80 with stage I–III breast cancer | Ireland | 2001–2011 | Post-diagnostic |
Cronin-Fenton, 2016 [28] | Cohort study | 34188 | Median follow-up of 7.1 years | Low-dose aspirin | Patients with stage I–III breast cancer | Denmark | 1996–2008 | Pre- and post-diagnostic |
McMenamin, 2017 [29] | Cohort study | 15140 | Mean follow-up of 4 years | Low-dose aspirin | Patients with primary breast cancer | UK | 2009–2012 | Pre- and post-diagnostic |
Shiao, 2017 [30] | Cohort study | 222 | Median follow-up of 41.3 months | Low-dose aspirin | Patients with stage II–III triple-negative breast cancer | USA | 1998–2016 | Post-diagnostic |
Frisk, 2018 [31] | Cohort study | 22035 | Median follow-up of 3.8 years | Aspirin (75 mg or 160 mg) | Patients with stage I–III breast cancer | Sweden | 2006–2012 | Pre- and post-diagnostic |
Strasser-Weippl, 2018 [32] | Trial | 2209 | Median follow-up of 4.1 years | Low-dose aspirin, max 81 mg | Postmenopausal patients with hormone receptor-positive early breast cancer | Canada | 2003–2008 | Post-diagnostic |
Williams, 2018 [33] | Cohort study | 1113 | Mean follow-up of 64.5 months | Aspirin | Patients with primary operable breast cancer (stage I–III) | USA | 2005–2013. | Pre- and post-diagnostic |
Zhou, 2019 [34] | Cohort study | 1227 | Median follow-up of 27 months | Aspirin (81 mg or 325 mg) | Patients with breast cancer and PIK3CA mutations | USA | 2002–2013 | Pre- and post-diagnostic |
Li, 2020 [35] | Cohort study | 3152 | NA | Aspirin | Patients with breast cancer and aged ≥65 years | USA | 2016–2016 | Pre- and post-diagnostic |
McCarthy, 2020 [36] | Cohort study | 267 | NA | Aspirin (81 mg for 51.9%, 325 mg for 27.8%) | Patients with hormone receptor-positive, HER2-negative (HR+/HER2−) metastatic breast cancer | USA | 2009–2016 | Post-diagnostic |
Johns, 2023 [37] | Cohort study | 637 | Median follow-up of 3.8 years | Low-dose aspirin | Patients with breast cancer and residual disease after neoadjuvant chemotherapy | USA | 2005–2008 | Post-diagnostic |
Chen, 2024 [38] | Trial | 3020 | Median follow-up of 33.8 months | Aspirin, 300 mg daily | Patients with high-risk HER2-negative breast cancer post-treatment | USA | 2017–2020 | Post-diagnostic |
First Author, Year | Age (Mean, yrs) | Sex (Female, %) | Race (Caucasian) | BMI > 30 (%) | Non-Smoker (%) | Postmenopausal (%) |
---|---|---|---|---|---|---|
Blair, 2007 [19] | Range (55–69) | 100% | NA | NA | NA | 100% |
Holmes, 2010 [20] | Range (30–55) | 100% | NA | NA | NA | 68.86% |
Wernli, 2011 [21] | Range (18–65) | 100% | NA | 19.82% | 50.80% | NA |
Li, 2012 [22] | 58.4 | 100% | 91.6 | NA | NA | 72.17% |
Barron, 2014 [23] | 67.4 | 100% | NA | NA | 60.37% | NA |
Fraser, 2014 [24] | 62 | 100% | NA | NA | NA | NA |
Holmes, 2014 [25] | 62 | 100% | NA | NA | NA | NA |
Murray, 2014 [26] | NA | 100% | NA | NA | 63.21% | NA |
Barron, 2015 [27] | 65.5 | 100% | NA | NA | 58.62% | NA |
Cronin-Fenton, 2016 [28] | Range (29–80) | 100% | NA | NA | NA | 71.84% |
McMenamin, 2017 [29] | NA | NA | NA | NA | NA | NA |
Shiao, 2017 [30] | 52.2 | 100% | 28.96 | NA | NA | NA |
Frisk, 2018 [31] | 63.1 | 100% | NA | NA | NA | NA |
Strasser-Weippl, 2018 [32] | 63.8 | 100% | 94.2 | NA | NA | 100% |
Williams, 2018 [33] | 64.9 | 100% | 62 | 36.13% | NA | NA |
Zhou, 2019 [34] | 58.9 | NA | 55.09 | NA | NA | NA |
Li, 2020 [35] | 76.5 | NA | NA | NA | NA | NA |
McCarthy, 2020 [36] | NA | 100% | NA | 30.91% | NA | NA |
Johns, 2023 [37] | 50.4 | NA | 32.9 | NA | NA | NA |
Chen, 2024 [38] | 52.4 | 99.50% | 84.7 | 44.20% | NA | 81.60% |
First Author, Year | Stage | Grade | HR+ (%) | Her-2 (%) | Positive Lymph Node Status | Received Radiotherapy | Received Chemotherapy | Received Hormone Therapy | Received Surgery |
---|---|---|---|---|---|---|---|---|---|
Blair, 2007 [19] | NA | NA | ER (87.18%), PR (72.65%) | NA | 28.37% | NA | NA | NA | NA |
Holmes, 2010 [20] | Stage I–III, Stage II: 35.98%, Stage III: 6.14% | NA | ER (78.37%) | NA | NA | NA | NA | NA | NA |
Wernli, 2011 [21] | NA | NA | NA | NA | NA | 47.25% | 35.09% | 59.35% | 98.17% |
Li, 2012 [22] | Stage I–IV, Stage I: 57.88%, Stage II: 36.62%, Stage III: 2.9%, Stage IV: 4.17% | NA | ER (70.85%), PR (62.71%) | 9% | NA | NA | NA | NA | NA |
Barron, 2014 [23] | Stage I–III, Stage I: 30.36%, Stage II: 54.83%, Stage III: 14.81%, Stage IV: 0% | Grade 1–3, Grade 1: 11.59%, Grade 2: 51.45%, Grade 3: 37.00% | ER (79.01%), PR (64.43%) | 20% | 49.07% | NA | NA | NA | NA |
Fraser, 2014 [24] | Stage I–IV, Stage I: 36.58%, Stage II: 42.88%, Stage III: 9.14%, Stage IV: 11.4% | Grade 1–3, Grade 1: 13.21%, Grade 2: 45.65%, Grade 3: 41.14% | ER (78.69%) | NA | 19.06% | 47.72% | 22.91% | 70.52% | 71.99% |
Holmes, 2014 [25] | Stage I–IV, Stage I: 52.3%, Stage II: 40.18%, Stage III: 5.71%, Stage IV: 1.81% | NA | NA | NA | NA | NA | NA | NA | NA |
Murray, 2014 [26] | Stage I–IV, Stage I: 64.26%, Stage II: 29.42%, Stage III: 4.68%, Stage IV: 1.64% | Grade 1–3, Grade 1: 16.8%, Grade 2: 35.67%, Grade 3: 47.53% | NA | NA | NA | 46.54% | 26.22% | NA | 83.13% |
Barron, 2015 [27] | Stage I–III, Stage I: 32.53%, Stage II: 52.25%, Stage III: 15.22%, Stage IV: 0% | Grade 1–3, Grade 1: 8.93%, Grade 2: 43.99%, Grade 3: 29.22% | ER (83.15%), PR (65.92%) | 16.80% | NA | NA | 42.49% | 73.99% | NA |
Cronin-Fenton, 2016 [28] | Stage I–III, Stage I: 37.91%, Stage II: 44.62%, Stage III: 17.47%, Stage IV: 0% | Grade 1–3, Grade 1: 32.19%, Grade 2: 43.91%, Grade 3: 23.90% | ER (79.4%) | NA | NA | 43.35% | 66.54% | 52.85% | 100% |
McMenamin, 2017 [29] | Stage I–IV, Stage I: 42.44%, Stage II: 40.8%, Stage III: 12.59%, Stage IV: 4.17% | Grade 1–3, Grade 1: 13.19%, Grade 2: 48.92%, Grade 3: 37.89% | ER (83.55%) | NA | NA | 36.79% | 35.85% | NA | 81.90% |
Shiao, 2017 [30] | Stage II–III, Stage II: 75.68%, Stage III: 24.32%, Stage IV: 0% | NA | 0% | NA | 46.12% | 80.18% | 91.44% | NA | 99.10% |
Frisk, 2018 [31] | Stage I–IV, Stage I: 56.93%, Stage II: 35.76%, Stage III: 4.49%, Stage IV: 2.82 | NA | ER (85.76%) | 13.19% | NA | 70.22% | 39.23% | 75.46% | NA |
Strasser-Weippl, 2018 [32] | NA | NA | HR (100%) | NA | 27.80% | 69.50% | 31.10% | NA | NA |
Williams, 2018 [33] | NA | Grade 1–3, Grade 1: 23.07%, Grade 2: 45.06%, Grade 3: 31.87% | HR (79.72%) | 34.79% | 41.02% | NA | NA | NA | NA |
Zhou, 2019 [34] | NA | Grade 1–3, Grade 1: 21.84%, Grade 2: 31.54%, Grade 3: 41.81% | HR (75.63%) | 16.71% | NA | 67.48% | 41.97% | 53.30% | 92.26% |
Li, 2020 [35] | NA | NA | NA | NA | NA | NA | NA | NA | NA |
McCarthy, 2020 [36] | Stage I–III, Stage I: 24.3%, Stage II: 52.19%, Stage III: 23.51%, Stage IV: 0% | Grade 1–3, Grade 1: 10.74%, Grade 2: 55.79%, Grade 3: 33.47% | HR (100%) | NA | NA | NA | 80.15% | NA | NA |
Johns, 2023 [37] | Stage II–III, Stage II: 38.6%, Stage III: 61.4%, Stage IV: 0% | NA | HR (63.4%) | 29.90% | 72.80% | NA | 100% | 62.48% | 100% |
Chen, 2024 [38] | Stage II–III, Stage II: 68.9%, Stage III: 31.1%, Stage IV: 0% | NA | HR (89%) | 0% | 89% | NA | NA | NA | 83.20% |
Variables | n | Coefficient | p-Value |
---|---|---|---|
Disease-Free Survival (DFS) | |||
Study Publication Year | 8 | 0.027 (−0.042 to 0.096) | 0.4379 |
Mean Age of Study Population | 6 | 0.031 (−0.013 to 0.075) | 0.1625 |
Proportion of Hormone Receptor-Positive | 8 | 0.005 (−0.006 to 0.015) | 0.3818 |
Proportion of HER2-Positive | 3 | −0.012 (−0.057 to 0.033) | 0.5958 |
Proportion of Postmenopausal Patients | 4 | 0.011 (−0.019 to 0.041) | 0.4737 |
Proportion of Stage I Breast Cancer | 6 | −0.001 (−0.017 to 0.014) | 0.8761 |
Overall Survival (OS) | |||
Study Publication Year | 18 | 0.027 (−0.022 to 0.075) | 0.2798 |
Mean Age of Study Population | 14 | 0.010 (−0.018 to 0.038) | 0.4904 |
Proportion of Hormone Receptor-Positive | 15 | 0.004 (−0.007 to 0.015) | 0.4308 |
Proportion of HER2-Positive | 7 | −0.011 (−0.046 to 0.024) | 0.5364 |
Proportion of Postmenopausal Patients | 5 | 0.010 (−0.025 to 0.046) | 0.5652 |
Proportion of Stage I Breast Cancer | 12 | 0.002 (−0.010 to 0.013) | 0.7540 |
Breast cancer-specific mortality | |||
Study Publication Year | 12 | 0.068 (−0.011 to 0.147) | 0.0906 |
Mean Age of Study Population | 9 | 0.023 (−0.011 to 0.057) | 0.1822 |
Proportion of Hormone Receptor-Positive | 9 | −0.009 (−0.040 to 0.021) | 0.5525 |
Proportion of HER2-Positive | 5 | 0.006 (−0.050 to 0.062) | 0.8310 |
Proportion of Postmenopausal Patients | 3 | −0.003 (−0.043 to 0.037) | 0.8786 |
Proportion of Stage I Breast Cancer | 9 | 0.000 (−0.022 to 0.022) | 0.9852 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, P.-H.; Yang, T.-L.; Jhou, H.-J.; Lee, H.-L.; Dai, M.-S. Post-Diagnostic Aspirin Use in Breast Cancer Treatment: A Systematic Review and Meta-Analysis of Survival Outcomes with Trial Sequential Analysis Validation. Diagnostics 2025, 15, 44. https://doi.org/10.3390/diagnostics15010044
Chen P-H, Yang T-L, Jhou H-J, Lee H-L, Dai M-S. Post-Diagnostic Aspirin Use in Breast Cancer Treatment: A Systematic Review and Meta-Analysis of Survival Outcomes with Trial Sequential Analysis Validation. Diagnostics. 2025; 15(1):44. https://doi.org/10.3390/diagnostics15010044
Chicago/Turabian StyleChen, Po-Huang, Tung-Lung Yang, Hong-Jie Jhou, Hsu-Lin Lee, and Ming-Shen Dai. 2025. "Post-Diagnostic Aspirin Use in Breast Cancer Treatment: A Systematic Review and Meta-Analysis of Survival Outcomes with Trial Sequential Analysis Validation" Diagnostics 15, no. 1: 44. https://doi.org/10.3390/diagnostics15010044
APA StyleChen, P.-H., Yang, T.-L., Jhou, H.-J., Lee, H.-L., & Dai, M.-S. (2025). Post-Diagnostic Aspirin Use in Breast Cancer Treatment: A Systematic Review and Meta-Analysis of Survival Outcomes with Trial Sequential Analysis Validation. Diagnostics, 15(1), 44. https://doi.org/10.3390/diagnostics15010044