Changing Etiological Spectrum of Premature Ovarian Insufficiency over the Past Decades: A Comparative Analysis of Two Cohorts from a Single Center
Abstract
1. Introduction
1.1. Genetic Causes of POI
1.2. Autoimmune POI
1.3. Infectious Causes
1.4. Toxic Causes
1.5. Metabolic Causes
1.6. Iatrogenic Etiology
1.7. Study Objective
2. Patients and Methods
2.1. Data Collection and Etiological Classification
- Genetic POI: Including cases with chromosomal abnormalities (e.g., Turner syndrome, triple X syndrome) or FMR1 premutation.
- Autoimmune POI: Defined by the presence of adrenal cortex antibodies (21OH-Ab), clinically confirmed Hashimoto’s thyroiditis with anti-TPO and/or anti-thyroglobulin (Tg) positivity, or other established autoimmune diseases (e.g., Addison’s disease, systemic lupus erythematosus, Graves’ disease). The classification of autoimmune POI cases in our study was based on the 2016 ESHRE guideline recommendations, which at that time supported the inclusion of thyroid autoimmunity in the diagnostic evaluation [52].
- Iatrogenic POI: Secondary to chemotherapy, radiotherapy, or surgical ovarian damage (e.g., oophorectomy, extensive cystectomy, adnexectomy).
- Idiopathic POI: No identifiable cause despite comprehensive evaluation.
2.2. Statistical Analysis
3. Results
3.1. Patient Characteristics and Prevalence of POI Etiologies in Group 1 (Contemporary Cohort)
3.2. Patient Characteristics and Prevalence of POI Etiologies in Group 2 (Historical Cohort)
3.3. Comparative Analysis of Group 1 (Contemporary Cohort) and Group 2 (Historical Cohort)
3.4. Detailed Comparative Analysis of Genetic, Autoimmune, and Iatrogenic Background of POI in the Two Cohorts
3.5. Reproductive Outcomes in the Two Groups
4. Discussion
4.1. How Can We Improve Outcomes in Women Diagnosed with POI, Particularly Those with Iatrogenic Etiology?
4.2. Factors Contributing to Increased Detection and Etiological Reclassification
4.3. Reproductive Outcome
4.4. Strengths and Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Panay, N.; Anderson, R.A.; Bennie, A.; Cedars, M.; Davies, M.; Ee, C.; Gravholt, C.H.; Kalantaridou, S.; Kallen, A.; Kim, K.Q.; et al. Evidence-based guideline: Premature ovarian insufficiency. Hum. Reprod. Open 2024, 2024, hoae065. [Google Scholar] [CrossRef]
- National Institute for Health and Care Excellence (NICE). Menopause: Diagnosis and management. In NICE Guideline [NG23]; National Institute for Health and Care Excellence: London, UK, 2015. [Google Scholar]
- Panay, N.; Anderson, R.A.; Nappi, R.E.; Vincent, A.J.; Vujovic, S.; Webber, L.; Wolfman, W. Premature ovarian insufficiency: An International Menopause Society White Paper. Climacteric 2020, 23, 426–446. [Google Scholar] [CrossRef] [PubMed]
- Golezar, S.; Ramezani Tehrani, F.; Khazaei, S.; Ebadi, A.; Keshavarz, Z. The global prevalence of primary ovarian insufficiency and early menopause: A meta-analysis. Climacteric 2019, 22, 403–411. [Google Scholar] [CrossRef]
- Li, M.; Zhu, Y.; Wei, J.; Chen, L.; Chen, S.; Lai, D. The global prevalence of premature ovarian insufficiency: A systematic review and meta-analysis. Climacteric 2023, 26, 95–102. [Google Scholar] [CrossRef] [PubMed]
- Behboudi-Gandevani, S.; Arntzen, E.C.; Normann, B.; Haugan, T.; Bidhendi-Yarandi, R. Cardiovascular Events Among Women with Premature Ovarian Insufficiency: A Systematic Review and Meta-Analysis. Rev. Cardiovasc. Med. 2023, 24, 193. [Google Scholar] [CrossRef]
- Ishizuka, B. Current Understanding of the Etiology, Symptomatology, and Treatment Options in Premature Ovarian Insufficiency (POI). Front. Endocrinol. 2021, 12, 626924. [Google Scholar] [CrossRef] [PubMed]
- Jiao, X.; Qin, C.; Li, J.; Qin, Y.; Gao, X.; Zhang, B.; Zhen, X.; Feng, Y.; Simpson, J.L.; Chen, Z.J. Cytogenetic analysis of 531 Chinese women with premature ovarian failure. Hum. Reprod. 2012, 27, 2201–2207. [Google Scholar] [CrossRef]
- Hook, E.B.; Warburton, D. Turner syndrome revisited: Review of new data supports the hypothesis that all viable 45,X cases are cryptic mosaics with a rescue cell line, implying an origin by mitotic loss. Hum. Genet. 2014, 133, 417–424. [Google Scholar] [CrossRef]
- Shankar Kikkeri, N.; Nagalli, S. Turner Syndrome. In StatPearls; Updated 8 August 2023 ed.; StatPearls Publishing: Treasure Island, FL, USA, 2023. [Google Scholar]
- Allen, E.G.; Charen, K.; Hipp, H.S.; Shubeck, L.; Amin, A.; He, W.; Nolin, S.L.; Glicksman, A.; Tortora, N.; McKinnon, B.; et al. Refining the risk for fragile X-associated primary ovarian insufficiency (FXPOI) by FMR1 CGG repeat size. Genet. Med. 2021, 23, 1648–1655. [Google Scholar] [CrossRef]
- Sherman, S.; Pletcher, B.A.; Driscoll, D.A. Fragile X syndrome: Diagnostic and carrier testing. Genet. Med. 2005, 7, 584–587. [Google Scholar] [CrossRef]
- Nolin, S.L.; Glicksman, A.; Tortora, N.; Allen, E.; Macpherson, J.; Mila, M.; Vianna-Morgante, A.M.; Sherman, S.L.; Dobkin, C.; Latham, G.J.; et al. Expansions and contractions of the FMR1 CGG repeat in 5,508 transmissions of normal, intermediate, and premutation alleles. Am. J. Med. Genet. A 2019, 179, 1148–1156. [Google Scholar] [CrossRef]
- Fink, D.A.; Nelson, L.M.; Pyeritz, R.; Johnson, J.; Sherman, S.L.; Cohen, Y.; Elizur, S.E. Fragile X Associated Primary Ovarian Insufficiency (FXPOI): Case Report and Literature Review. Front. Genet. 2018, 9, 529. [Google Scholar] [CrossRef] [PubMed]
- Nie, L.; Wang, X.; Wang, S.; Hong, Z.; Wang, M. Genetic insights into the complexity of premature ovarian insufficiency. Reprod. Biol. Endocrinol. 2024, 22, 94. [Google Scholar] [CrossRef] [PubMed]
- Franca, M.M.; Mendonca, B.B. Genetics of Primary Ovarian Insufficiency in the Next-Generation Sequencing Era. J. Endocr. Soc. 2020, 4, bvz037. [Google Scholar] [CrossRef]
- Qin, Y.; Jiao, X.; Simpson, J.L.; Chen, Z.J. Genetics of primary ovarian insufficiency: New developments and opportunities. Hum. Reprod. Update 2015, 21, 787–808. [Google Scholar] [CrossRef]
- Levit, E.; Singh, B.; Nylander, E.; Segars, J.H. A Systematic Review of Autoimmune Oophoritis Therapies. Reprod. Sci. 2024, 31, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Nelson, L.M. Clinical practice. Primary ovarian insufficiency. N. Engl. J. Med. 2009, 360, 606–614. [Google Scholar] [CrossRef]
- Wang, V.; Walsh, J.; Zell, J.; Verrilli, L.E.; Letourneau, J.; Johnstone, E.B.; Allen-Brady, K.; Welt, C.K. Autoimmune Disease is Increased in Women with Primary Ovarian Insufficiency. J. Clin. Endocrinol. Metab. 2024, 28, dgae828. [Google Scholar] [CrossRef]
- Hsieh, Y.T.; Ho, J.Y.P. Thyroid autoimmunity is associated with higher risk of premature ovarian insufficiency-a nationwide Health Insurance Research Database study. Hum. Reprod. 2021, 36, 1621–1629. [Google Scholar] [CrossRef]
- Beitl, K.; Ott, J.; Rosta, K.; Holzer, I.; Foessleitner, P.; Steininger, J.; Panay, N. Premature ovarian insufficiency and autoimmune profiles: A prospective case-control study. Climacteric 2024, 27, 187–192. [Google Scholar] [CrossRef]
- Lin, S.; Chen, S.; Zhang, Q. Factors influencing premature ovarian insufficiency: A systematic review and meta-analysis. J. Obstet. Gynaecol. 2025, 45, 2469331. [Google Scholar] [CrossRef] [PubMed]
- Chon, S.J.; Umair, Z.; Yoon, M.S. Premature Ovarian Insufficiency: Past, Present, and Future. Front. Cell Dev. Biol. 2021, 9, 672890. [Google Scholar] [CrossRef]
- Voros, C.; Mavrogianni, D.; Minaoglou, A.; Papahliou, A.M.; Topalis, V.; Varthaliti, A.; Mathiopoulos, D.; Kondili, P.; Darlas, M.; Pantou, A.; et al. Unveiling the Impact of COVID-19 on Ovarian Function and Premature Ovarian Insufficiency: A Systematic Review. Biomedicines 2025, 13, 407. [Google Scholar] [CrossRef]
- Swann, S.A.; King, E.M.; Tognazzini, S.; Campbell, A.R.; Levy, S.L.A.; Pick, N.; Prior, J.C.; Elwood, C.; Loutfy, M.; Nicholson, V.; et al. Age at Natural Menopause in Women Living with HIV: A Cross-Sectional Study Comparing Self-Reported and Biochemical Data. Viruses 2023, 15, 1058. [Google Scholar] [CrossRef] [PubMed]
- Pankiewicz, K.; Chotkowska, E.; Nowakowska, B.; Gos, M.; Issat, T. COVID-19-related premature ovarian insufficiency: Case report and literature review. Climacteric 2023, 26, 601–604. [Google Scholar] [CrossRef] [PubMed]
- Puca, E. Premature Ovarian Failure Related to SARS-CoV-2 Infection. J. Med. Cases 2022, 13, 155–158. [Google Scholar] [CrossRef]
- Wilkins, J.; Al-Inizi, S. Premature ovarian insufficiency secondary to COVID-19 infection: An original case report. Int. J. Gynaecol. Obstet. 2021, 154, 179–180. [Google Scholar] [CrossRef]
- Han, Y.; Dai, Y.; Wang, K.; Zhang, X.; Shao, Z.; Zhu, X. Post-pandemic insights on COVID-19 and premature ovarian insufficiency. Open Life Sci. 2025, 20, 20221028. [Google Scholar] [CrossRef]
- Vabre, P.; Gatimel, N.; Moreau, J.; Gayrard, V.; Picard-Hagen, N.; Parinaud, J.; Leandri, R.D. Environmental pollutants, a possible etiology for premature ovarian insufficiency: A narrative review of animal and human data. Environ. Health 2017, 16, 37. [Google Scholar] [CrossRef]
- Celar Sturm, D.; Virant-Klun, I. Negative effects of endocrine disruptor bisphenol A on ovarian granulosa cells and the protective role of folic acid. Reproduction 2023, 165, R117–R134. [Google Scholar] [CrossRef]
- Chen, D.; Kannan, K.; Tan, H.; Zheng, Z.; Feng, Y.L.; Wu, Y.; Widelka, M. Bisphenol Analogues Other Than BPA: Environmental Occurrence, Human Exposure, and Toxicity—A Review. Environ. Sci. Technol. 2016, 50, 5438–5453. [Google Scholar] [CrossRef] [PubMed]
- Peters, A.E.; Ford, E.A.; Roman, S.D.; Bromfield, E.G.; Nixon, B.; Pringle, K.G.; Sutherland, J.M. Impact of Bisphenol A and its alternatives on oocyte health: A scoping review. Hum. Reprod. Update 2024, 30, 653–691. [Google Scholar] [CrossRef]
- Reininger, N.; Oehlmann, J. Regrettable substitution? Comparative study of the effect profile of bisphenol A and eleven analogues in an in vitro test battery. Environ. Sci. Eur. 2024, 36, 76. [Google Scholar] [CrossRef]
- Rochester, J.R.; Bolden, A.L. Bisphenol S and F: A Systematic Review and Comparison of the Hormonal Activity of Bisphenol A Substitutes. Environ. Health Perspect. 2015, 123, 643–650. [Google Scholar] [CrossRef]
- Zhu, D.; Chung, H.F.; Pandeya, N.; Dobson, A.J.; Cade, J.E.; Greenwood, D.C.; Crawford, S.L.; Avis, N.E.; Gold, E.B.; Mitchell, E.S.; et al. Relationships between intensity, duration, cumulative dose, and timing of smoking with age at menopause: A pooled analysis of individual data from 17 observational studies. PLoS Med. 2018, 15, e1002704. [Google Scholar] [CrossRef]
- Hagen-Lillevik, S.; Rushing, J.S.; Appiah, L.; Longo, N.; Andrews, A.; Lai, K.; Johnson, J. Pathophysiology and management of classic galactosemic primary ovarian insufficiency. Reprod. Fertil. 2021, 2, R67–R84. [Google Scholar] [CrossRef]
- Banerjee, S.; Chakraborty, P.; Saha, P.; Bandyopadhyay, S.A.; Banerjee, S.; Kabir, S.N. Ovotoxic effects of galactose involve attenuation of follicle-stimulating hormone bioactivity and up-regulation of granulosa cell p53 expression. PLoS ONE 2012, 7, e30709. [Google Scholar] [CrossRef] [PubMed]
- Thakur, M.; Feldman, G.; Puscheck, E.E. Primary ovarian insufficiency in classic galactosemia: Current understanding and future research opportunities. J. Assist. Reprod. Genet. 2018, 35, 3–16. [Google Scholar] [CrossRef] [PubMed]
- Thakur, M.; Benages, C.A.; Feldman, G.; Puscheck, E.E. Primary ovarian insufficiency in classic galactosemia: Results of a cross-sectional study of female patients with classic galactosemia. Fertil. Steril. 2015, 104, e108. [Google Scholar] [CrossRef]
- Im, C.; Lu, Z.; Mostoufi-Moab, S.; Delaney, A.; Yu, L.; Baedke, J.L.; Han, Y.; Sapkota, Y.; Yasui, Y.; Chow, E.J.; et al. Development and validation of age-specific risk prediction models for primary ovarian insufficiency in long-term survivors of childhood cancer: A report from the Childhood Cancer Survivor Study and St Jude Lifetime Cohort. Lancet Oncol. 2023, 24, 1434–1442. [Google Scholar] [CrossRef]
- Li, Z.; Qi, H.; Li, Z.; Bao, Y.; Yang, K.; Min, Q. Research progress on the premature ovarian failure caused by cisplatin therapy. Front. Oncol. 2023, 13, 1276310. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Liu, Q.; Chang, M.; Pan, Y.; Yahaya, B.H.; Liu, Y.; Lin, J. Chemotherapy impairs ovarian function through excessive ROS-induced ferroptosis. Cell Death Dis. 2023, 14, 340. [Google Scholar] [CrossRef]
- Buonomo, B.; Multinu, F.; Casarin, J.; Betella, I.; Zanagnolo, V.; Aletti, G.; Peccatori, F. Ovarian transposition in patients with cervical cancer prior to pelvic radiotherapy: A systematic review. Int. J. Gynecol. Cancer 2021, 31, 360–370. [Google Scholar] [CrossRef] [PubMed]
- Goodman, L.R.; Goldberg, J.M.; Flyckt, R.L.; Gupta, M.; Harwalker, J.; Falcone, T. Effect of surgery on ovarian reserve in women with endometriomas, endometriosis and controls. Am. J. Obstet. Gynecol. 2016, 215, 589.e1–589.e6. [Google Scholar] [CrossRef] [PubMed]
- Younis, J.S.; Taylor, H.S. The impact of ovarian endometrioma and endometriotic cystectomy on anti-Mullerian hormone, and antral follicle count: A contemporary critical appraisal of systematic reviews. Front. Endocrinol. 2024, 15, 1397279. [Google Scholar] [CrossRef]
- Karadag, C.; Demircan, S.; Turgut, A.; Caliskan, E. Effects of laparoscopic cystectomy on ovarian reserve in patients with endometrioma and dermoid cyst. Turk. J. Obstet. Gynecol. 2020, 17, 15–20. [Google Scholar] [CrossRef]
- Chung, H.F.; Hayashi, K.; Dobson, A.J.; Sandin, S.; Ideno, Y.; Hardy, R.; Weiderpass, E.; Mishra, G.D. Association between endometriosis and type and age of menopause: A pooled analysis of 279 948 women from five cohort studies. Hum. Reprod. 2025, 40, 1210–1219. [Google Scholar] [CrossRef]
- Molnár, Z.J.K. A korai ovariumelégtelenség előfordulása a Debreceni Egyetem Orvos-és Egészségtudományi Centrum Női Klinikáján 1978 és 2003 között. Magy. Nőorvosok Lapja 2004, 67, 269–274. [Google Scholar]
- Anasti, J.N. Premature ovarian failure: An update. Fertil. Steril. 1998, 70, 1–15. [Google Scholar] [CrossRef]
- European Society for Human Reproduction and Embryology Guideline Group on POI; Webber, L.; Davies, M.; Anderson, R.; Bartlett, J.; Braat, D.; Cartwright, B.; Cifkova, R.; de Muinck Keizer-Schrama, S.; Hogervorst, E.; et al. ESHRE Guideline: Management of women with premature ovarian insufficiency. Hum. Reprod. 2016, 31, 926–937. [Google Scholar] [CrossRef]
- Perktold, S.S.J. Statsmodels: Econometric and Statistical Modeling with Python. In Proceedings of the 9th Python in Science Conference, Austin, TX, USA, 28 June–3 July 2010; pp. 92–96. [Google Scholar]
- Cloke, B.; Rymer, J. Premature ovarian insufficiency—The need for a genomic map. Climacteric 2021, 24, 444–452. [Google Scholar] [CrossRef]
- Silven, H.; Savukoski, S.M.; Pesonen, P.; Pukkala, E.; Gissler, M.; Suvanto, E.; Niinimaki, M. Incidence and familial risk of premature ovarian insufficiency in the Finnish female population. Hum. Reprod. 2022, 37, 1030–1036. [Google Scholar] [CrossRef] [PubMed]
- Verrilli, L.; Johnstone, E.; Welt, C.; Allen-Brady, K. Primary ovarian insufficiency has strong familiality: Results of a multigenerational genealogical study. Fertil. Steril. 2023, 119, 128–134. [Google Scholar] [CrossRef]
- Federici, S.; Rossetti, R.; Moleri, S.; Munari, E.V.; Frixou, M.; Bonomi, M.; Persani, L. Primary ovarian insufficiency: Update on clinical and genetic findings. Front. Endocrinol. 2024, 15, 1464803. [Google Scholar] [CrossRef] [PubMed]
- van Kasteren, Y.M.; Hundscheid, R.D.; Smits, A.P.; Cremers, F.P.; van Zonneveld, P.; Braat, D.D. Familial idiopathic premature ovarian failure: An overrated and underestimated genetic disease? Hum. Reprod. 1999, 14, 2455–2459. [Google Scholar] [CrossRef] [PubMed]
- Vegetti, W.; Grazia Tibiletti, M.; Testa, G.; de Lauretis, Y.; Alagna, F.; Castoldi, E.; Taborelli, M.; Motta, T.; Bolis, P.F.; Dalpra, L.; et al. Inheritance in idiopathic premature ovarian failure: Analysis of 71 cases. Hum. Reprod. 1998, 13, 1796–1800. [Google Scholar] [CrossRef]
- Savukoski, S.M.; Silven, H.; Pesonen, P.; Pukkala, E.; Gissler, M.; Suvanto, E.; Ollila, M.M.; Niinimaki, M. Excess of severe autoimmune diseases in women with premature ovarian insufficiency: A population-based study. Hum. Reprod. 2024, 39, 2601–2607. [Google Scholar] [CrossRef]
- Vogt, E.C.; Breivik, L.; Royrvik, E.C.; Grytaas, M.; Husebye, E.S.; Oksnes, M. Primary Ovarian Insufficiency in Women With Addison’s Disease. J. Clin. Endocrinol. Metab. 2021, 106, e2656–e2663. [Google Scholar] [CrossRef]
- Shuai, L.; She, J.; Diao, R.; Zhao, H.; Liu, X.; Hu, Q.; Li, D.; Su, D.; Ye, X.; Guo, Y.; et al. Hydroxychloroquine protects against autoimmune premature ovarian insufficiency by modulating the Treg/Th17 cell ratio in BALB/c mice. Am. J. Reprod. Immunol. 2023, 89, e13686. [Google Scholar] [CrossRef]
- Flatt, S.B.; Baillargeon, A.; McClintock, C.; Pudwell, J.; Velez, M.P. Premature ovarian insufficiency in female adolescent and young adult survivors of non-gynecological cancers: A population-based cohort study. Reprod. Health 2023, 20, 4. [Google Scholar] [CrossRef]
- Chen, N.; Audi Blotta, D.; Kim, H.J.; Sayeed, S.; Cannon, J.; Osman, N.; Macrito, R.; Lambertini, M. Efficacy of goserelin in ovarian function suppression and preservation for pre- and perimenopausal breast cancer patients: A systematic review. Ther. Adv. Med. Oncol. 2025, 17, 17588359251319696. [Google Scholar] [CrossRef] [PubMed]
- Chung, E.H.; Acharya, C.R.; Harris, B.S.; Acharya, K.S. Development of a fertility risk calculator to predict individualized chance of ovarian failure after chemotherapy. J. Assist. Reprod. Genet. 2021, 38, 3047–3055. [Google Scholar] [CrossRef] [PubMed]
- Laios, A.; Otify, M.; Papadopoulou, A.; Gallos, I.D.; Ind, T. Outcomes of ovarian transposition in cervical cancer; an updated meta-analysis. BMC Womens Health 2022, 22, 305. [Google Scholar] [CrossRef]
- Baracat, C.M.F.; Abdalla-Ribeiro, H.S.A.; Araujo, R.; Bernando, W.M.; Ribeiro, P.A. The Impact on Ovarian Reserve of Different Hemostasis Methods in Laparoscopic Cystectomy: A Systematic Review and Meta-analysis. Rev. Bras. Ginecol. Obstet. 2019, 41, 400–408. [Google Scholar] [CrossRef]
- Park, S.J.; Seol, A.; Lee, N.; Lee, S.; Kim, H.S.; Group, P.S. A randomized controlled trial of ovarian reserve preservation and hemostasis during ovarian cystectomy. Sci. Rep. 2021, 11, 8495. [Google Scholar] [CrossRef] [PubMed]
- Wu, Q.; Yang, Q.; Lin, Y.; Wu, L.; Lin, T. The optimal time for laparoscopic excision of ovarian endometrioma: A prospective randomized controlled trial. Reprod. Biol. Endocrinol. 2023, 21, 59. [Google Scholar] [CrossRef]
- Cho, H.Y.; Kyung, M.S. Comparison of Postoperative Ovarian Reserve Function Following Laparoscopic Hysterectomy and Laparoscopic Myomectomy: A Prospective Comparative Pilot Study. J. Clin. Med. 2021, 10, 3077. [Google Scholar] [CrossRef]
- Iyer, T.K.; Manson, J.E. Hysterectomy with or without ovarian conservation: Similar associations with vascular health? Menopause 2023, 30, 687–689. [Google Scholar] [CrossRef]
- Bertozzi, S.; Londero, A.P.; Xholli, A.; Azioni, G.; Di Vora, R.; Paudice, M.; Bucimazza, I.; Cedolini, C.; Cagnacci, A. Risk-Reducing Breast and Gynecological Surgery for BRCA Mutation Carriers: A Narrative Review. J. Clin. Med. 2023, 12, 1422. [Google Scholar] [CrossRef]
- Huang, Q.Y.; Chen, S.R.; Chen, J.M.; Shi, Q.Y.; Lin, S. Therapeutic options for premature ovarian insufficiency: An updated review. Reprod. Biol. Endocrinol. 2022, 20, 28. [Google Scholar] [CrossRef]
- Ishizuka, B.; Furuya, M.; Kimura, M.; Kamioka, E.; Kawamura, K. Live Birth Rate in Patients With Premature Ovarian Insufficiency During Long-Term Follow-Up Under Hormone Replacement With or Without Ovarian Stimulation. Front. Endocrinol. 2021, 12, 795724. [Google Scholar] [CrossRef] [PubMed]
- Cambray, S.; Dubreuil, S.; Tejedor, I.; Dulon, J.; Touraine, P. Family building after diagnosis of premature ovarian insufficiency: A cross-sectional survey in 324 women. Eur. J. Endocrinol. 2023, 188, 282–289. [Google Scholar] [CrossRef] [PubMed]
All POI Patients (n = 111) | Genetic POI (n = 11) | Autoimmune POI (n = 21) | Iatrogenic POI (n = 38) | Idiopathic POI (n = 41) | |
---|---|---|---|---|---|
Age at diagnosis (years ± SD) | 32.85 ± 8.81 | 19.7 ± 7.33 | 31.55 ± 29.16 | 35.11 ± 8.49 | 34.96 ± 6.44 |
BMI (kg/m2 ± SD) | 25.5 ± 5.82 | 24.42 ± 8.13 | 25.37 ± 3.67 | 26.01 ± 6.48 | 25.33 ± 5.54 |
FSH (IU/L ± SD) | 83.66 ± 42.25 | 66.66 ± 22.13 | 70.05 ± 29.16 | 93.92 ± 44.73 | 87.37 ± 47.75 |
LH (IU/L ± SD) | 44.75 ± 18.77 | 35.8 ± 11.26 | 41.94 ± 17.3 | 49.03 ± 19.99 | 45.28 ± 19.65 |
E2 (ng/L ± SD) | 26.35 ± 35.91 | 30.15 ± 37.55 | 32.7 ± 36.95 | 12.52 ± 16.16 | 33.88 ± 44.16 |
TSH (mIU/L ± SD) | 2 ± 1.5 | 1.5 ± 0.56 | 2.04 ± 1.42 | 2.18 ± 2.11 | 1.96 ± 0.97 |
PRL (μg/L ± SD) | 10.55 ± 6.1 | 12.27 ± 9.4 | 9.65 ± 5.25 | 11.98 ± 7.69 | 9.7 ± 4.74 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Csehely, S.; Kun, A.; Orbán, E.; Katona, T.; Orosz, M.; Krasznai, Z.T.; Deli, T.; Jakab, A. Changing Etiological Spectrum of Premature Ovarian Insufficiency over the Past Decades: A Comparative Analysis of Two Cohorts from a Single Center. Diagnostics 2025, 15, 1724. https://doi.org/10.3390/diagnostics15131724
Csehely S, Kun A, Orbán E, Katona T, Orosz M, Krasznai ZT, Deli T, Jakab A. Changing Etiological Spectrum of Premature Ovarian Insufficiency over the Past Decades: A Comparative Analysis of Two Cohorts from a Single Center. Diagnostics. 2025; 15(13):1724. https://doi.org/10.3390/diagnostics15131724
Chicago/Turabian StyleCsehely, Szilvia, Adrienn Kun, Edina Orbán, Tamás Katona, Mónika Orosz, Zoárd Tibor Krasznai, Tamás Deli, and Attila Jakab. 2025. "Changing Etiological Spectrum of Premature Ovarian Insufficiency over the Past Decades: A Comparative Analysis of Two Cohorts from a Single Center" Diagnostics 15, no. 13: 1724. https://doi.org/10.3390/diagnostics15131724
APA StyleCsehely, S., Kun, A., Orbán, E., Katona, T., Orosz, M., Krasznai, Z. T., Deli, T., & Jakab, A. (2025). Changing Etiological Spectrum of Premature Ovarian Insufficiency over the Past Decades: A Comparative Analysis of Two Cohorts from a Single Center. Diagnostics, 15(13), 1724. https://doi.org/10.3390/diagnostics15131724