The Role of Quantitative EEG in the Diagnosis of Alzheimer’s Disease
Abstract
1. Introduction
1.1. Pathology and Progression of Alzheimer’s Disease
1.2. Current Diagnostic Criteria and Biomarkers
1.3. Electroencephalography (EEG): A Non-Invasive Window into Brain Function
1.4. Rationale for EEG in Alzheimer’s Disease
2. Pathophysiological Basis of EEG Alterations in AD
2.1. Neurodegeneration and Synaptic Dysfunction
2.2. Disruption of Large-Scale Neural Networks
2.3. Neurochemical Disruptions and Their Impact on Oscillatory Activity
- Cholinergic Deficits: The cholinergic system of the basal forebrain degenerates during the initial stages of AD, which leads to reduced cortical activation and reduced alpha rhythm activity, because alpha rhythms are generated by cholinergic projections through thalamo-cortical circuits [23]. Alpha power decreases due to reduced cholinergic tone, which leads to impaired attention and memory function.
- GABAergic Dysfunction: The changes in GABAergic interneurons result in impaired inhibitory−excitatory balance, which disrupts the generation of gamma oscillations that are necessary for higher cognitive functions [24].
- Glutamatergic Dysregulation: The excitotoxicity effects of glutamate on neurons and networks result in unstable network dynamics, which leads to both spectral slowing and abnormal synchrony patterns.
2.4. Neuroinflammation and Gliosis
2.5. Linking Pathology to EEG Manifestations
- A.
- Spectral Slowing: The combination of synaptic and neuronal loss, disrupted reciprocating networks, and neurochemical deficits leads to delta and theta power increase and alpha and beta power decrease.
- B.
- Connectivity Disruption: The extensive breakdown of brain networks results in reduced phase synchronization in the alpha frequency band which impairs cognitive processes.
- C.
- Reduced Complexity: The loss of neurons and synaptic connections decreases the dynamical complexity of EEG signals which can be measured by entropy and fractal dimension.
3. EEG Biomarkers in AD: Spectral, Connectivity, and Complexity Measures
3.1. Spectral Power Measures
3.1.1. Alpha Band (8–13 Hz) Reduction
3.1.2. Theta Band (4–8 Hz) Elevation
3.1.3. Delta Band (0.5–4 Hz) Enhancement
3.1.4. Beta (>13 Hz) and Gamma (>30 Hz) Bands Decreases
3.1.5. Spectral Ratios and Composite Indices
3.2. Connectivity Measures
3.2.1. Functional Connectivity: Coherence and Phase-Based Metrics
3.2.2. Network Topology via Graph Theory
3.2.3. Directed and Causal Connectivity
3.3. Nonlinear and Complexity Measures
3.3.1. Fractal and Multiscale Analysis
- Hurst exponent and fractal dimension: EEG signals receive evaluation through these measures for their temporal correlations and self-similar patterns. AD patients exhibit decreased fractal dimension values that point to more organized, less complex brain activity patterns [38].
- Multiscale entropy (MSE): The method shows complexity patterns across different time frames that show AD patients have lower values than healthy controls [39].
3.3.2. Chaos and Lyapunov Exponents
3.4. Machine Learning Models
4. Clinical Utility and Diagnostic Value
4.1. Early Detection and Prodromal Diagnosis of MCI and AD
4.2. Differential Diagnosis of Dementias
4.3. Disease Staging and Progress Monitoring
4.4. Evaluating Therapeutic Efficacy and Response
4.5. Addressing Challenges and Moving Forward
5. Discussion
5.1. Neurobiological Significance of EEG Alterations
5.2. Diagnostic and Prognostic Utility
5.3. Challenges and Limitations
- (a)
- The absence of standardized methods for acquiring data and processing EEG signals through different protocols, electrode placements, and feature extraction methods creates challenges for achieving universal diagnostic criteria. The interpretation of clinical cases becomes more difficult because of inconsistent data and insufficient normative database availability.
- (b)
- EEG signals remain susceptible to artifacts from physiological and environmental sources which require advanced processing methods and skilled expert evaluation that most clinical settings cannot provide.
- (c)
- Patient populations exhibit diverse characteristics because vascular diseases, depressive disorders, and medication side effects make it difficult to determine if EEG results stem from Alzheimer’s disease.
- (d)
5.4. Opportunities for Future Research and Clinical Integration
6. Conclusions
- Systematic Review and Meta-Analysis of EEG Spectral Power for MCI Subtype Differentiation and AD Prediction: A rigorous systematic review and meta-analysis is needed to quantify the diagnostic accuracy of specific EEG spectral power changes (e.g., increased theta and decreased alpha) in differentiating amnestic MCI (aMCI) from non-amnestic MCI (naMCI). This review should analyze inter-study heterogeneity (e.g., variations in EEG acquisition protocols and subject populations) and assess the predictive power of these spectral features for conversion to AD, considering factors like APOE ε4 status. This review should explicitly address the limitations of existing studies, such as small sample sizes and lack of longitudinal data.
- Well-designed, double-blind RCT should evaluate the efficacy of personalized EEG-neurofeedback therapy for individuals with early-stage AD (or prodromal AD). The intervention protocol should be tailored based on individual EEG profiles (e.g., targeting specific spectral imbalances). The trial should include a clearly defined control group (e.g., sham neurofeedback) and objective cognitive outcome measures (e.g., ADAS-Cog) and assess changes in functional connectivity using EEG. Power analysis should be performed to determine the appropriate sample size.
- Multicenter Longitudinal Study of EEG and Blood-Based Biomarkers for AD Risk Stratification: A multicenter, longitudinal study should investigate the combined utility of EEG and emerging blood-based biomarkers (e.g., plasma p-tau isoforms and GFAP) for risk stratification in individuals with subjective cognitive decline (SCD). This study should employ standardized EEG acquisition and analysis protocols across all sites and collect longitudinal data on cognitive function, biomarker levels, and clinical outcomes. The study should also address potential confounding factors, such as vascular risk factors and medication use.
- Development and Validation of Explainable AI Algorithms for EEG-Based AD Diagnosis: Research should focus on developing and validating explainable AI (XAI) algorithms for EEG-based AD diagnosis. These algorithms should not only provide accurate classifications but also offer transparent explanations of the EEG features driving their predictions, enhancing clinician trust and facilitating clinical integration.
Funding
Conflicts of Interest
References
- Prince, M.; Wimo, A.; Guerchet, M.; Ali, G.C.; Wu, Y.-T.; Prina, M.W. World Alzheimer Report 2015: The Global Impact of Dementia; Alzheimer’s Disease International: London, UK, 2015. [Google Scholar]
- Brookmeyer, R.; Johnson, E.; Ziegler-Graham, K.; Arrighi, H.M. Forecasting the global burden of Alzheimer’s disease. Alzheimer’s Dement. 2007, 3, 186–191. [Google Scholar] [CrossRef] [PubMed]
- Hardy, J.; Selkoe, D.J. The amyloid hypothesis of Alzheimer’s disease: Progress and problems. Science 2002, 297, 353–356. [Google Scholar] [CrossRef] [PubMed]
- Jack, C.R., Jr.; Knopman, D.S.; Jagust, W.J.; Shaw, L.M.; Aisen, P.S.; Weiner, M.W.; Petersen, R.C.; Trojanowski, J.Q. ypothetical model of dynamic biomarkers of the Alzheimer’s disease pathological cascade. Lancet Neurol. 2010, 9, 119–128. [Google Scholar] [CrossRef]
- McKhann, G.; Knopman, D.S.; Chertkow, H.; Hyman, B.T.; Jack, C.R., Jr.; Kawas, C.H.; Klunk, W.E.; Koroshetz, W.J.; Manly, J.J.; Mayeux, R.; et al. The diagnosis of dementia due to Alzheimer’s disease: Recommendations from the National Institute on Aging-Alzheimer’s Association workgroups. Alzheimer’s Dement. 2011, 7, 263–266. [Google Scholar] [CrossRef]
- Blennow, K.; Hampel, H.; Weiner, M.; Zetterberg, H. Cerebrospinal fluid and plasma biomarkers in Alzheimer disease. Nat. Rev. Neurol. 2010, 6, 131–144. [Google Scholar] [CrossRef]
- Hansson, O.; Zetterberg, H.; Davidsson, P. Biomarkers of Alzheimer’s disease: Current status and future perspectives. Alzheimer’s Res. Ther. 2019, 11, 86. [Google Scholar]
- Varesi, A.; Carrara, A.; Pires, V.G.; Floris, V.; Pierella, E.; Savioli, G.; Prasad, S.; Esposito, C.; Ricevuti, G.; Chirumbolo, S.; et al. Blood-Based Biomarkers for Alzheimer’s Disease Diagnosis and Progression: An Overview. Cells 2022, 11, 1367. [Google Scholar] [CrossRef]
- Dasari, M.; Kurian, J.A.; Gundraju, S.; Raparthi, A.; Medapati, R.V. Blood-Based β-Amyloid and Phosphorylated Tau (p-Tau) Biomarkers in Alzheimer’s Disease: A Systematic Review of Their Diagnostic Potential. Cureus 2025, 17, e79881. [Google Scholar] [CrossRef]
- Li, R.X.; Ma, Y.H.; Tan, L.; Yu, J.T. Prospective biomarkers of Alzheimer’s disease: A systematic review and meta-analysis. Ageing Res. Rev. 2022, 81, 101699. [Google Scholar] [CrossRef] [PubMed]
- Niedermeyer, E.; Lopes da Silva, F.H. Electroencephalography: Basic Principles, Clinical Applications, and Related Fields; Lippincott Williams & Wilkins: New York, NY, USA, 2004. [Google Scholar]
- Placidi, G.; Cinque, L.; Polsinelli, M. A fast and scalable framework for automated artifact recognition from EEG signals represented in scalp topographies of Independent Components. Comput. Biol. Med. 2021, 132, 104347. [Google Scholar] [CrossRef] [PubMed]
- Scheuer, M.L.; Wilson, S.B.; Antony, A.; Ghearing, G.; Urban, A.; Bagić, A.I. Seizure Detection: Interreader Agreement and Detection Algorithm Assessments Using a Large Dataset. J. Clin. Neurophysiol. 2021, 38, 439–447. [Google Scholar] [CrossRef]
- Beniczky, S.; Aurlien, H.; Brøgger, J.C.; Fuglsang-Frederiksen, A.; Martins-da-Silva, A.; Trinka, E.; Visser, G.; Rubboli, G.; Hjalgrim, H.; Stefan, H.; et al. Standardized computer-based organized reporting of EEG: SCORE. Epilepsia 2013, 54, 1112–1124. [Google Scholar] [CrossRef] [PubMed]
- Jeong, J. EEG dynamics in patients with Alzheimer’s disease. Clin. Neurophysiol. 2004, 115, 1490–1505. [Google Scholar] [CrossRef] [PubMed]
- Rossini, P.M.; Di Iorio, R.; Vecchio, F.; Anfossi, M.; Babiloni, C.; Bozzali, M.; Bruni, A.C.; Cappa, S.F.; Escudero, J.; Fraga, F.J.; et al. Early diagnosis of Alzheimer’s disease: The role of biomarkers including advanced EEG signal analysis. Report from the IFCN-sponsored panel of experts. Clin. Neurophysiol. 2020, 131, 1287–1310. [Google Scholar] [CrossRef] [PubMed]
- Babiloni, C.; Vecchio, F.; Lizio, R.; Ferri, R.; Rodriguez, G.; Marzano, N.; Frisoni, G.B.; Rossini, P.M. Resting state cortical rhythms in mild cognitive impairment and Alzheimer’s disease: Electroencephalographic evidence. J. Alzheimer’s Dis. 2011, 26, 201–214. [Google Scholar] [CrossRef] [PubMed]
- Braak, H.; Braak, E. Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol. 1991, 82, 239–259. [Google Scholar] [CrossRef]
- Saini, M.; Rohilla, S.; Kumar, R. Revolutionizing Therapeutic Approaches Against Pathophysiology of Alzheimer’s Disease: A Therapeutic Review. Curr. Aging Sci. 2025; online ahead of print. [Google Scholar] [CrossRef]
- Greicius, M. Resting-state functional connectivity in neuropsychiatric disorders. Curr. Opin. Neurol. 2008, 21, 424–430. [Google Scholar] [CrossRef]
- Sheline, Y.I.; Raichle, M.E. Resting state functional connectivity in preclinical Alzheimer’s disease. Biol. Psychiatry 2013, 74, 340–347. [Google Scholar] [CrossRef]
- Calderón González, P.L.; Parra Rodríguez, M.A.; Llibre Rodríguez, J.J.; Gutiérrez, J.V. Analisis espectral de la coherencia cerebral en la enfermedad de Alzheimer [Spectral analysis of EEG coherence in Alzheimer’s disease]. Rev. Neurol. 2004, 38, 422–427. [Google Scholar]
- Li, Q.; Song, J.L.; Li, S.H.; Westover, M.B.; Zhang, R. Effects of Cholinergic Neuromodulation on Thalamocortical Rhythms During NREM Sleep: A Model Study. Front. Comput. Neurosci. 2020, 23, 13. [Google Scholar] [CrossRef]
- Özbek, Y.; Fide, E.; Yener, G.G. Resting-state EEG alpha/theta power ratio discriminates early-onset Alzheimer’s disease from healthy controls. Clin. Neurophysiol. 2021, 132, 2019–2031. [Google Scholar] [CrossRef]
- Dauwels, J.; Vialatte, F.; Cichocki, A. Diagnosis of Alzheimer’s disease from EEG signals using graph-theoretic features. Ann. Biomed. Eng. 2010, 38, 2974–2989. [Google Scholar]
- Sakkalis, V. Review of advanced techniques for the estimation of brain connectivity measured with EEG/MEG. Comput. Biol. Med. 2011, 41, 1110–1117. [Google Scholar] [CrossRef] [PubMed]
- Babiloni, C.; Lizio, R.; Vecchio, F.; Frisoni, G.B.; Pievani, M.; Geroldi, C.; Claudia, F.; Ferri, R.; Lanuzza, B.; Rossini, P.M. Reactivity of cortical alpha rhythms to eye opening in mild cognitive impairment and Alzheimer’s disease: An EEG study. J. Alzheimer’s Dis. 2010, 22, 1047–1064. [Google Scholar] [CrossRef] [PubMed]
- Yuan, Y.; Zhao, Y. The role of quantitative EEG biomarkers in Alzheimer’s disease and mild cognitive impairment: Applications and insights. Front. Aging Neurosci. 2025, 17, 1522552. [Google Scholar] [CrossRef] [PubMed]
- Ahmadlou, M.; Adeli, H.; Adeli, A. Fractality and a wavelet-chaos-methodology for EEG-based diagnosis of Alzheimer disease. Alzheimer Dis. Assoc. Disord. 2011, 25, 85–92. [Google Scholar] [CrossRef]
- Zawiślak-Fornagiel, K.; Ledwoń, D.; Bugdol, M.; Grażyńska, A.; Ślot, M.; Tabaka-Pradela, J.; Bieniek, I.; Siuda, J. Quantitative EEG Spectral and Connectivity Analysis for Cognitive Decline in Amnestic Mild Cognitive Impairment. J. Alzheimer’s Dis. 2024, 97, 1235–1247. [Google Scholar] [CrossRef]
- Knyazeva, M.G.; Carmeli, C.; Khadivi, A.; Ghika, J.; Meuli, R.; Frackowiak, R.S. Evolution of source EEG synchronization in early Alzheimer’s disease. Neurobiol. Aging 2013, 34, 694–705. [Google Scholar] [CrossRef]
- Simfukwe, C.; Han, S.H.; Jeong, H.T.; Youn, Y.C. qEEG as Biomarker for Alzheimer’s Disease: Investigating Relative PSD Difference and Coherence Analysis. Neuropsychiatr Dis. Treat. 2023, 19, 2423–2437. [Google Scholar] [CrossRef]
- Baik, K.; Jung, J.H.; Jeong, S.H.; Chung, S.J.; Yoo, H.S.; Lee, P.H.; Sohn, Y.H.; Kang, S.W.; Ye, B.S. Implication of EEG theta/alpha and theta/beta ratio in Alzheimer’s and Lewy body disease. Sci. Rep. 2022, 12, 18706. [Google Scholar] [CrossRef]
- Yeo, B.T.; Krienen, F.M.; Sepulcre, J.; Sabuncu, M.R.; Lashkari, D.; Hollinshead, M.; Roffman, J.L.; Smoller, J.W.; Zöllei, L.; Polimeni, J.R.; et al. The organization of the human cerebral cortex estimated by intrinsic functional connectivity. J. Neurophysiol. 2011, 106, 1125–1165. [Google Scholar] [CrossRef]
- Blinowska, K.J.; Rakowski, F.; Kaminski, M.; De Vico Fallani, F.; Del Percio, C.; Lizio, R.; Babiloni, C. Functional and effective brain connectivity for discrimination between Alzheimer’s patients and healthy individuals: A study on resting state EEG rhythms. Clin. Neurophysiol. 2017, 128, 667–680. [Google Scholar] [CrossRef] [PubMed]
- Babiloni, C.; Arakaki, X.; Azami, H.; Bennys, K.; Blinowska, K.; Bonanni, L.; Bujan, A.; Carrillo, M.C.; Cichocki, A.; de Frutos-Lucas, J.; et al. Measures of resting state EEG rhythms for clinical trials in Alzheimer’s disease: Recommendations of an expert panel. Alzheimers Dement. 2021, 17, 1528–1553. [Google Scholar] [CrossRef] [PubMed]
- Chételat, G. Multimodal Neuroimaging in Alzheimer’s Disease: Early Diagnosis, Physiopathological Mechanisms, and Impact of Lifestyle. J. Alzheimer’s Dis. 2018, 64, S199–S211. [Google Scholar] [CrossRef]
- Saleem, T.J.; Zahra, S.R.; Wu, F.; Alwakeel, A.; Alwakeel, M.; Jeribi, F.; Hijji, M. Deep Learning-Based Diagnosis of Alzheimer’s Disease. J. Pers. Med. 2022, 12, 815. [Google Scholar] [CrossRef]
- Al-Nuaimi, A.H.; Blūma, M.; Al-Juboori, S.S.; Eke, C.S.; Jammeh, E.; Sun, L.; Ifeachor, E. Robust EEG Based Biomarkers to Detect Alzheimer’s Disease. Brain Sci. 2021, 11, 1026. [Google Scholar] [CrossRef] [PubMed]
- Malik, I.; Iqbal, A.; Gu, Y.H.; Al-antari, M.A. Deep Learning for Alzheimer’s Disease Prediction: A Comprehensive Review. Diagnostics 2024, 14, 1281. [Google Scholar] [CrossRef]
- Bairagi, V. EEG signal analysis for early diagnosis of alzheimer disease using spectral and wavelet based features. Int. J. Inf. Technol. 2018, 10, 403–412. [Google Scholar] [CrossRef]
- Basaia, S.; Agosta, F.; Wagner, L.; Canu, E.; Magnani, G.; Santangelo, R.; Filippi, M. Automated classification of Alzheimer’s disease and mild cognitive impairment using a single MRI and deep neural networks. NeuroImage Clin. 2019, 21, 101645. [Google Scholar] [CrossRef]
- Nayana, B.R.; Pavithra, M.N.; Chaitra, S.; Bhuvana Mohini, T.N.; Stephan, T.; Mohan, V.; Agarwal, N. EEG-based neurodegenerative disease diagnosis: Comparative analysis of conventional methods and deep learning models. Sci. Rep. 2025, 15, 15950. [Google Scholar] [CrossRef] [PubMed]
- Lee, M.W.; Kim, H.W.; Choe, Y.S.; Yang, H.S.; Lee, J.; Lee, H.; Yong, J.H.; Kim, D.; Lee, M.; Kang, D.W.; et al. A multimodal machine learning model for predicting dementia conversion in Alzheimer’s disease. Sci. Rep. 2024, 14, 12276. [Google Scholar] [CrossRef]
- Ganapathi, A.S.; Glatt, R.M.; Bookheimer, T.H.; Popa, E.S.; Ingemanson, M.L.; Richards, C.J.; Hodes, J.F.; Pierce, K.P.; Slyapich, C.B.; Iqbal, F.; et al. Differentiation of Subjective Cognitive Decline, Mild Cognitive Impairment, and Dementia Using qEEG/ERP-Based Cognitive Testing and Volumetric MRI in an Outpatient Specialty Memory Clinic. J. Alzheimer’s Dis. 2022, 90, 1761–1769. [Google Scholar] [CrossRef]
- Aviles, M.; Sánchez-Reyes, L.M.; Álvarez-Alvarado, J.M.; Rodríguez-Reséndiz, J. Machine and Deep Learning Trends in EEG-Based Detection and Diagnosis of Alzheimer’s Disease: A Systematic Review. Eng 2024, 5, 1464–1484. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, Y.; Wang, J.; Xia, Y.; Zhang, J.; Chen, L. Recent advances in Alzheimer’s disease: Mechanisms, clinical trials and new drug development strategies. Sig. Transduct. Target Ther. 2024, 9, 211. [Google Scholar] [CrossRef]
- Wang, Y. Multi-modal neuroimaging and EEG biomarkers for early Alzheimer’s diagnosis: Progress and perspectives. J. Neuroimaging 2021, 31, 626–644. [Google Scholar]
- Briels, C.T.; Schoonhoven, D.N.; Stam, C.J.; de Waal, H.; Scheltens, P.; Gouw, A.A. Reproducibility of EEG functional connectivity in Alzheimer’s disease. Alzheimer’s Res. Ther. 2020, 12, 68. [Google Scholar] [CrossRef]
- Schmidt, M.T.; Kanda, P.A.M.; Basile, L.F.H.; da Silva Lopes, H.F.; Baratho, R.; Demario, J.L.C.; Jorge, M.S.; Nardi, A.E.; Machado, S.; Ianof, J.N.; et al. Index of alpha/theta ratio of the electroencephalogram: A new marker for Alzheimer’s disease. Front. Aging Neurosci. 2013, 5, 60. [Google Scholar] [CrossRef] [PubMed]
- Siuly, S.; Alcin, O.F.; Kabir, E.; Sengur, A.; Wang, H.; Zhang, Y.; Whittaker, F. A new framework for automatic detection of patients with mild cognitive impairment using resting-state EEG signals. IEEE Trans. Neural Syst. Rehabil. Eng. 2020, 28, 1966–1976. [Google Scholar] [CrossRef] [PubMed]
- Babiloni, C.; Del Percio, C.; Lizio, R.; Noce, G.; Lopez, S.; Soricelli, A.; Ferri, R.; Pascarelli, M.T.; Catania, V.; Nobili, F.; et al. Abnormalities of resting state cortical EEG rhythms in subjects with mild cognitive impairment due to alzheimer’s and lewy body diseases. J. Alzheimer’s Dis. 2018, 62, 247–268. [Google Scholar] [CrossRef]
- Dottori, M.; Sedeño, L.; Caro, M.M.; Alifano, F.; Hesse, E.; Mikulan, E.; García, A.M.; Ruiz-Tagle, A.; Lillo, P.; Slachevsky, A.; et al. Towards affordable biomarkers of frontotemporal dementia: A classification study via network’s information sharing. Sci. Rep. 2017, 7, 3822. [Google Scholar] [CrossRef] [PubMed]
- Ieracitano, C.; Mammone, N.; Bramanti, A.; Hussain, A.; Morabito, F.C. A convolutional neural network approach for classification of dementia stages based on 2D-spectral representation of EEG recordings. Neurocomputing 2019, 323, 96–107. [Google Scholar] [CrossRef]
- Klepl, D.; He, F.; Wu, M.; Blackburn, D.J.; Sarrigiannis, P. EEG-based graph neural network classification of Alzheimer’s disease: An empirical evaluation of functional connectivity methods. IEEE Trans. Neural Syst. Rehabil. Eng. 2022, 30, 2651–2660. [Google Scholar] [CrossRef]
- Gkenios, G.; Latsiou, K.; Diamantaras, K.; Chouvarda, I.; Tsolaki, M. Diagnosis of Alzheimer’s disease and mild cognitive impairment using EEG and recurrent neural networks. In Proceedings of the 2022 44th Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), Glasgow, UK, 11–15 July 2022; pp. 3179–3182. [Google Scholar]
- Klepl, D.; He, F.; Wu, M.; Blackburn, D.J.; Sarrigiannis, P. Adaptive gated graph convolutional network for explainable diagnosis of Alzheimer’s disease using EEG data. IEEE Trans. Neural Syst. Rehabil. Eng. 2023, 31, 3978–3987. [Google Scholar] [CrossRef]
- Jiao, B.; Li, R.; Zhou, H.; Qing, K.; Liu, H.; Pan, H.; Lei, Y.; Fu, W.; Wang, X.; Xiao, X.; et al. Neural biomarker diagnosis and prediction to mild cognitive impairment and Alzheimer’s disease using EEG technology. Alzheimer’s Res. Ther. 2023, 15, 32. [Google Scholar] [CrossRef]
- Hasan Saif, F.; Al-Andoli, M.N.; Bejuri, W.M.Y.W. Explainable AI for Alzheimer Detection: A Review of Current Methods and Applications. Appl. Sci. 2024, 14, 10121. [Google Scholar] [CrossRef]
- Ehteshamzad, S. Assessing the Potential of EEG in Early Detection of Alzheimer’s Disease: A Systematic Comprehensive Review (2000–2023). J. Alzheimer’s Dis. Rep. 2024, 8, 1153–1169. [Google Scholar] [CrossRef]
- Akbar, F.; Taj, I.; Usman, S.M.; Imran, A.S.; Khalid, S.; Ihsan, I.; Ali, A.; Yasin, A. Unlocking the potential of EEG in Alzheimer’s disease research: Current status and pathways to precision detection. Brain Res. Bull. 2025, 223, 111281. [Google Scholar] [CrossRef]
- Zhang, T. Efficient deep learning approaches for EEG-based early Alzheimer’s detection: A review of recent progress. Front. Aging Neurosci. 2022, 14, 908105. [Google Scholar]
- Arya, A.D.; Verma, S.S.; Chakarabarti, P.; Chakrabarti, T.; Elngar, A.A.; Kamali, A.M.; Nami, M. A systematic review on machine learning and deep learning techniques in the effective diagnosis of Alzheimer’s disease. Brain Inform. 2023, 10, 17. [Google Scholar] [CrossRef]
- Del Percio, C.; Lizio, R.; Lopez, S.; Noce, G.; Carpi, M.; Jakhar, D.; Soricelli, A.; Salvatore, M.; Yener, G.; Güntekin, B.; et al. Resting-State EEG Alpha Rhythms Are Related to CSF Tau Biomarkers in Prodromal Alzheimer’s Disease. Int. J. Mol. Sci. 2025, 26, 356. [Google Scholar] [CrossRef]
- Jiang, X.; Bian, G.-B.; Tian, Z. Removal of Artifacts from EEG Signals: A Review. Sensors 2019, 19, 987. [Google Scholar] [CrossRef]
- Mostile, G.; Terranova, R.; Carlentini, G.; Contrafatto, F.; Terravecchia, C.; Donzuso, G.; Sciacca, G.; Cicero, C.E.; Luca, A.; Nicoletti, A.; et al. Differentiating neurodegenerative diseases based on EEG complexity. Sci. Rep. 2024, 14, 24365. [Google Scholar] [CrossRef] [PubMed]
- Prichep, L.S. Use of normative databases and statistical methods in demonstrating clinical utility of QEEG: Importance and cautions. Clin. EEG Neurosci. 2005, 36, 82–87. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Huang, W.; Su, L.; Xing, Y.; Jessen, F.; Sun, Y.; Shu, N.; Han, Y. Neuroimaging advances regarding subjective cognitive decline in preclinical Alzheimer’s disease. Mol. Neurodegener. 2020, 15, 55. [Google Scholar] [CrossRef] [PubMed]
Study Sample (Patients) | qEEG Parameters Studied | Results | References |
---|---|---|---|
AD 50, NC 57 | Alpha/theta ratio | Discrimination between AD and normal controls (NCs): sensitivity = 73%; Specificity = 82% | Schmidt et al., 2013 [50] |
AD 50, NC 50 | Spectral and wavelet | Discrimination between AD and NC: sensitivity = 92–96%; specificity = 84–92% | Bairagi, 2018 [41] |
11 MCI, 17 NC | Wavelet transformation−ELM-based model | Discrimination between MCI and NC: | Siuly et al. [51] |
sensitivity = 98.32% and specificity = 99.66% | |||
ADMCI 30, DLBMCI 23, NC 30 | eLORETA | ADMCI vs. NC: sensitivity = 90.0%; specificity = 73.3% | Babiloni et al. [52] |
AD 13, bvFTD 13NC 18 | Functional connectivity analysis | AD vs. NC: AUC = 0.54; Acc = 44.9% | Dottori et al. [53] |
AD 63, MCI 63, NC 63 | PSD image and spectral features | AD vs. MCI vs. NC: accuracy = 83.33% | Ieracitano et al. [54] |
AD 20, NC 20 | Functional connectivity analysis | AD vs. NC: accuracy = 84.7%; sensitivity = 86.2%; specificity = 83.2% | Klepl et al. [55] |
AD 18, MCI 18, NC 18 | Frequency-domain features | AD vs. MCI: 88.9% sensitivity and 72.2% specificity; AD vs. NC: 89% sensitivity and 77.8% specificity | Gkenios et al. [56] |
AD 20, NC 20 | Functional connectivity analysis and power spectral density | AD vs. NC: accuracy = 89.1% | Klepl et al. [57] |
AD 330, MCI 189, NC 246 | Hjorth metrics and sample entropy | AD vs. MCI vs. NC: diagnostic accuracy = 70% | Jiao et al. [58] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Papaliagkas, V. The Role of Quantitative EEG in the Diagnosis of Alzheimer’s Disease. Diagnostics 2025, 15, 1965. https://doi.org/10.3390/diagnostics15151965
Papaliagkas V. The Role of Quantitative EEG in the Diagnosis of Alzheimer’s Disease. Diagnostics. 2025; 15(15):1965. https://doi.org/10.3390/diagnostics15151965
Chicago/Turabian StylePapaliagkas, Vasileios. 2025. "The Role of Quantitative EEG in the Diagnosis of Alzheimer’s Disease" Diagnostics 15, no. 15: 1965. https://doi.org/10.3390/diagnostics15151965
APA StylePapaliagkas, V. (2025). The Role of Quantitative EEG in the Diagnosis of Alzheimer’s Disease. Diagnostics, 15(15), 1965. https://doi.org/10.3390/diagnostics15151965