How Accurately Can Urologists Predict Eligible Patients for Immediate Postoperative Intravesical Chemotherapy in Bladder Cancer?
Abstract
1. Introduction
2. Materials and Methods
- Age ≥ 18 years.
- Newly diagnosed bladder mass detected by imaging studies or cystoscopy.
- No prior history of bladder cancer.
- Ability to provide informed consent.
- Previous history of bladder cancer or bladder cancer treatment.
- Recurrent bladder tumors.
- Patients with incomplete clinical records or missing follow-up information.
- Patients unable or unwilling to provide informed consent.
- Pregnancy.
- Presence of acute urinary tract infection at the time of evaluation.
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
NMIBC | Non-Muscle-Invasive Bladder Cancer |
MIBC | Muscle-Invasive Bladder Cancer |
SI | Single, Immediate postoperative intravesical chemotherapy |
CIS | Carcinoma In Situ |
TUR | Transurethral Resection |
EAU | European Association of Urology |
EORTC | European Organisation for Research and Treatment of Cancer |
CUETO | Spanish Urological Club for Oncological Treatment |
WHO | World Health Organization |
VI-RADS | Vesical Imaging-Reporting and Data System |
CT | Computed Tomography |
MRI | Magnetic Resonance Imaging |
AI | Artificial Intelligence |
CDSS | Clinical Decision Support System |
References
- Bray, F.; Laversanne, M.; Sung, H.; Ferlay, J.; Siegel, R.L.; Soerjomataram, I.; Jemal, A. Global Cancer Statistics 2022: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2024, 74, 229–263. [Google Scholar] [CrossRef] [PubMed]
- Gontero, P.; Birtle, A.; Compérat, E.; Dominguez Escrig, J.L.; Liedberg, F.; Mariappan, P.; Masson-Lecomte, A.; van Rhijn, B.W.G.; Seisen, T.; Shariat, S.F.; et al. EAU Guidelines on Non–Muscle-Invasive Bladder Cancer (Ta, T1 and CIS). Clinical Practice Guideline; European Association of Urology Guidelines Office: Arnhem, The Netherlands, 2025; ISBN 978-94-92671-29-5. [Google Scholar]
- Sylvester, R.J.; Oosterlinck, W.; Holmang, S.; Sydes, M.R.; Birtle, A.; Gudjonsson, S.; De Nunzio, C.; Okamura, K.; Kaasinen, E.; Oddens, J.R.; et al. Systematic Review and Individual Patient Data Meta-Analysis of Randomized Trials Comparing a Single Immediate Instillation of Chemotherapy After Transurethral Resection with Transurethral Resection Alone in Patients with Stage PTa-PT1 Urothelial Carcinom. Eur. Urol. 2016, 69, 231–244. [Google Scholar] [CrossRef] [PubMed]
- Holzbeierlein, J.; Bixler, B.R.; Buckley, D.I.; Chang, S.S.; Holmes, R.S.; James, A.C.; Kirkby, E.; McKiernan, J.M.; Schuckman, A. Treatment of Non-Metastatic Muscle-Invasive Bladder Cancer: AUA/ASCO/SUO Guideline (2017; Amended 2020, 2024). J. Urol. 2024, 212, 3–10. [Google Scholar] [CrossRef] [PubMed]
- Sylvester, R.J.; van der Meijden, A.P.M.; Oosterlinck, W.; Witjes, J.A.; Bouffioux, C.; Denis, L.; Newling, D.W.W.; Kurth, K. Predicting Recurrence and Progression in Individual Patients with Stage Ta T1 Bladder Cancer Using EORTC Risk Tables: A Combined Analysis of 2596 Patients from Seven EORTC Trials. Eur. Urol. 2006, 49, 466–467. [Google Scholar] [CrossRef] [PubMed]
- Fernandez-Gomez, J.; Madero, R.; Solsona, E.; Unda, M.; Martinez-Piñeiro, L.; Gonzalez, M.; Portillo, J.; Ojea, A.; Pertusa, C.; Rodriguez-Molina, J.; et al. Predicting Non- Muscle Invasive Bladder Cancer Recurrence and Progression in Patients Treated with Bacillus Calmette-Guerin: The CUETO Scoring Model. J. Urol. 2009, 182, 2195–2203. [Google Scholar] [CrossRef] [PubMed]
- Naito, S.; Algaba, F.; Babjuk, M.; Bryan, R.T.; Sun, Y.H.; Valiquette, L.; de la Rosette, J. The Clinical Research Office of the Endourological Society (CROES) Multicentre Randomised Trial of Narrow Band Imaging–Assisted Transurethral Resection of Bladder Tumour (TURBT) Versus Conventional White Light Imaging-Assisted TURBT in Primary Non-Muscle-Invasive Bladder Cancer Patients: Trial Protocol and 1-Year Results. Eur. Urol. 2016, 70, 506–515. [Google Scholar] [CrossRef] [PubMed]
- Panebianco, V.; Narumi, Y.; Altun, E.; Bochner, B.H.; Efstathiou, J.A.; Hafeez, S.; Huddart, R.; Kennish, S.; Lerner, S.; Montironi, R.; et al. Multiparametric Magnetic Resonance Imaging for Bladder Cancer: Development of VI-RADS (Vesical Imaging-Reporting And Data System). Eur. Urol. 2018, 74, 294–306. [Google Scholar] [CrossRef] [PubMed]
- van Straten, C.G.J.I.; Bruins, M.H.; Dijkstra, S.; Cornel, E.B.; Kortleve, M.D.H.; de Vocht, T.F.; Kiemeney, L.A.L.M.; van der Heijden, A.G. The Accuracy of Cystoscopy in Predicting Muscle Invasion in Newly Diagnosed Bladder Cancer Patients. World J. Urol. 2023, 41, 1829–1835. [Google Scholar] [CrossRef] [PubMed]
- Guldhammer, C.S.; Vásquez, J.L.; Kristensen, V.M.; Norus, T.; Nadler, N.; Jensen, J.B.; Azawi, N. Cystoscopy Accuracy in Detecting Bladder Tumors: A Prospective Video-Confirmed Study. Cancers 2024, 16, 160. [Google Scholar] [CrossRef] [PubMed]
- Mutaguchi, J.; Morooka, K.; Kobayashi, S.; Umehara, A.; Miyauchi, S.; Kinoshita, F.; Inokuchi, J.; Oda, Y.; Kurazume, R.; Eto, M. Artificial Intelligence for Segmentation of Bladder Tumor Cystoscopic Images Performed by U-Net with Dilated Convolution. J. Endourol. 2022, 36, 827–834. [Google Scholar] [CrossRef] [PubMed]
- Yoo, J.W.; Koo, K.C.; Chung, B.H.; Baek, S.Y.; Lee, S.J.; Park, K.H.; Lee, K.S. Deep Learning Diagnostics for Bladder Tumor Identification and Grade Prediction Using RGB Method. Sci. Rep. 2022, 12, 17699. [Google Scholar] [CrossRef] [PubMed]
- Wu, S.; Chen, X.; Pan, J.; Dong, W.; Diao, X.; Zhang, R.; Zhang, Y.; Zhang, Y.; Qian, G.; Chen, H.; et al. An Artificial Intelligence System for the Detection of Bladder Cancer via Cystoscopy: A Multicenter Diagnostic Study. J. Natl. Cancer Inst. 2022, 114, 220–227. [Google Scholar] [CrossRef] [PubMed]
- Shkolyar, E.; Jia, X.; Chang, T.C.; Trivedi, D.; Mach, K.E.; Meng, M.Q.H.; Xing, L.; Liao, J.C. Augmented Bladder Tumor Detection Using Deep Learning. Eur. Urol. 2019, 76, 714–718. [Google Scholar] [CrossRef] [PubMed]
- Perlis, N.; Zlotta, A.R.; Beyene, J.; Finelli, A.; Fleshner, N.E.; Kulkarni, G.S. Immediate Post-Transurethral Resection of Bladder Tumor Intravesical Chemotherapy Prevents Non-Muscle-Invasive Bladder Cancer Recurrences: An Updated Meta-Analysis on 2548 Patients and Quality-of-Evidence Review. Eur. Urol. 2013, 64, 421–430. [Google Scholar] [CrossRef] [PubMed]
- Rieken, M.; Shariat, S.F.; Kluth, L.; Crivelli, J.J.; Abufaraj, M.; Foerster, B.; Mari, A.; Ilijazi, D.; Karakiewicz, P.I.; Babjuk, M.; et al. Comparison of the EORTC Tables and the EAU Categories for Risk Stratification of Patients with Nonmuscle-Invasive Bladder Cancer. Urol. Oncol. Semin. Orig. Investig. 2018, 36, 8.e17–8.e24. [Google Scholar] [CrossRef] [PubMed]
- Brierley, J.D.; Gospodarowicz, M.K.; Wittekind, C. TNM Classification of Malignant Tumours, 8th ed.; Union for International Cancer Control: Geneva, Switzerland, 2017. [Google Scholar]
- Moch, H.; Humphrey, P.A.; Ulbright, T.M.; Reuter, V.E. WHO Classification of Tumours of the Urinary System and Male Genital Organs; World Health Organ. Classifcation Tumours: Geneva, Switzerland, 2016. [Google Scholar]
- Cohen, J. A Coefficient of Agreement for Nominal Scales. Educ. Psychol. Meas. 1960, 20, 37–46. [Google Scholar] [CrossRef]
- Bujang, M.A.; Baharum, N. A Simplified Guide to Determination of Sample Size Requirements for Estimating the Value of Intraclass Correlation Coefficient: A Review. Arch. Orofac. Sci. 2017, 12, 532–553. [Google Scholar]
- Abern, M.R.; Owusu, R.A.; Anderson, M.R.; Rampersaud, E.N.; Inman, B.A. Perioperative Intravesical Chemotherapy in Non-Muscle-Invasive Bladder Cancer: A Systematic Review and Meta-Analysis. J. Natl. Compr. Cancr Netw. 2013, 11, 477–484. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Cina, S.J.; Epstein, J.I.; Endrizzi, J.M.; Harmon, W.J.; Seay, T.M.; Schoenberg, M.P. Correlation of Cystoscopic Impression with Histologic Diagnosis of Biopsy Specimens of the Bladder. Hum. Pathol. 2001, 32, 630–637. [Google Scholar] [CrossRef] [PubMed]
- Mitropoulos, D.; Kiroudi-Voulgari, A.; Nikolopoulos, P.; Manousakas, T.; Zervas, A. Accuracy of Cystoscopy in Predicting Histologic Features of Bladder Lesions. J. Endourol. 2005, 19, 861–864. [Google Scholar] [CrossRef] [PubMed]
- Steffens, S.; Schrader, A.J.; Lehmann, R.; Eggers, H.; Ising, S.; Pfister, D.; Riechert-Mühe, N.; Leitenberger, A.; Heidenreich, A.; Thon, W.; et al. Blickdiagnose Bei Der Transurethralen Resektion von Harnblasentumoren. Die Urol. 2014, 53, 1639–1643. [Google Scholar] [CrossRef] [PubMed]
- Herr, H.W.; Donat, S.M.; Dalbagni, G. Correlation of Cystoscopy with Histology of Recurrent Papillary Tumors of the Bladder. J. Urol. 2002, 168, 978–980. [Google Scholar] [CrossRef] [PubMed]
- During, V.A.; Sole, G.M.; Jha, A.K.; Anderson, J.A.; Bryan, R.T. Prediction of Histological Stage Based on Cytoscopic Appearances of Newly Diagnosed Bladder Tumours. Ann. R. Coll. Surg. Engl. 2016, 98, 547–551. [Google Scholar] [CrossRef] [PubMed]
- Mariappan, P.; Lavin, V.; Phua, C.Q.; Khan, S.A.A.; Donat, R.; Smith, G. Predicting Grade and Stage at Cystoscopy in Newly Presenting Bladder Cancers—A Prospective Double-Blind Clinical Study. J. Urol. 2017, 109, 134–139. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Qiu, Z.; Cao, K.; Deng, L.; Zhang, W.; Xie, C.; Yang, S.; Yue, P.; Zhong, J.; Lyu, J.; et al. Predicting Muscle Invasion in Bladder Cancer Based on MRI: A Comparison of Radiomics, and Single-Task and Multi-Task Deep Learning. Comput. Methods Programs Biomed. 2023, 233, 107466. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Wang, Y.; Xu, X.; Zhang, J.; Sun, Y.; Hu, M.; Wang, S.; Li, Y.; Chen, Y.; Zhao, X. Bladder MRI with Deep Learning-Based Reconstruction: A Prospective Evaluation of Muscle Invasiveness Using VI-RADS. Abdom. Radiol. 2024, 49, 1615–1625. [Google Scholar] [CrossRef] [PubMed]
- Laurie, M.A.; Zhou, S.R.; Islam, M.T.; Shkolyar, E.; Xing, L.; Liao, J.C. Bladder Cancer and Artificial Intelligence: Emerging Applications. Urol. Clin. N. Am. 2024, 51, 63–75. [Google Scholar] [CrossRef] [PubMed]
- Klarenbeek, S.E.; Weekenstroo, H.H.A.; Sedelaar, J.P.M.; Fütterer, J.J.; Prokop, M.; Tummers, M. The Effect of Higher Level Computerized Clinical Decision Support Systems on Oncology Care: A Systematic Review. Cancers 2020, 12, 1032. [Google Scholar] [CrossRef] [PubMed]
- Sutton, R.T.; Pincock, D.; Baumgart, D.C.; Sadowski, D.C.; Fedorak, R.N.; Kroeker, K.I. An Overview of Clinical Decision Support Systems: Benefits, Risks, and Strategies for Success. npj Digit. Med. 2020, 3, 17. [Google Scholar] [CrossRef] [PubMed]
- Dahmen, A.; Nusbaum, D.J.; Lazarovich, A.; Fialkoff, J.F.; Modi, P.K.; Agarwal, P.K. Trends in the the Use of Immediate Postoperative Intravesical Chemotherapy Following TURBT. Eur. Urol. 2024, 85, 62.e7–62.e13. [Google Scholar] [CrossRef]
- Değer, M.D.; Çelik, S.; Yıldız, A.; Sarı, H.; Yılmaz, B.; Bozkurt, O.; Tuna, B.; Yörükoğlu, K.; Aslan, G. Can We Perform Frozen Section Instead of Repeat Transurethral Resection in Bladder Cancer? Urol. Oncol. Semin. Orig. Investig. 2020, 39, 237.e15–237.e20. [Google Scholar] [CrossRef] [PubMed]
- Cumberbatch, M.G.K.; Foerster, B.; Catto, J.W.F.; Kamat, A.M.; Kassouf, W.; Jubber, I.; Shariat, S.F.; Sylvester, R.J.; Gontero, P. Repeat Transurethral Resection in Non-Muscle-Invasive Bladder Cancer: A Systematic Review. Eur. Urol. 2018, 73, 925–933. [Google Scholar] [CrossRef] [PubMed]
Characteristics | Values |
---|---|
Total patients | 104 |
Mean age (years ± SD) | 67.6 ± 10.7 |
Male, n (%) | 88 (84.6%) |
Female, n (%) | 16 (15.4%) |
Pathological stage, n (%) Ta T1 T2 (MIBC) | 44 (42.3%) 44 (42.3%) 16 (15.4%) |
Pathological grade, n (%) Low grade High grade | 45 (43.2%) 59 (56.7%) |
Carcinoma in situ (CIS), n (%) Present Absent | 20 (19.2%) 84 (80.8%) |
Pathological Stage | |||||||
Ta (29) | T1 (32) | T2 (11) | |||||
Predicted Stage | Ta (22) | 19 | 3 | 0 | |||
T1 (31) | 10 | 16 | 5 | ||||
T2 (19) | 0 | 13 | 6 | ||||
Kappa 0.333 (0.115–0.551 CI 95%) (fair correlation) | |||||||
Pathological Grade | |||||||
Low-Grade (31) | High-Grade (41) | ||||||
Predicted Stage | Low-Grade (21) | 18 | 3 | ||||
High-Grade (51) | 13 | 38 | |||||
Kappa 0.528 (0.332–0.724 CI 95%) (moderate correlation) | |||||||
Pathological CIS | |||||||
Positive (14) | Negative (58) | ||||||
Predicted CIS | Positive (11) | 4 | 7 | ||||
Negative (61) | 10 | 51 | |||||
Kappa 0.180 (−0.047–0.407 CI 95%) (poor correlation) |
Pathological Stage | |||||||
Ta (44) | T1 (44) | T2 (16) | |||||
Predicted Stage | Ta (33) | 29 | 4 | 0 | |||
T1 (43) | 13 | 24 | 6 | ||||
T2 (28) | 2 | 16 | 10 | ||||
Kappa 0.393 (0.216–0.570 CI 95%) (fair correlation) | |||||||
Pathological Grade | |||||||
Low-Grade (45) | High-Grade (59) | ||||||
Predicted Stage | Low-Grade (32) | 28 | 4 | ||||
High-Grade (72) | 17 | 55 | |||||
Kappa 0.574 (0.417–0.731 CI 95%) (moderate correlation) | |||||||
Pathological CIS | |||||||
Positive (20) | Negative (84) | ||||||
Predicted CIS | Positive (18) | 7 | 11 | ||||
Negative (86) | 13 | 73 | |||||
Kappa 0.228 (0.041–0.415 CI 95%) (fair correlation) |
Specialists | Residents | |||
---|---|---|---|---|
PPV (95% CI) | NPV (95% CI) | PPV (95% CI) | NPV (95% CI) | |
Ta | 86.36% (67.33–95.11%) | 80% (70.64–86.93%) | 87.88% (73.32–95.03%) | 78.87% (71.11–84.99%) |
T1 | 51.61% (38.59–64.42%) | 60.98% (50.62–70.43%) | 55.81% (44.38–66.66%) | 67.21% (58.69–74.73%) |
T2 (MIBC) | 31.58% (18.29–48.76%) | 90.57% (83.22–94.89%) | 35.71% (24.09–49.31%) | 92.11% (86–95.68%) |
Ta/T1 (NMIBC) | 90.57% (83.22–94.89%) | 31.58% (18.29–48.76%) | 92.11% (86.00–95.68%) | 35.71% (24.09–49.31%) |
High Grade | 74.51% (65.69–81.69%) | 85.71% (65.97–94.89%) | 76.39% (68.85–82.57%) | 87.5% (72.57–94.88%) |
Low Grade | 85.71% (65.97–94.89%) | 74.51% (65.69–81.69%) | 87.50% (72.57–94.88%) | 76.39% (68.85–82.57%) |
CIS | 36.36% (16.24–62.75%) | 83.61% (78.32–87.8%) | 38.89% (22.02–58.92%) | 84.88% (80.11–88.67%) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yıldız, H.A.; Değer, M.D.; Aslan, G. How Accurately Can Urologists Predict Eligible Patients for Immediate Postoperative Intravesical Chemotherapy in Bladder Cancer? Diagnostics 2025, 15, 1856. https://doi.org/10.3390/diagnostics15151856
Yıldız HA, Değer MD, Aslan G. How Accurately Can Urologists Predict Eligible Patients for Immediate Postoperative Intravesical Chemotherapy in Bladder Cancer? Diagnostics. 2025; 15(15):1856. https://doi.org/10.3390/diagnostics15151856
Chicago/Turabian StyleYıldız, Hüseyin Alperen, Müslim Doğan Değer, and Güven Aslan. 2025. "How Accurately Can Urologists Predict Eligible Patients for Immediate Postoperative Intravesical Chemotherapy in Bladder Cancer?" Diagnostics 15, no. 15: 1856. https://doi.org/10.3390/diagnostics15151856
APA StyleYıldız, H. A., Değer, M. D., & Aslan, G. (2025). How Accurately Can Urologists Predict Eligible Patients for Immediate Postoperative Intravesical Chemotherapy in Bladder Cancer? Diagnostics, 15(15), 1856. https://doi.org/10.3390/diagnostics15151856