Influence of Graft Type on Muscle Contractile Dynamics After ACL Reconstruction: A 9-Month Tensiomyographic Follow-Up
Abstract
1. Introduction
2. Methods
2.1. Study Design
2.2. Participants
2.3. Graft Types
2.4. Instrumentation and Measurements
2.5. Procedures
2.6. Outcome Measures
2.7. Statistical Analysis
3. Results
3.1. Participant Characteristics
3.2. Contraction Time (Tc)
- Rectus femoris (Figure 1A)
- Vastus Medialis (Figure 1B)
- Vastus Lateralis (Figure 1C)
- Biceps Femoris (Figure 1D)
3.3. Maximal Displacement (Dm)
- Rectus femoris (Figure 2A)
- Vastus Medialis (Figure 2B)
- Vastus Lateralis (Figure 2C)
- Biceps Femoris (Figure 2D)
4. Discussion
5. Limitations
6. Clinical Implications
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chia, L.; De Oliveira Silva, D.; Whalan, M.; McKay, M.J.; Sullivan, J.; Fuller, C.W.; Pappas, E. Non-Contact Anterior Cruciate Ligament Injury Epidemiology in Team-Ball Sports: A Systematic Review with Meta-Analysis by Sex, Age, Sport, Participation Level, and Exposure Type. Sports Med. 2022, 52, 2447–2467. [Google Scholar] [CrossRef]
- Granan, L.-P.; Inacio, M.C.S.; Maletis, G.B.; Funahashi, T.T.; Engebretsen, L. Sport-Specific Injury Pattern Recorded During Anterior Cruciate Ligament Reconstruction. Am. J. Sports Med. 2013, 41, 2814–2818. [Google Scholar] [CrossRef] [PubMed]
- Forelli, F.; Le Coroller, N.; Gaspar, M.; Memain, G.; Kakavas, G.; Miraglia, N.; Marine, P.; Maille, P.; Hewett, T.E.; Rambaud, A.J. Ecological and Specific Evidence-Based Safe Return To Play After Anter Ior Cruciate Ligament Reconstruction In Soccer Players: A New Internat Ional Paradigm. Int. J. Sports Phys. Ther. 2023, 18, 526. [Google Scholar] [CrossRef] [PubMed]
- Mall, N.A.; Chalmers, P.N.; Moric, M. Incidence and Trends of Anterior Cruciate Ligament Reconstruction in the United States. Am. J. Sports Med. 2014, 42, 2363–2370. [Google Scholar] [CrossRef] [PubMed]
- Forelli, F.; Traulle, M.; Bechaud, N.; Sansonnet, C.; Marine, P.; Vandebrouck, A.; Duffiet, P.; Mazeas, J. Predict Anterior Cruciate Ligament Injury In Elite Male Soccer Players ? Focus On The Five Factors Maximum Model. Int. J. Physiother. 2021, 8, 211–216. [Google Scholar] [CrossRef]
- Forelli, F.; Moiroux-Sahraoui, A.; Mazeas, J.; Dugernier, J.; Cerrito, A. Rethinking the Assessment of Arthrogenic Muscle Inhibition After ACL Reconstruction: Implications for Return-to-Sport Decision-Making—A Narrative Review. J. Clin. Med. 2025, 14, 2633. [Google Scholar] [CrossRef]
- Lepley, A.S.; Lepley, L.K. Mechanisms of Arthrogenic Muscle Inhibition. J. Sport Rehabil. 2022, 31, 707–716. [Google Scholar] [CrossRef]
- Moiroux-Sahraoui, A.; Forelli, F.; Mazeas, J.; Rambaud, A.J.; Bjerregaard, A.; Riera, J. Quadriceps Activation After Anterior Cruciate Ligament Reconstruction: The Early Bird Gets the Worm! Int. J. Sports Phys. Ther. 2024, 19, 1044. [Google Scholar] [CrossRef]
- Hopkins, J.T.; Ingersoll, C.D. Arthrogenic Muscle Inhibition: A Limiting Factor in Joint Rehabilitation. J. Sport Rehabil. 2000, 9, 135–159. [Google Scholar] [CrossRef]
- Palmieri-Smith, R.M.; Villwock, M.; Downie, B.; Hecht, G.; Zernicke, R. Pain, Effusion, and Quadriceps Activation and Strength. J. Athl. Train. 2013, 48, 186–191. [Google Scholar] [CrossRef]
- Moiroux-Sahraoui, A.; Mazeas, J.; Gold, M.; Kakavas, G.; Forelli, F. Neuromuscular Control Deficits After Anterior Cruciate Ligament Reconstruction: A Pilot Study Using Single-Leg Functional Tests and Electromyography. J. Funct. Morphol. Kinesiol. 2025, 10, 98. [Google Scholar] [CrossRef]
- Lepley, L.K.; Palmieri-Smith, R.M. Quadriceps Strength, Muscle Activation Failure, and Patient-Reported F Unction at the Time of Return to Activity in Patients Following Anteri or Cruciate Ligament Reconstruction: A Cross-Sectional Study. J. Orthop. Sports Phys. Ther. 2015, 45, 1017–1025. [Google Scholar] [CrossRef] [PubMed]
- Palmieri-Smith, R.M.; Thomas, A.C. A Neuromuscular Mechanism of Posttraumatic Osteoarthritis Associated with ACL Injury. Exerc. Sport Sci. Rev. 2009, 37, 147–153. [Google Scholar] [CrossRef] [PubMed]
- Sonnery-Cottet, B.; Hopper, G.P.; Gousopoulos, L.; Vieira, T.D.; Thaunat, M.; Fayard, J.-M.; Freychet, B.; Ouanezar, H.; Cavaignac, E.; Saithna, A. Arthrogenic Muscle Inhibition Following Knee Injury or Surgery: Pathop Hysiology, Classification, and Treatment. Video J. Sports Med. 2022, 2, 26350254221086295. [Google Scholar] [CrossRef]
- Sonnery-Cottet, B.; Hopper, G.P.; Gousopoulos, L.; Pioger, C.; Vieira, T.D.; Thaunat, M.; Fayard, J.-M.; Freychet, B.; Cavaignac, E.; Saithna, A. Incidence of and Risk Factors for Arthrogenic Muscle Inhibition in Acute Anterior Cruciate Ligament Injuries: A Cross-Sectional Study and Analysis of Associated Factors From the SANTI Study Group. Am. J. Sports Med. 2024, 52, 60–68. [Google Scholar] [CrossRef] [PubMed]
- Cristiani, R.; Mikkelsen, C.; Wange, P.; Olsson, D.; Stålman, A.; Engström, B. Autograft Type Affects Muscle Strength and Hop Performance after ACL Reconstruction. A Randomised Controlled Trial Comparing Patellar Tendon and Hamstring Tendon Autografts with Standard or Accelerated Rehabilitation. Knee Surg. Sports Traumatol. Arthrosc. 2021, 29, 3025–3036. [Google Scholar] [CrossRef]
- Shani, R.H.; Umpierez, E.; Nasert, M.; Hiza, E.A.; Xerogeanes, J. Biomechanical Comparison of Quadriceps and Patellar Tendon Grafts in Anterior Cruciate Ligament Reconstruction. Arthrosc. J. Arthrosc. Relat. Surg. 2016, 32, 71–75. [Google Scholar] [CrossRef]
- Sherman, D.A.; Rush, J.L.; Glaviano, N.R.; Norte, G.E. Hamstrings Muscle Morphology After Anterior Cruciate Ligament Reconstruction: A Systematic Review and Meta-Analysis. Sports Med. 2021, 51, 1733–1750. [Google Scholar] [CrossRef]
- Alvarez-Diaz, P.; Alentorn-Geli, E.; Ramon, S.; Marin, M.; Steinbacher, G.; Rius, M.; Seijas, R.; Ballester, J.; Cugat, R. Effects of Anterior Cruciate Ligament Reconstruction on Neuromuscular Tensiomyographic Characteristics of the Lower Extremity in Competitive Male Soccer Players. Knee Surg. Sports Traumatol. Arthrosc. 2015, 23, 3407–3413. [Google Scholar] [CrossRef]
- Maeda, N.; Urabe, Y.; Tsutsumi, S.; Fujishita, H.; Numano, S.; Takeuchi, T.; Hirata, K.; Mikami, Y.; Kimura, H. Symmetry Tensiomyographic Neuromuscular Response after Chronic Anterior Cruciate Ligament (ACL) Reconstruction. Knee Surg. Sports Traumatol. Arthrosc. 2018, 26, 411–417. [Google Scholar] [CrossRef]
- Martín-Rodríguez, S.; Loturco, I.; Hunter, A.M.; Rodríguez-Ruiz, D.; Munguia-Izquierdo, D. Reliability and Measurement Error of Tensiomyography to Assess Mechanical Muscle Function: A Systematic Review. J. Strength Cond. Res. 2017, 31, 3524–3536. [Google Scholar] [CrossRef] [PubMed]
- Forelli, F.; Barbar, W.; Kersante, G.; Vandebrouck, A.; Duffiet, P.; Ratte, L.; Hewett, T.E.; Rambaud, A.J.M. Evaluation of Muscle Strength and Graft Laxity with Early Open Kinetic Chain Exercise After ACL Reconstruction: A Cohort Study. Orthop. J. Sports Med. 2023, 11, 23259671231177594. [Google Scholar] [CrossRef] [PubMed]
- Forelli, F.; Mazeas, J.; Zeghoudi, Y.; Vandebrouck, A.; Duffiet, P.; Ratte, L.; Kakavas, G.; Hewett, T.E.; Korakakis, V.; Rambaud, A.J.M. Intrinsic Graft Laxity Variation with Open Kinetic Chain Exercise after Anterior Cruciate Ligament Reconstruction: A Non-Randomized Controlled Study. Phys. Ther. Sport 2024, 66, 61–66. [Google Scholar] [CrossRef] [PubMed]
- McPherson, A.L.; Schilaty, N.D.; Anderson, S.; Nagai, T.; Bates, N.A. Arthrogenic Muscle Inhibition after Anterior Cruciate Ligament Injury: Injured and Uninjured Limb Recovery over Time. Front. Sports Act. Living 2023, 5, 1143376. [Google Scholar] [CrossRef]
- Paço, M.; Peysson, M.; Dumont, E.; Correia, M.; Quialheiro, A.; Chaves, P. The Effect of Physiotherapy on Arthrogenic Muscle Inhibition After ACL Injury or Reconstruction: A Systematic Review. Life 2024, 14, 1586. [Google Scholar] [CrossRef]
- Dahmane, R.; Valenčič, V.; Knez, N.; Eržen, I. Evaluation of the Ability to Make Non-Invasive Estimation of Muscle Contractile Properties on the Basis of the Muscle Belly Response. Med. Biol. Eng. Comput. 2001, 39, 51–55. [Google Scholar] [CrossRef]
- Piqueras-Sanchiz, F.; Martín-Rodríguez, S.; Pareja-Blanco, F.; Baraja-Vegas, L.; Blázquez-Fernández, J.; Bautista, I.J.; García-García, Ó. Mechanomyographic Measures of Muscle Contractile Properties Are Influenced by Electrode Size and Stimulation Pulse Duration. Sci. Rep. 2020, 10, 8192. [Google Scholar] [CrossRef]
- Tous-Fajardo, J.; Moras, G.; Rodríguez-Jiménez, S.; Usach, R.; Doutres, D.M.; Maffiuletti, N.A. Inter-Rater Reliability of Muscle Contractile Property Measurements Using Non-Invasive Tensiomyography. J. Electromyogr. Kinesiol. 2010, 20, 761–766. [Google Scholar] [CrossRef]
- Wilson, H.V.; Johnson, M.I.; Francis, P. Repeated Stimulation, Inter-Stimulus Interval and Inter-Electrode Distance Alters Muscle Contractile Properties as Measured by Tensiomyography. PLoS ONE 2018, 13, e0191965. [Google Scholar] [CrossRef]
- Macgregor, L.J.; Hunter, A.M.; Orizio, C.; Fairweather, M.; Ditroilo, M. Assessment of Skeletal Muscle Contractile Properties by Radial Displacement: The Case for Tensiomyography. Sports Med. 2018, 48, 1607–1620. [Google Scholar] [CrossRef]
- Ditroilo, M.; Smith, I.J.; Fairweather, M.M.; Hunter, A.M. Long-Term Stability of Tensiomyography Measured under Different Muscle Conditions. J. Electromyogr. Kinesiol. 2013, 23, 558–563. [Google Scholar] [CrossRef]
- Lohr, C.; Schmidt, T.; Medina-Porqueres, I.; Braumann, K.-M.; Reer, R.; Porthun, J. Diagnostic Accuracy, Validity, and Reliability of Tensiomyography to Assess Muscle Function and Exercise-Induced Fatigue in Healthy Participants. A Systematic Review with Meta-Analysis. J. Electromyogr. Kinesiol. 2019, 47, 65–87. [Google Scholar] [CrossRef]
- Šimunič, B. Between-Day Reliability of a Method for Non-Invasive Estimation of Muscle Composition. J. Electromyogr. Kinesiol. 2012, 22, 527–530. [Google Scholar] [CrossRef] [PubMed]
- Forelli, F.; Moiroux-Sahraoui, A.; Mazeas, J.; Pengue Koyi, A.; Labib, M.; Cerrito, A. Gastrocnemius Activation Deficits and Running Biomechanics after Anterior Cruciate Ligament Reconstruction: The Missing Link? Front. Sports Act. Living 2025, 7, 1594247. [Google Scholar] [CrossRef] [PubMed]
- Hart, J.M.; Pietrosimone, B.; Hertel, J.; Ingersoll, C.D. Quadriceps Activation Following Knee Injuries: A Systematic Review. J. Athl. Train. 2010, 45, 87–97. [Google Scholar] [CrossRef] [PubMed]
- Birchmeier, T.; Lisee, C.; Kane, K.; Brazier, B.; Triplett, A.; Kuenze, C. Quadriceps Muscle Size Following ACL Injury and Reconstruction: A Systematic Review. J. Orthop. Res. 2020, 38, 31608490. [Google Scholar] [CrossRef]
- Bouzekraoui Alaoui, I.; Moiroux-Sahraoui, A.; Mazeas, J.; Kakavas, G.; Biały, M.; Douryang, M.; Forelli, F. Impact of Hamstring Graft on Hamstring Peak Torque and Maximum Effective Angle After Anterior Cruciate Ligament Reconstruction: An Exploratory and Preliminary Study. Bioengineering 2025, 12, 465. [Google Scholar] [CrossRef]
- Alentorn-Geli, E.; Pelfort, X.; Mingo, F.; Lizano-Díez, X.; Leal-Blanquet, J.; Torres-Claramunt, R.; Hinarejos, P.; Puig-Verdié, L.; Monllau, J.C. An Evaluation of the Association Between Radiographic Intercondylar Notch Narrowing and Anterior Cruciate Ligament Injury in Men: The Notch Angle Is a Better Parameter Than Notch Width. Arthrosc. J. Arthrosc. Relat. Surg. 2015, 31, 2004–2013. [Google Scholar] [CrossRef]
- Chang, M.J.; Choi, Y.S.; Shin, J.H.; Yoon, T.H.; Kim, T.W.; Chang, C.B.; Kang, S.-B. Comparison of Failure Rates and Functional Outcomes between Hamstring Autografts and Hybrid Grafts in Anterior Cruciate Ligament Reconstruction: A Systematic Review and Meta-Analysis. Orthop. Traumatol. Surg. Res. 2023, 109, 103499. [Google Scholar] [CrossRef]
- Jiang, H.; Zhang, L.; Zhang, R.-Y.; Zheng, Q.-J.; Li, M.-Y. Comparison of Hamstring and Quadriceps Strength after Anatomical versus Non-Anatomical Anterior Cruciate Ligament Reconstruction: A Retrospective Cohort Study. BMC Musculoskelet. Disord. 2021, 22, 452. [Google Scholar] [CrossRef]
- Hurley, E.T.; Calvo-Gurry, M.; Withers, D.; Farrington, S.K.; Moran, R.; Moran, C.J. Quadriceps Tendon Autograft in Anterior Cruciate Ligament Reconstruction: A Systematic Review. Arthrosc. J. Arthrosc. Relat. Surg. 2018, 34, 1690–1698. [Google Scholar] [CrossRef]
- Mouarbes, D.; Menetrey, J.; Marot, V.; Courtot, L.; Berard, E.; Cavaignac, E. Anterior Cruciate Ligament Reconstruction: A Systematic Review and Meta-Analysis of Outcomes for Quadriceps Tendon Autograft Versus Bone–Patellar Tendon–Bone and Hamstring-Tendon Autografts. Am. J. Sports Med. 2019, 47, 3531–3540. [Google Scholar] [CrossRef]
- Labata-Lezaun, N.; González-Rueda, V.; Llurda-Almuzara, L.; López-de-Celis, C.; Rodríguez-Sanz, J.; Cadellans-Arróniz, A.; Bosch, J.; Pérez-Bellmunt, A. Correlation between Physical Performance and Tensiomyographic and Myotonometric Parameters in Older Adults. Healthcare 2023, 11, 2169. [Google Scholar] [CrossRef] [PubMed]
- Konishi, Y.; Fukubayashi, T.; Takeshita, D. Mechanism of Quadriceps Femoris Muscle Weakness in Patients with Anterior Cruciate Ligament Reconstruction. Scand. J. Med. Sci. Sports 2002, 12, 371–375. [Google Scholar] [CrossRef] [PubMed]
- Rice, D.A.; McNair, P.J. Quadriceps Arthrogenic Muscle Inhibition: Neural Mechanisms and Treatm Ent Perspectives. Semin. Arthritis Rheum. 2010, 40, 250–266. [Google Scholar] [CrossRef] [PubMed]
- Kuenze, C.M.; Hertel, J.; Weltman, A.; Diduch, D.; Saliba, S.A.; Hart, J.M. Persistent Neuromuscular and Corticomotor Quadriceps Asymmetry After A Nterior Cruciate Ligament Reconstruction. J. Athl. Train. 2015, 50, 303–312. [Google Scholar] [CrossRef]
- Pisot, R.; Narici, M.V.; Simunic, B.; De Boer, M.; Seynnes, O.; Jurdana, M.; Biolo, G.; Mekjavić, I.B. Whole Muscle Contractile Parameters and Thickness Loss during 35-Day Bed Rest. Eur. J. Appl. Physiol. 2008, 104, 409–414. [Google Scholar] [CrossRef]
- Forelli, F.; Moiroux-Sahraoui, A.; Nielsen-Le Roux, M.; Miraglia, N.; Gaspar, M.; Stergiou, M.; Bjerregaard, A.; Mazeas, J.; Douryang, M. Stay in the Game: Comprehensive Approaches to Decrease the Risk of Sports Injuries. Cureus 2024, 16, e76461. [Google Scholar] [CrossRef]
- Hsu, Y.C.; Chen, C.Y.; Su, F.C.; Chang, J.J.; Hsu, M.J. Fatigue-Related Changes in Corticomuscular Coherence During a Repetitive Gripping Task. Sensors 2023, 23, 2440. [Google Scholar] [CrossRef]
- Liao, Y.; Hsu, Y.C.; Wu, W.L.; Chang, J.J.; Su, F.C. Entropy Analysis of Surface Electromyography during Muscle Fatigue in Biceps Brachii. Entropy 2021, 23, 1036. [Google Scholar] [CrossRef]
- Monkeviciene, O.; Venckunas, T.; Skurvydas, A. Neuromuscular Assessment during Exercise and Training Using Tensiomyography: A Review. Medicina 2019, 55, 92. [Google Scholar] [CrossRef]
- Lohr, C.; Schmidt, T.; Medina-Porqueres, I. Reliability of Tensiomyographic Markers to Assess Muscle Fatigue. A Systematic Review. Front. Physiol. 2019, 10, 1236. [Google Scholar] [CrossRef]
- Sonnery-Cottet, B.; Saithna, A.; Quelard, B.; Daggett, M.; Borade, A.; Ouanezar, H.; Thaunat, M.; Blakeney, W.G. Arthrogenic Muscle Inhibition after ACL Reconstruction: A Scoping Revi Ew of the Efficacy of Interventions. Br. J. Sports Med. 2019, 53, 289–298. [Google Scholar] [CrossRef]
BPTB GROUP n = 8 | HT GROUP n = 12 | QT GROUP n = 11 | TOTAL n = 31 | |
---|---|---|---|---|
Gender | ||||
Male | 8 | 7 | 0 | 15 |
Female | 0 | 5 | 11 | 16 |
Age (years) | ||||
Mean | 22.38 | 21.75 | 21.27 | 21.74 |
SD | 1.51 | 1.66 | 1.79 | 1.67 |
Weight (kg) | ||||
Mean | 69.88 | 67.83 | 59.91 | 65.55 |
SD | 8.39 | 12.97 | 8.46 | 10.98 |
Height (cm) | ||||
Mean | 173.75 | 175.75 | 166.82 | 172.06 |
SD | 5.97 | 12.17 | 8.22 | 10.07 |
BMI | ||||
Mean | 23.08 | 21.78 | 21.43 | 21.99 |
SD | 1.44 | 1.85 | 1.55 | 1.73 |
BPTB Group n = 8 |
HT Group n = 12 |
QT Group n = 11 |
Kruskal–Wallis H Test p Value |
Dunn’s Post Hoc Test (Bonferroni Correction) | ||||||
---|---|---|---|---|---|---|---|---|---|---|
BPTP-HT | BPTP-QT | HT-QT | ||||||||
RF | TC (ms) mean ± SD | TC 3 months | 31.84 ± 0.80 | 26.37 ± 1.93 | 30.59 ± 1.33 | <0.001 | <0.001 | 0.447 | 0.004 | |
TC 6 months | 22.14 ± 2.45 | 21.20 ± 2.08 | 22.83 ± 1.43 | 0.052 | ||||||
TC 9 months | 21.16 ± 0.65 | 16.73 ± 1.48 | 15.86 ± 0.70 | <0.001 | 0.004 | <0.001 | 0.725 | |||
Friedman Test (p value) | 0.002 | <0.001 | <0.001 | |||||||
Conover’s post hoc test | 3–6 months | <0.001 | <0.001 | <0.001 | ||||||
6–9 months | 0.146 | <0.001 | <0.001 | |||||||
3–9 months | <0.001 | <0.001 | <0.001 | |||||||
DM (mm) mean ± SD | DM 3 months | 5.12 ± 0.93 | 6.01 ± 0.53 | 5.79 ± 0.73 | 0.033 | 0.027 | 0.436 | 0.650 | ||
DM 6 months | 6.17 ± 0.86 | 6.39 ± 0.04 | 6.65 ± 0.62 | 0.068 | ||||||
DM 9 months | 7.01 ± 0.44 | 7.52 ± 0.52 | 7.43 ± 0.74 | 0.065 | ||||||
Friedman Test (p value) | 0.005 | <0.001 | 0.003 | |||||||
Conover’s post hoc test | 3–6 months | 0.182 | 0.551 | 0.084 | ||||||
6–9 months | 0.017 | <0.001 | 0.084 | |||||||
3–9 months | <0.001 | <0.001 | <0.001 | |||||||
VM | TC (ms) mean ± SD | TC 3 months | 31.33 ± 0.56 | 25.76 ± 3.32 | 30.84 ± 0.85 | <0.001 | <0.001 | 0.849 | 0.001 | |
TC 6 months | 22.59 ± 2.79 | 20.18 ± 1.90 | 24.02 ± 2.99 | <0.001 | 0.071 | 0.881 | <0.001 | |||
TC 9 months | 21.28 ± 1.05 | 18.37 ± 5.82 | 18.45 ± 2.92 | 0.017 | 0.013 | 0.182 | 0.923 | |||
Friedman Test (p value) | 0.002 | <0.001 | <0.001 | |||||||
Conover’s post hoc test | 3–6 months | <0.001 | <0.001 | <0.001 | ||||||
6–9 months | 1.000 | 0.304 | 0.004 | |||||||
3–9 months | <0.001 | <0.001 | <0.001 | |||||||
DM (mm) mean ± SD | DM 3 months | 5.16 ± 0.78 | 5.73 ± 0.53 | 5.61 ± 0.62 | 0.025 | 0.020 | 0.278 | 0.823 | ||
DM 6 months | 5.90 ± 0.59 | 6.66 ± 0.51 | 6.61 ± 0.59 | 0.018 | 0.015 | 0.136 | 1.000 | |||
DM 9 months | 6.88 ± 0.85 | 7.15 ± 0.47 | 7.30 ± 0.69 | 0.450 | ||||||
Friedman Test (p value) | 0.002 | <0.001 | 0.002 | |||||||
Conover’s post hoc test | 3–6 months | 0.013 | <0.001 | 0.030 | ||||||
6–9 months | 0.013 | 0.049 | 0.084 | |||||||
3–9 months | <0.001 | <0.001 | <0.001 | |||||||
VL | TC (ms) mean ± SD | TC 3 months | 29.18 ± 3.67 | 28.28 ± 2.35 | 30.48 ± 0.31 | 0.011 | 0.033 | 1.000 | 0.031 | |
TC 6 months | 22.59 ± 2.79 | 20.18 ± 1.90 | 24.02 ± 2.99 | 0.008 | 0.142 | 1.000 | 0.008 | |||
TC 9 months | 19.24 ± 3.27 | 17.12 ± 3.05 | 17.48 ± 1.79 | 0.160 | ||||||
Friedman Test (p value) | 0.001 | <0.001 | <0.001 | |||||||
Conover’s post hoc test | 3–6 months | <0.001 | <0.001 | <0.001 | ||||||
6–9 months | 0.019 | 0.037 | <0.001 | |||||||
3–9 months | <0.001 | <0.001 | <0.001 | |||||||
DM (mm) mean ± SD | DM 3 months | 5.07 ± 0.81 | 6.00 ± 1.30 | 5.79 ± 0.55 | 0.076 | |||||
DM 6 months | 6.01 ± 0.47 | 6.73 ± 0.61 | 6.44 ± 0.58 | 0.034 | 0.028 | 0.458 | 0.637 | |||
DM 9 months | 7.03 ± 0.12 | 7.32 ± 0.28 | 7.44 ± 0.63 | 0.007 | 0.006 | 0.059 | 1.000 | |||
Friedman Test (p value) | <0.001 | 0.005 | <0.001 | |||||||
Conover’s post hoc test | 3–6 months | 0.002 | 0.093 | 0.382 | ||||||
6–9 months | <0.001 | 0.212 | 0.001 | |||||||
3–9 months | <0.001 | 0.001 | <0.001 | |||||||
BF | TC (ms) mean ± SD | TC 3 months | 31.25 ± 0.73 | 24.34 ± 3.03 | 30.09 ± 3.13 | <0.001 | 0.001 | 1.000 | 0.009 | |
TC 6 months | 28.02 ± 4.41 | 20.17 ± 2.15 | 21.45 ± 1.22 | <0.001 | <0.001 | 0.108 | 0.245 | |||
TC 9 months | 18.04 ± 3.72 | 20.08 ± 4.62 | 18.37 ± 3.22 | 0.586 | ||||||
Friedman Test (p value) | 0.005 | 0.002 | <0.001 | |||||||
Conover’s post hoc test | 3–6 months | 0.380 | <0.001 | <0.001 | ||||||
6–9 months | 0.012 | 1.000 | 0.101 | |||||||
3–9 months | <0.001 | 0.002 | <0.001 | |||||||
DM (mm) mean ± SD | DM 3 months | 5.12 ± 0.79 | 5.37 ± 0.19 | 5.86 ± 0.81 | 0.031 | 0.230 | 0.027 | 0.990 | ||
DM 6 months | 6.11 ± 0.72 | 6.68 ± 0.42 | 6.59 ± 0.42 | 0.172 | ||||||
DM 9 months | 6.92 ± 0.29 | 7.24 ± 0.53 | 7.42 ± 0.62 | 0.050 | ||||||
Friedman Test (p value) | 0.002 | <0.001 | 0.002 | |||||||
Conover’s post hoc test | 3–6 months | 0.013 | <0.001 | 0.164 | ||||||
6–9 months | 0.013 | 0.238 | 0.022 | |||||||
3–9 months | <0.001 | <0.001 | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kakavas, G.; Forelli, F.; Demangeot, Y.; Korakakis, V.; Malliaropoulos, N.; Maffulli, N. Influence of Graft Type on Muscle Contractile Dynamics After ACL Reconstruction: A 9-Month Tensiomyographic Follow-Up. Diagnostics 2025, 15, 1920. https://doi.org/10.3390/diagnostics15151920
Kakavas G, Forelli F, Demangeot Y, Korakakis V, Malliaropoulos N, Maffulli N. Influence of Graft Type on Muscle Contractile Dynamics After ACL Reconstruction: A 9-Month Tensiomyographic Follow-Up. Diagnostics. 2025; 15(15):1920. https://doi.org/10.3390/diagnostics15151920
Chicago/Turabian StyleKakavas, Georges, Florian Forelli, Yoann Demangeot, Vasileios Korakakis, Nikolaos Malliaropoulos, and Nicola Maffulli. 2025. "Influence of Graft Type on Muscle Contractile Dynamics After ACL Reconstruction: A 9-Month Tensiomyographic Follow-Up" Diagnostics 15, no. 15: 1920. https://doi.org/10.3390/diagnostics15151920
APA StyleKakavas, G., Forelli, F., Demangeot, Y., Korakakis, V., Malliaropoulos, N., & Maffulli, N. (2025). Influence of Graft Type on Muscle Contractile Dynamics After ACL Reconstruction: A 9-Month Tensiomyographic Follow-Up. Diagnostics, 15(15), 1920. https://doi.org/10.3390/diagnostics15151920