Beyond Bone Mineral Density: Real-World Fracture Risk Profiles and Therapeutic Gaps in Postmenopausal Osteoporosis
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design and Participants
2.2. Clinical and Demographic Data
2.3. Classification of Skeletal Risk Indicators (Fractures, Bone Lession, and Family History)
2.4. Antiosteoporosis Treatment Categories
2.5. Statistical Analysis
2.6. Ethical Onsiderations
3. Results
3.1. Baseline Characteristics
3.2. Association Between Skeletal Risk Indicators and Bone Mineral Density
3.3. Treatment Categories and Their Association with BMD
3.4. Impact of Hormone Replacement Therapy
3.5. Independent Predictors of Osteoporosis: A Multivariate Analysis of Clinical and Skeletal Fragility Indicators
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
Full term | |
BMD | Bone mineral density |
DXA | Dual-energy X-ray absorptiometry |
HRT | Hormone replacement therapy |
BMI | Body mass index |
OR | Odds ratio |
CI | Confidence interval |
MHT | Menopausal hormone therapy |
PFH | Personal fracture history |
FFH | Family fracture history |
BL | Bone lesion |
SD | Standard deviation |
T-score | Standard deviation from young adult reference |
FRAX | Fracture risk assessment tool |
RANKL | Receptor activator of nuclear factor kappa-B ligand |
References
- Fanelli, F.; Guglielmi, G.; Troiano, G.; Rivara, F.; Passeri, G.; Prencipe, G.; Zhurakivska, K.; Guglielmi, R.; Calciolari, E. Development of AI-Based Predictive Models for Osteoporosis Diagnosis in Postmenopausal Women from Panoramic Radiographs. J. Clin. Med. 2025, 14, 4462. [Google Scholar] [CrossRef]
- Charde, S.H.; Joshi, A.; Raut, J. A Comprehensive Review on Postmenopausal Osteoporosis in Women. Cureus 2023, 15, e48582. [Google Scholar] [CrossRef]
- Tit, D.M.; Bungau, S.; Iovan, C.; Cseppento, D.C.N.; Endres, L.; Sava, C.; Sabau, A.M.; Furau, G.; Furau, C. Effects of the Hormone Replacement Therapy and of Soy Isoflavones on Bone Resorption in Postmenopause. J. Clin. Med. 2018, 7, 297. [Google Scholar] [CrossRef]
- Kanis, J.A.; Cooper, C.; Rizzoli, R.; Reginster, J.-Y. European Guidance for the Diagnosis and Management of Osteoporosis in Postmenopausal Women. Osteoporos. Int. 2019, 30, 3–44. [Google Scholar] [CrossRef]
- Epidemiology of Osteoporosis and Fragility Fractures. Available online: https://www.osteoporosis.foundation/facts-statistics/epidemiology-of-osteoporosis-and-fragility-fractures (accessed on 25 March 2025).
- Sharma, A.; Sharma, C.; Shah, O.; Chigurupati, S.; Ashokan, B.; Meerasa, S.; Rashid, S.; Behl, T.; Bungau, S. Understanding the Mechanistic Potential of Plant Based Phytochemicals in Management of Postmenopausal Osteoporosis. Biomed. Pharmacother. 2023, 163, 114850. [Google Scholar] [CrossRef] [PubMed]
- Karlamangla, A.S.; Burnett-Bowie, S.-A.M.; Crandall, C.J. Bone Health During the Menopause Transition and Beyond. Obstet. Gynecol. Clin. N. Am. 2018, 45, 695–708. [Google Scholar] [CrossRef] [PubMed]
- Kanis, J.A.; Harvey, N.C.; Johansson, H.; Odén, A.; Leslie, W.D.; McCloskey, E.V. FRAX Update. J. Clin. Densitom. 2017, 20, 360–367. [Google Scholar] [CrossRef]
- Kanis, J.A. Diagnosis of Osteoporosis and Assessment of Fracture Risk. Lancet 2002, 359, 1929–1936. [Google Scholar] [CrossRef]
- Palacios, S. Medical Treatment of Osteoporosis. Climacteric 2022, 25, 43–49. [Google Scholar] [CrossRef]
- Kanis, J.A.; Norton, N.; Harvey, N.C.; Jacobson, T.; Johansson, H.; Lorentzon, M.; McCloskey, E.V.; Willers, C.; Borgström, F. SCOPE 2021: A New Scorecard for Osteoporosis in Europe. Arch. Osteoporos. 2021, 16, 82. [Google Scholar] [CrossRef]
- Cosman, F.; de Beur, S.J.; LeBoff, M.S.; Lewiecki, E.M.; Tanner, B.; Randall, S.; Lindsay, R. Clinician’s Guide to Prevention and Treatment of Osteoporosis. Osteoporos. Int. 2014, 25, 2359–2381. [Google Scholar] [CrossRef] [PubMed]
- ISCD. International Society for Clinical Densitometry. ISCD Official Positions—Adult 2023. Available online: https://iscd.org/official-positions-2023/ (accessed on 26 June 2025).
- Assessment of Fracture Risk and Its Application to Screening for Postmenopausal Osteoporosis: Report of a WHO Study Group. Available online: https://iris.who.int/handle/10665/39142 (accessed on 26 June 2025).
- International Osteoporosis Foundation. SCOPE 2021: A Compendium of Country-Specific Reports—Romania Country Profile. Available online: https://www.osteoporosis.foundation/scope-2021 (accessed on 26 July 2025).
- Albrecht, A.P.; Kistler-Fischbacher, M.; De Godoi Rezende Costa Molino, C.; Armbrecht, G.; Freystaetter, G.; Theiler, R.; Kressig, R.W.; Da Silva, J.A.P.; Rizzoli, R.; Wanner, G.A.; et al. Prevalence and Incidence of Osteoporotic Vertebral Fractures in Community-Dwelling European Older Adults: An Observational Analysis of the DO-HEALTH Trial. Osteoporos. Int. 2025, 36, 1077–1088. [Google Scholar] [CrossRef] [PubMed]
- Carlson, B.B.; Salzmann, S.N.; Shirahata, T.; Ortiz Miller, C.; Carrino, J.A.; Yang, J.; Reisener, M.-J.; Sama, A.A.; Cammisa, F.P.; Girardi, F.P.; et al. Prevalence of Osteoporosis and Osteopenia Diagnosed Using Quantitative CT in 296 Consecutive Lumbar Fusion Patients. Neurosurg. Focus 2020, 49, E5. [Google Scholar] [CrossRef] [PubMed]
- Shim, J.; Iwaya, C.; Ambrose, C.G.; Suzuki, A.; Iwata, J. Micro-Computed Tomography Assessment of Bone Structure in Aging Mice. Sci. Rep. 2022, 12, 8117. [Google Scholar] [CrossRef]
- Yılmaz, D.; Marques, F.C.; Gregorio, L.; Schlatter, J.; Gehre, C.; Pararajasingam, T.; Qiu, W.; Mathavan, N.; Qin, X.-H.; Wehrle, E.; et al. Age- and Sex-Specific Deterioration on Bone and Osteocyte Lacuno-Canalicular Network in a Mouse Model of Premature Aging. Bone Res. 2025, 13, 55. [Google Scholar] [CrossRef]
- Acevedo, J.B.H.; Lenchik, L.; Weaver, A.A.; Boutin, R.D.; Wuertzer, S. Opportunistic Screening of Bone Fragility Using Computed Tomography. Semin. Musculoskelet. Radiol. 2024, 28, 620–627. [Google Scholar] [CrossRef]
- Lenchik, L.; Weaver, A.A.; Ward, R.J.; Boone, J.M.; Boutin, R.D. Opportunistic Screening for Osteoporosis Using Computed Tomography: State of the Art and Argument for Paradigm Shift. Curr. Rheumatol. Rep. 2018, 20, 74. [Google Scholar] [CrossRef]
- Kanis, J.A.; Johansson, H.; Oden, A.; Johnell, O.; De Laet, C.; Eisman, J.A.; McCloskey, E.V.; Mellstrom, D.; Melton, L.J., 3rd; Pols, H.A.P.; et al. A Family History of Fracture and Fracture Risk: A Meta-Analysis. Bone 2004, 35, 1029–1037. [Google Scholar] [CrossRef]
- Gharaibeh, L.; Alameri, M.; Lafi, Z.; Abu-Farha, R.; Yaghi, A.; Sahawneh, N.; Alkateeb, N.; Alfawair, M. Exploring Fracture Risk Assessment Tool (FRAX®) for Women 50 Years and Older: A Cross-Sectional Study. Electron. J. Gen. Med. 2025, 22, em633. [Google Scholar] [CrossRef]
- Curry, S.J.; Krist, A.H.; Owens, D.K.; Barry, M.J.; Caughey, A.B.; Davidson, K.W.; Doubeni, C.A.; Epling, J.W.J.; Kemper, A.R.; Kubik, M.; et al. Screening for Osteoporosis to Prevent Fractures: US Preventive Services Task Force Recommendation Statement. JAMA 2018, 319, 2521–2531. [Google Scholar]
- Jianu, N.; Buda, V.O.; Căpățână, D.; Muntean, C.; Onea, T.N.; Jivulescu, M.A.; Teodor, A.; Romanescu, M.; Udrescu, L.; Groza, V.; et al. Osteoporosis: A Problem Still Faulty Addressed by the Romanian Healthcare System. Results of a Questionnaire Survey of People Aged 40 Years and Over. Front. Med. 2024, 11, 1485382. [Google Scholar] [CrossRef] [PubMed]
- Schwartz, A.V.; Sellmeyer, D.E.; Ensrud, K.E.; Cauley, J.A.; Tabor, H.K.; Schreiner, P.J.; Jamal, S.A.; Black, D.M.; Cummings, S.R. Older Women with Diabetes Have an Increased Risk of Fracture: A Prospective Study. J. Clin. Endocrinol. Metab. 2001, 86, 32–38. [Google Scholar] [CrossRef] [PubMed]
- Compston, J. Glucocorticoid-Induced Osteoporosis: An Update. Endocrine 2018, 61, 7–16. [Google Scholar] [CrossRef] [PubMed]
- Tuchendler, D.; Bolanowski, M. The Influence of Thyroid Dysfunction on Bone Metabolism. Thyroid Res. 2014, 7, 12. [Google Scholar] [CrossRef]
- Taxel, P.; Faircloth, E.; Idrees, S.; Van Poznak, C. Cancer Treatment–Induced Bone Loss in Women with Breast Cancer and Men with Prostate Cancer. J. Endocr. Soc. 2018, 2, 574–588. [Google Scholar] [CrossRef]
- Greendale, G.A.; Lee, N.P.; Arriola, E.R. The Menopause. Lancet 1999, 353, 571–580. [Google Scholar] [CrossRef]
- Cauley, J.A. Estrogen and Bone Health in Men and Women. Steroids 2015, 99, 11–15. [Google Scholar] [CrossRef]
- Gallagher, J.C. Effect of Early Menopause on Bone Mineral Density and Fractures. Menopause 2007, 14, 567–571. [Google Scholar] [CrossRef]
- Faubion, S.S.; Crandall, C.J.; Davis, L.; El Khoudary, S.R.; Hodis, H.N.; Lobo, R.A.; Maki, P.M.; Manson, J.E.; Pinkerton, J.V.; Santoro, N.F.; et al. The 2022 Hormone Therapy Position Statement of the North American Menopause Society. Menopause 2022, 29, 767–794. [Google Scholar] [CrossRef]
- Mihai, G.; Paşcanu, I. Should We Screen for Sarcopenia in Romanian Patients with Osteoporosis? An Overview of the Current Knowledge on Osteosarcopenia. Acta Marisiensis-Ser. Medica 2023, 69, 93–97. [Google Scholar] [CrossRef]
- Ayub, N.; Faraj, M.; Ghatan, S.; Reijers, J.A.A.; Napoli, N.; Oei, L. The Treatment Gap in Osteoporosis. J. Clin. Med. 2021, 10, 3002. [Google Scholar] [CrossRef]
- Fuggle, N.R.; Curtis, B.; Clynes, M.; Zhang, J.; Ward, K.; Javaid, M.K.; Harvey, N.C.; Dennison, E.; Cooper, C. The Treatment Gap: The Missed Opportunities for Osteoporosis Therapy. Bone 2021, 144, 115833. [Google Scholar] [CrossRef]
- Osteoporosis: Diagnosis, Treatment, and Steps to Take. Available online: https://www.niams.nih.gov/health-topics/osteoporosis/diagnosis-treatment-and-steps-to-take (accessed on 27 June 2025).
- Harvey, N.C.W.; McCloskey, E.V.; Mitchell, P.J.; Dawson-Hughes, B.; Pierroz, D.D.; Reginster, J.-Y.; Rizzoli, R.; Cooper, C.; Kanis, J.A. Mind the (Treatment) Gap: A Global Perspective on Current and Future Strategies for Prevention of Fragility Fractures. Osteoporos. Int. 2017, 28, 1507–1529. [Google Scholar] [CrossRef]
- Bell, A.; Kendler, D.L.; Khan, A.A.; Shapiro CM, M.; Morisset, A.; Leung, J.-P.; Reiner, M.; Colgan, S.M.; Slatkovska, L.; Packalen, M. A Retrospective Observational Study of Osteoporosis Management after a Fragility Fracture in Primary Care. Arch. Osteoporos. 2022, 17, 75. [Google Scholar] [CrossRef]
- Reginster, J.-Y.; Schmidmaier, R.; Alokail, M.; Hiligsmann, M. Cost-Effectiveness of Opportunistic Osteoporosis Screening Using Chest Radiographs with Deep Learning in Germany. Aging Clin. Exp. Res. 2025, 37, 149. [Google Scholar] [CrossRef] [PubMed]
- Yeh, E.J.; Gitlin, M.; Sorio, F.; McCloskey, E. Estimating the Future Clinical and Economic Benefits of Improving Osteoporosis Diagnosis and Treatment among Postmenopausal Women across Eight European Countries. Arch. Osteoporos. 2023, 18, 68. [Google Scholar] [CrossRef] [PubMed]
- Deardorff, W.J.; Cenzer, I.; Nguyen, B.; Lee, S.J. Time to Benefit of Bisphosphonate Therapy for the Prevention of Fractures Among Postmenopausal Women with Osteoporosis: A Meta-Analysis of Randomized Clinical Trials. JAMA Intern. Med. 2022, 182, 33–41. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Ge, Z.; Zhang, B.; Sun, L.; Wang, Z.; Zou, T.; Chen, Q. Efficacy and Safety of Teriparatide vs. Bisphosphonates and Denosumab vs. Bisphosphonates in Osteoporosis Not Previously Treated with Bisphosphonates: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Arch. Osteoporos. 2024, 19, 89. [Google Scholar] [CrossRef]
- Kobayashi, T.; Morimoto, T.; Ito, K.; Mawatari, M.; Shimazaki, T. Denosumab vs. Bisphosphonates in Primary Osteoporosis: A Meta-Analysis of Comparative Safety in Randomized Controlled Trials. Osteoporos. Int. 2024, 35, 1377–1393. [Google Scholar] [CrossRef]
- Bisphosphonates. Available online: https://www.osteoporosis.foundation/health-professionals/treatment/bisphosphonates (accessed on 27 June 2025).
- Kendler, D.L.; Cosman, F.; Stad, R.K.; Ferrari, S. Denosumab in the Treatment of Osteoporosis: 10 Years Later: A Narrative Review. Adv. Ther. 2022, 39, 58–74. [Google Scholar] [CrossRef]
- Lamy, O.; Everts-Graber, J.; Rodriguez, E.G. Denosumab for Osteoporosis Treatment: When, How, for Whom, and for How Long. A Pragmatical Approach. Aging Clin. Exp. Res. 2025, 37, 70. [Google Scholar] [CrossRef]
- Petre, I.; Barna, F.; Gurgus, D.; Tomescu, L.C.; Apostol, A.; Petre, I.; Furau, C.; Năchescu, M.L.; Bordianu, A. Analysis of the Healthcare System in Romania: A Brief Review. Healthcare 2023, 11, 2069. [Google Scholar] [CrossRef]
Category | Subcategory/Type | Definition/Description |
---|---|---|
Personal fractures (PHF) | Foot/ankle | Fractures of the toes, metatarsals, tarsals, or ankle bones |
Hand/fingers | Fractures involving phalanges or metacarpals | |
Hip/pelvis | Fractures of the femoral neck, intertrochanteric area, or pelvic ring | |
Leg/knee | Fractures of the tibia, fibula, or patella | |
Shoulder/clavicle | Clavicular/proximal humeral fractures (excluding upper arm shaft) | |
Upper arm | Humeral shaft fractures distinct from shoulder region | |
Wrist/forearm | Fractures of the distal radius, ulna, or forearm region | |
Vertebral | Clinical or radiographic vertebral body fractures | |
Ribs | Fractures of one or more ribs | |
Other/multiple | Multiple/unspecified locations; often reported as various/several fractures | |
No fracture | No reported personal fragility fracture history | |
Family history of fracture (FHF) | Hip | First-degree relatives (mother, sister) with a hip fracture, mostly maternal |
Vertebral | Vertebral fracture in first-degree relatives | |
Wrist | Wrist or distal radius fracture in first-degree relatives | |
No family fracture | No reported history of osteoporosis-related fractures in first-degree relatives | |
Bone lesions | Vertebral | Imaging-detected vertebral deformity (compression, wedge, etc.) |
Upper extremity | Lesions in humerus, radius, or clavicle observed on imaging | |
Lower extremity | Femur or tibia/fibula lesions noted radiographically | |
Multiple | Bone lesions present in more than one anatomical region | |
Other | Non-specific or poorly localized lesions (e.g., suspected lesion, not otherwise classified) | |
No lesion | No bone lesion noted in radiologic or clinical documentation |
Treatment Category | Representative Agents/Examples | Notes |
---|---|---|
No treatment | — | No supplements or osteoporosis medications reported |
Calcium and/or vitamin D | Calcium and/or vitamin D3 supplements, including combinations such as calcium carbonate, vitamin D3, and fixed-dose calcium + D3 complexes | Used as supplements only, without pharmacological antiresorptive agents |
Bisphosphonates | Alendronate, risedronate, ibandronate | First-line antiresorptive drugs; oral or injectable; weekly or monthly |
RANKL inhibitors | Denosumab | Injectable antiresorptive therapy, alternative to bisphosphonates |
Other antiosteoporotics | Raloxifene, teriparatide, strontium ranelate | Second-line or specific case therapies; often used in severe osteoporosis |
Uncategorized/unknown | Not clearly specified | Cases where medication data were incomplete or unclear |
Age Group (Years) | Count | Percentage (%) |
---|---|---|
40–49 | 83 | 4.98 |
50–59 | 513 | 30.77 |
60–69 | 674 | 40.43 |
70–79 | 335 | 20.07 |
80+ | 64 | 3.84 |
Category | Count | Percentage (%) |
---|---|---|
Urban residence | 1151 | 68.96 |
Rural residence | 517 | 30.97 |
BMI ≥ 25 (overweight/obese) | 1268 | 75.97 |
BMI 18.5–24.9 (normal) | 400 | 23.97 |
Thyroid disorders | 133 | 7.97 |
Type 2 diabetes or prediabetes | 250 | 14.98 |
History of cancer | 66 | 3.95 |
Chronic corticosteroid therapy | 83 | 4.97 |
Chemotherapy | 50 | 3.00 |
DXA diagnosis | ||
Osteoporosis | 751 | 45.01 |
Osteopenia | 726 | 43.50 |
Normal BMD | 191 | 11.50 |
Category Type | Subtype | Count | Percentage (%) |
---|---|---|---|
Personal fracture | No fracture | 1239 | 74.24 |
Foot/ankle | 65 | 3.90 | |
Hand/fingers | 191 | 11.44 | |
Hip/pelvis | 16 | 0.96 | |
Leg/knee | 61 | 3.66 | |
Other/multiple | 37 | 2.22 | |
Ribs | 14 | 0.84 | |
Shoulder/clavicle | 21 | 1.26 | |
Upper arm | 3 | 0.18 | |
Vertebral | 15 | 0.90 | |
Wrist/forearm | 7 | 0.42 | |
Family fracture | No family fracture | 1606 | 96.2 |
Hip | 45 | 2.7 | |
Vertebral | 12 | 0.7 | |
Wrist | 6 | 0.4 | |
Bone lesion | Lower extremity | 105 | 6.3 |
Multiple | 31 | 1.9 | |
No lesion | 1243 | 74.5 | |
Other | 27 | 1.6 | |
Upper extremity | 249 | 14.9 | |
Vertebral | 14 | 0.8 |
Risk Factor | Normal BMD n (%) | Osteopenia n (%) | Osteoporosis n (%) | Total (n) | Chi2 (p Value) | |
---|---|---|---|---|---|---|
Personal fracture history | No | 154 (12.4) | 545 (44.0) | 540 (43.6) | 1239 | 0.050 |
Yes | 38 (8.8) | 181 (42.1) | 211 (49.1) | 430 | ||
Bone lesions | No | 154 (12.4) | 547 (44.0) | 542 (43.6) | 1243 | 0.058 |
Yes | 38 (8.9) | 179 (42.0) | 209 (49.1) | 426 | ||
Family fracture history | No | 187 (11.7) | 698 (43.5) | 719 (44.9) | 1604 | 0.608 |
Yes | 5 (7.9) | 27 (42.9) | 31 (49.2) | 63 |
Treatment Category | Normal n (%) | Osteopenia n (%) | Osteoporosis n (%) | Total (n) | Chi2 (p Value) |
---|---|---|---|---|---|
Bisphosphonates | 10 (3.3) | 91 (30.3) | 199 (66.3) | 300 | <0.001 |
Calcium and/or vitamin D | 17 (4.9) | 151 (43.9) | 176 (51.2) | 344 | 0.006 |
Denosumab | 0 (0.0) | 0 (0.0) | 1 (100.0) | 1 | - |
No treatment | 164 (16.8) | 467 (47.8) | 345 (35.3) | 976 | <0.001 |
Other antiosteoporotics | 1 (3.8) | 6 (23.1) | 19 (73.1) | 26 | 0.113 |
Uncategorized/unknown | 0 (0.0) | 11 (50.0) | 11 (50.0) | 22 | 0.261 |
Predictor Variable | Coefficient | OR | 95% CI | p Value |
---|---|---|---|---|
Intercept | 1.559 | 4.754 | 1.103–20.491 | 0.036 |
Age at menopause (years) | 0.026 | 1.027 | 1.004–1.050 | 0.022 |
BMI (kg/m2) | 0.003 | 1.003 | 0.977–1.030 | 0.801 |
Urban residence | −0.016 | 0.985 | 0.670–1.448 | 0.937 |
Corticosteroid therapy | −0.514 | 0.598 | 0.234–1.526 | 0.282 |
Hormone replacement therapy | −0.212 | 0.809 | 0.561–1.169 | 0.259 |
Personal fracture history | −0.172 | 0.842 | 0.129–5.505 | 0.857 |
Family fracture history | −0.27 | 0.763 | 0.415–1.403 | 0.385 |
Radiological bone lesion | −0.141 | 0.869 | 0.132–5.696 | 0.883 |
DXA: osteopenia vs. normal | −0.876 | 0.417 | 0.209–0.829 | 0.013 |
DXA: osteoporosis vs. normal | −1.83 | 0.16 | 0.080–0.320 | <0.001 |
Outcome | HRT: No n (%) | HRT: Yes n (%) | Chi2 (p Value) | |
---|---|---|---|---|
DXA diagnosis | Normal | 167 (11.4) | 25 (12.4) | 0.699 |
Osteopenia | 644 (43.9) | 82 (40.8) | ||
Osteoporosis | 657 (44.8) | 94 (46.8) | ||
Personal fracture history | No | 1109 (75.5) | 130 (64.7) | <0.001 |
Yes | 359 (24.5) | 71 (35.3) | ||
Bone lesions | No | 1111 (75.7) | 132 (65.7) | 0.002 |
Yes | 357 (24.3) | 69 (34.3) | ||
Active treatment | No | 1188 (80.9) | 154 (76.6) | 0.149 |
Yes | 280 (19.1) | 47 (23.4) |
Predictor Variable | Coefficient | OR | 95% CI (OR) | p Value |
---|---|---|---|---|
Age (years) | 0.053 | 1.054 | 1.042–1.067 | <0.001 |
BMI | −0.068 | 0.934 | 0.914–0.956 | <0.001 |
Personal fracture history | 0.207 | 1.231 | 0.244–6.204 | 0.802 |
Family fracture history | 0.302 | 1.352 | 0.794–2.303 | 0.267 |
Bone lesions | −0.034 | 0.967 | 0.191–4.898 | 0.968 |
Thyroid disorders | 0.161 | 1.175 | 0.933–1.479 | 0.170 |
Type 2 diabetes | −0.460 | 0.631 | 0.447–0.891 | 0.009 |
Cancer history | 0.167 | 1.182 | 0.725–1.924 | 0.503 |
Corticosteroid therapy | 0.044 | 1.045 | 0.449–2.428 | 0.919 |
Chemotherapy exposure | −0.575 | 0.563 | 0.282–1.122 | 0.103 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ardelean, A.; Tit, D.M.; Furau, R.; Todut, O.; Bungau, G.S.; Pavel, R.M.S.; Uivaraseanu, B.; Bei, D.A.; Furau, C. Beyond Bone Mineral Density: Real-World Fracture Risk Profiles and Therapeutic Gaps in Postmenopausal Osteoporosis. Diagnostics 2025, 15, 1972. https://doi.org/10.3390/diagnostics15151972
Ardelean A, Tit DM, Furau R, Todut O, Bungau GS, Pavel RMS, Uivaraseanu B, Bei DA, Furau C. Beyond Bone Mineral Density: Real-World Fracture Risk Profiles and Therapeutic Gaps in Postmenopausal Osteoporosis. Diagnostics. 2025; 15(15):1972. https://doi.org/10.3390/diagnostics15151972
Chicago/Turabian StyleArdelean, Anamaria, Delia Mirela Tit, Roxana Furau, Oana Todut, Gabriela S. Bungau, Roxana Maria Sânziana Pavel, Bogdan Uivaraseanu, Diana Alina Bei, and Cristian Furau. 2025. "Beyond Bone Mineral Density: Real-World Fracture Risk Profiles and Therapeutic Gaps in Postmenopausal Osteoporosis" Diagnostics 15, no. 15: 1972. https://doi.org/10.3390/diagnostics15151972
APA StyleArdelean, A., Tit, D. M., Furau, R., Todut, O., Bungau, G. S., Pavel, R. M. S., Uivaraseanu, B., Bei, D. A., & Furau, C. (2025). Beyond Bone Mineral Density: Real-World Fracture Risk Profiles and Therapeutic Gaps in Postmenopausal Osteoporosis. Diagnostics, 15(15), 1972. https://doi.org/10.3390/diagnostics15151972