Associations Between Paternal Body Mass Index and Neurodevelopmental–Physical Outcomes in Small-for-Gestational-Age Children
Abstract
1. Introduction
2. Methods
2.1. Study Design and Site
2.2. Participants
2.3. Perinatal and Parental Data Collection
2.4. Sample Size Calculation
2.5. Long-Term Physical and Neurodevelopmental Assessment
2.6. Statistical Analysis
3. Results
4. Discussion
5. Strengths and Limitations
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Suárez-Idueta, L.; Yargawa, J.; Blencowe, H.; Bradley, E.; Okwaraji, Y.B.; Pingray, V.; Gibbons, L.; Gordon, A.; Warrilow, K.; Paixao, E.S.; et al. Vulnerable newborn types: Analysis of population-based registries for 165 million births in 23 countries, 2000–2021. BJOG 2023, 1–15. [Google Scholar] [CrossRef]
- Lee, A.C.; Katz, J.; Blencowe, H.; Cousens, S.; Kozuki, N.; Vogel, J.P.; Adair, L.; Baqui, A.H.; Bhutta, Z.A.; Caulfield, L.E.; et al. National and regional estimates of term and preterm babies born small for gestational age in 138 low-income and middle-income countries in 2010. Lancet Glob. Health 2013, 1, e26–e36. [Google Scholar] [CrossRef]
- Campisi, S.C.; Carbone, S.E.; Zlotkin, S. Catch-Up Growth in Full-Term Small for Gestational Age Infants: A Systematic Review. Adv. Nutr. 2019, 10, 104–111. [Google Scholar] [CrossRef] [PubMed]
- Xiang, L.; Li, X.; Mu, Y.; Chen, P.; Xie, Y.; Wang, Y.; Dai, L.; Liu, Z.; Li, Q.; Li, M.; et al. Maternal Characteristics and Prevalence of Infants Born Small for Gestational Age. JAMA Netw. Open 2024, 7, e2429434. [Google Scholar] [CrossRef]
- Castagno, M.; Menegon, V.; Monzani, A.; Zanetta, S.; Secco, G.G.; Rosso, R.; Binotti, M.; Maiuri, L.; Di Mario, C.; Gazzolo, D.; et al. Small-for-gestational-age birth is linked to cardiovascular dysfunction in early childhood. Am. Heart J. 2019, 217, 84–93. [Google Scholar] [CrossRef]
- Martín-Calvo, N.; Goni, L.; Tur, J.A.; Martínez, J.A. Low birth weight and small for gestational age are associated with complications of childhood and adolescence obesity: Systematic review and meta-analysis. Obes. Rev. 2022, 23 (Suppl. S1), e13380. [Google Scholar] [CrossRef] [PubMed]
- Sacchi, C.; Marino, C.; Nosarti, C.; Vieno, A.; Visentin, S.; Simonelli, A. Association of Intrauterine Growth Restriction and Small for Gestational Age Status with Childhood Cognitive Outcomes: A Systematic Review and Meta-analysis. JAMA Pediatr. 2020, 174, 772–781. [Google Scholar] [CrossRef]
- Fung, C.; Zinkhan, E. Short- and Long-Term Implications of Small for Gestational Age. Obstet. Gynecol. Clin. N. Am. 2021, 48, 311–323. [Google Scholar] [CrossRef]
- Hokken-Koelega, A.C.; van der Steen, M.; Boguszewski, M.C.; Cianfarani, S.; Dahlgren, J.; Horikawa, R.; Mericq, V.; Rapaport, R.; Alherbish, A.; Braslavsky, D.; et al. International Consensus Guideline on Small for Gestational Age: Etiology and Management From Infancy to Early Adulthood. Endocr. Rev. 2023, 44, 539–565. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Eiden, R.D.; Epstein, L.H.; Shenassa, E.D.; Xie, C.; Wen, X. Etiological Subgroups of Small-for-Gestational-Age: Differential Neurodevelopmental Outcomes. PLoS ONE 2016, 11, e0160677. [Google Scholar] [CrossRef]
- Manna, C.; Lacconi, V.; Rizzo, G.; De Lorenzo, A.; Massimiani, M. Placental Dysfunction in Assisted Reproductive Pregnancies: Perinatal, Neonatal and Adult Life Outcomes. Int. J. Mol. Sci. 2022, 23, 659. [Google Scholar] [CrossRef] [PubMed]
- Kawashima-Sonoyama, Y.; Wada, K.; Yamamoto, K.; Fujimoto, M.; Namba, N.; Taketani, T. Clinical characteristics of and growth hormone treatment effects on short stature with type 1 insulin-like growth factor receptor (IGF1R) gene alteration. Endocr. J. 2024, 71, 687–694. [Google Scholar] [CrossRef]
- West, Z.; Demchenko, I.; Clark, L.; White, M.; MacFarlane, A.J.; Fraser, W.D.; Arbuckle, T.E.; Connor, K.L. MIREC Study Group Relationships between maternal body mass index and child cognitive outcomes at 3 years of age are buffered by specific early environments in a prospective Canadian birth cohort. J. Dev. Orig. Health Dis. 2023, 14, 42–52. [Google Scholar] [CrossRef]
- Sanchez, C.E.; Barry, C.; Sabhlok, A.; Russell, K.; Majors, A.; Kollins, S.H.; Fuemmeler, B.F. Maternal pre-pregnancy obesity and child neurodevelopmental outcomes: A meta-analysis. Obes. Rev. 2018, 19, 464–484. [Google Scholar] [CrossRef]
- Saben, J.L.; Boudoures, A.L.; Asghar, Z.; Thompson, A.; Drury, A.; Zhang, W.; Chi, M.; Cusumano, A.; Scheaffer, S.; Moley, K.H. Maternal Metabolic Syndrome Programs Mitochondrial Dysfunction via Germline Changes across Three Generations. Cell Rep. 2016, 16, 1–8. [Google Scholar] [CrossRef]
- Black, R.E.; Victora, C.G.; Walker, S.P.; Bhutta, Z.A.; Christian, P.; de Onis, M.; Ezzati, M.; Grantham-McGregor, S.; Katz, J.; Martorell, R.; et al. Maternal and child undernutrition and overweight in low-income and middle-income countries. Lancet 2013, 382, 427–451. [Google Scholar] [CrossRef]
- Soubry, A. POHaD: Why we should study future fathers. Environ. Epigenet. 2018, 4, dvy007. [Google Scholar] [CrossRef] [PubMed]
- Mcloone, P.; Morrison, D.S. Risk of child obesity from parental obesity: Analysis of repeat national cross-sectional surveys. Eur. J. Public Health 2014, 24, 186–190. [Google Scholar] [CrossRef] [PubMed]
- Corsi, D.J.; Subramanian, S.V.; Ackerson, L.K.; Davey Smith, G. Is there a greater maternal than paternal influence on offspring adiposity in India? Arch. Dis. Child. 2015, 100, 973–979. [Google Scholar] [CrossRef]
- Gómez-López, L.; Van Hulst, A.; Barnett, T.A.; Roy-Gagnon, M.H.; Tremblay, A.; O’Loughlin, J.; Lambert, M. Does parental body mass index status modify the associations among birth weight, early growth and childhood adiposity? Paediatr. Child Health 2013, 18, e2–e9. [Google Scholar] [CrossRef]
- Gardner, R.M.; Lee, B.K.; Magnusson, C.; Rai, D.; Frisell, T.; Karlsson, H.; Idring, S.; Dalman, C. Maternal body mass index during early pregnancy, gestational weight gain, and risk of autism spectrum disorders: Results from a Swedish total population and discordant sibling study. Int. J. Epidemiol. 2015, 44, 870–883. [Google Scholar] [CrossRef]
- Casas, M.; Forns, J.; Martínez, D.; Guxens, M.; Fernandez-Somoano, A.; Ibarluzea, J.; Lertxundi, N.; Murcia, M.; Rebagliato, M.; Tardon, A.; et al. Maternal pre-pregnancy obesity and neuropsychological development in pre-school children: A prospective cohort study. Pediatr. Res. 2017, 82, 596–606. [Google Scholar] [CrossRef]
- Coo, H.; Fabrigar, L.; Davies, G.; Fitzpatrick, R.; Flavin, M. Are observed associations between a high maternal prepregnancy body mass index and offspring IQ likely to be causal? J. Epidemiol. Community Health 2019, 73, 920–928. [Google Scholar] [CrossRef]
- Ng, S.F.; Lin, R.C.; Laybutt, D.R.; Barres, R.; Owens, J.A.; Morris, M.J. Chronic high-fat diet in fathers programs β-cell dysfunction in female rat offspring. Nature 2010, 467, 963–966. [Google Scholar] [CrossRef] [PubMed]
- Zhu, L.; Zhang, R.; Zhang, S.; Shi, W.; Yan, W.; Wang, X.; Lyu, Q.; Liu, L.; Zhou, Q.; Qiu, Q.; et al. Chinese neonatal birth weight curve for different gestational age. Zhonghua Er Ke Za Zhi. 2015, 53, 97–103. [Google Scholar]
- Paulson, J.F.; Chauhan, S.P.; Hill, J.B.; Abuhamad, A.Z. Severe small size for gestational age and cognitive function: Catch-up phenomenon possible. Am. J. Obstet. Gynecol. 2012, 207, e111–e115. [Google Scholar] [CrossRef]
- Pan, X.F.; Wang, L.; Pan, A. Epidemiology and determinants of obesity in China. Lancet Diabetes Endocrinol. 2021, 9, 373–392. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.X.; Lai, J.Q.; Liu, K.Y.; Yang, N.H.; Zeng, G.; Mao, L.M.; Li, Z.N.; Teng, Y.; Xia, W.; Dai, N.; et al. Optimal gestational weight gain in Chinese pregnant women by Chinese-specific BMI categories: A multicentre prospective cohort study. Public Health Nutr. 2021, 24, 3210–3220. [Google Scholar] [CrossRef]
- Schober, P.; Mascha, E.J.; Vetter, T.R. Statistics From A (Agreement) to Z (z Score): A Guide to Interpreting Common Measures of Association, Agreement, Diagnostic Accuracy, Effect Size, Heterogeneity, and Reliability in Medical Research. Anesth. Analg. 2021, 133, 1633–1641. [Google Scholar] [CrossRef]
- Maternal Tpsrocmoho, and Child Health Care and Community Health Department; Capital Institute of Pediatrics, Coordinating Study Group of Nine Cities on the Physical Growth and Development of Children. Growth Standards and Growth Charts for Chinese Children; Second Military Medical University Press: Shanghai, China, 2009. [Google Scholar]
- Futang, Z. Zhu Futang Practice of Pediatrics, 8th ed.; People’s Health Publishing House: Beijing, China, 2015. [Google Scholar]
- Bian, X.Y.; Yao, G.Y.; Squires, J.; Wei, M.; Chen, C.I.; Fang, B.H. Studies of the norm and psychometric properties of Ages and Stages Questionnaires in Shanghai children. Zhonghua Er Ke Za Zhi. 2010, 48, 492–496. [Google Scholar] [PubMed]
- Bian, X.Y.; Xie, H.; Squires, J.; Chen, C.Y. Adapting a parent-completed, socioemotional questionnaire in China: The ages & stages questionnaires: Social-emotional. Infant Ment Health J. 2017, 38, 258–266. [Google Scholar]
- Deshpande, S.S.S.; Bera, P.; Khambata, K.; Balasinor, N.H. Paternal obesity induces epigenetic aberrations and gene expression changes in placenta and fetus. Mol. Reprod. Dev. 2023, 90, 109–126. [Google Scholar] [CrossRef]
- Lee, J.S.; Jin, M.H.; Lee, H.J. Global relationship between parent and child obesity: A systematic review and meta-analysis. Clin. Exp. Pediatr. 2022, 65, 35–46. [Google Scholar] [CrossRef] [PubMed]
- Raad, G.; Serra, F.; Martin, L.; Derieppe, M.A.; Gilleron, J.; Costa, V.L.; Pisani, D.F.; Amri, E.Z.; Trabucchi, M.; Grandjean, V. Paternal multigenerational exposure to an obesogenic diet drives epigenetic predisposition to metabolic diseases in mice. eLife 2021, 10, e61736. [Google Scholar] [CrossRef] [PubMed]
- Fullston, T.; Ohlsson-Teague, E.M.; Print, C.G.; Sandeman, L.Y.; Lane, M. Sperm microRNA Content Is Altered in a Mouse Model of Male Obesity, but the Same Suite of microRNAs Are Not Altered in Offspring’s Sperm. PLoS ONE 2016, 11, e0166076. [Google Scholar] [CrossRef]
- Litchford, A.; Savoie Roskos, M.R.; Wengreen, H. Influence of fathers on the feeding practices and behaviors of children: A systematic review. Appetite 2020, 147, 104558. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Zhu, H.; Wu, H.Y.; Jin, L.Y.; Chen, B.; Pang, H.Y.; Ming, Z.H.; Cheng, Y.; Zhou, C.L.; Guo, M.X.; et al. Diet-Induced Paternal Obesity Impairs Cognitive Function in Offspring by Mediating Epigenetic Modifications in Spermatozoa. Obesity 2018, 26, 1749–1757. [Google Scholar] [CrossRef]
- Govic, A.; Penman, J.; Tammer, A.H.; Paolini, A.G. Paternal calorie restriction prior to conception alters anxiety-like behavior of the adult rat progeny. Psychoneuroendocrinology 2016, 64, 1–11. [Google Scholar] [CrossRef]
- Milaneschi, Y.; Simmons, W.K.; Van Rossum, E.F.C.; Penninx, B.W. Depression and obesity: Evidence of shared biological mechanisms. Mol. Psychiatry 2019, 24, 18–33. [Google Scholar] [CrossRef]
- Li, J.; Qiu, J.; Lv, L.; Mao, B.; Huang, L.; Yang, T.; Wang, C.; Liu, Q. Paternal factors and adverse birth outcomes in Lanzhou, China. BMC Pregnancy Childbirth 2021, 21, 19. [Google Scholar] [CrossRef]
- Argaw-Denboba, A.; Schmidt, T.S.B.; Di Giacomo, M.; Ranjan, B.; Devendran, S.; Mastrorilli, E.; Lloyd, C.T.; Pugliese, D.; Paribeni, V.; Dabin, J.; et al. Paternal microbiome perturbations impact offspring fitness. Nature 2024, 629, 652–659. [Google Scholar] [CrossRef] [PubMed]
- Fung, C.M. Effects of intrauterine growth restriction on embryonic hippocampal dentate gyrus neurogenesis and postnatal critical period of synaptic plasticity that govern learning and memory function. Front. Neurosci. 2023, 17, 1092357. [Google Scholar] [CrossRef] [PubMed]
- Casale, D.; Desmond, C.; Richter, L.M. Catch-up growth in height and cognitive function: Why definitions matter. Econ. Hum. Biol. 2020, 37, 100853. [Google Scholar] [CrossRef] [PubMed]
- Takeuchi, A.; Yorifuji, T.; Hattori, M.; Tamai, K.; Nakamura, K.; Nakamura, M.; Kageyama, M.; Kubo, T.; Ogino, T.; Kobayashi, K.; et al. Catch-up growth and behavioral development among preterm, small-for-gestational-age children: A nationwide Japanese population-based study. Brain Dev. 2019, 41, 397–405. [Google Scholar] [CrossRef]
- National Academies of Sciences, Engineering, and Medicine; Health and Medicine Division; Food and Nutrition Board. The National Academies Collection: Reports funded by National Institutes of Health. In Nutrition During Pregnancy and Lactation: Exploring New Evidence: Proceedings of a Workshop; National Academies Press: Washington, DC, USA, 2020. [Google Scholar]
Paternal Pre-Pregnancy BMI Category | ||||||
---|---|---|---|---|---|---|
Variable | Normal Weight (n = 188) | Underweight (n = 46) | Overweight (n = 124) | Obese (n = 54) | H/χ2 | p Values |
Paternal age at delivery, years | 34.2 ± 4.5 | 33.8 ± 4.3 | 33.4 ± 4.2 | 32.6 ± 3.1 | 2.062 | 0.105 |
Maternal age at delivery, years | 32.7 ± 3.8 | 33.4 ± 4.2 | 31.9 ± 3.9 | 32.7 ± 3.6 | 1.953 | 0.120 |
Maternal age group, n (%) | 4.631 | 0.201 | ||||
<35 years | 137 (72.9) | 27 (58.7) | 90 (72.6) | 35 (64.8) | ||
≥35 years | 51 (27.1) | 19 (41.3) | 34 (27.4) | 19 (35.2) | ||
Maternal BMI group, n (%) | 12.214 | 0.202 | ||||
Underweight | 28 (14.9) | 6 (13.0) | 12 (9.7) | 6 (11.1) | ||
Normal weight | 104 (55.3) | 20 (43.5) | 70 (56.4) | 22 (40.8) | ||
Overweight | 40(21.3) | 11 (23.9) | 29 (23.4) | 20 (37.0) | ||
Obese | 16 (8.5) | 9 (19.6) | 13 (10.5) | 6 (11.1) | ||
GWG group, n (%) | 11.618 | 0.071 | ||||
Inadequate GWG | 46 (24.5) | 9 (19.6) | 29 (23.4) | 14 (25.9) | ||
Adequate GWG | 97 (51.6) | 27 (58.7) | 49 (39.5) | 30 (55.6) | ||
Excessive GWG | 45 (23.9) | 10 (21.7) | 46 (37.1) | 10 (18.5) | ||
Bachelor’s degree or above | ||||||
Mother, n (%) | 130 (69.1) | 28 (60.9) | 82 (66.1) | 38 (70.4) | 1.463 | 0.691 |
Father, n (%) | 116 (61.7) | 30 (65.2) | 90 (72.6) | 33 (65.3) | 4.393 | 0.222 |
Primary caregiver, n (%) | 77 (41.0) | 18 (39.1) | 56 (45.2) | 21 (38.9) | 0.953 | 0.813 |
Cesarean section, n (%) | 50 (26.6) | 13 (28.3) | 40 (32.3) | 15 (27.8) | 1.202 | 0.753 |
Pregnancy with hypertension, n (%) | 40 (21.3) | 14 (30.4) | 23 (18.5) | 7 (13.0) | 5.045 | 0.169 |
Pregnancy with preeclampsia, n (%) | 40 (21.3) | 11 (23.9) | 29 (23.4) | 9 (16.7) | 1.167 | 0.761 |
Gestational diabetes mellitus, n (%) | 30 (16.0) | 8 (17.4) | 35 (28.2) | 11 (20.4) | 7.221 | 0.065 |
Pregnancy with hypothyroidism, n (%) | 28 (14.9) | 9 (19.6) | 31 (25.0) | 10 (18.5) | 4.991 | 0.172 |
Pregnancy with connective tissue disease, n (%) | 7 (3.7) | 5 (10.9) | 6 (4.8) | 3 (5.6) | 3.273 | 0.351 |
Nuchal cord, n (%) | 47 (25.0) | 15 (32.6) | 39 (31.5) | 12 (22.2) | 2.921 | 0.404 |
Oligohydramnios, n (%) | 24 (12.8) | 12 (26.1) d | 25 (20.2) | 4 (7.4) b | 9.603 | 0.022 * |
Abnormal placenta, n (%) | 6 (3.2) | 3 (6.5) | 10 (8.1) | 3 (5.6) | 3.703 | 0.295 |
Paternal Pre-Pregnancy BMI Category | ||||||
---|---|---|---|---|---|---|
Variable | Normal Weight (n = 188) | Underweight (n = 46) | Overweight (n = 124) | Obese (n = 54) | H/χ2 | p Values |
Gestational age (week) | 37.5 ± 2.4 | 37.1 ± 1.8 | 37.4 ± 2.4 | 37.3 ± 2.6 | 2.252 | 0.082 |
Preterm birth, n (%) | 50 (26.6) | 17 (37.0) | 37 (29.8) | 17 (31.5) | 2.103 | 0.551 |
Birth weight (g) | 2273 ± 492 b | 2077 ± 410 a,d | 2162 ± 515 | 2267 ± 503 b | 3.304 | 0.020 * |
Length at birth (cm) | 45 ± 4 | 44 ± 2 | 45 ± 4 | 45 ± 4 | 1.171 | 0.320 |
Male, n (%) | 92 (48.9) | 25 (54.3) | 77 (62.1) | 24 (44.4) | 6.983 | 0.072 |
Severe SGA, n (%) | 42 (23.6) b | 20 (43.5) a,c | 28 (22.6) b | 13 (24.1) | 8.750 | 0.033 * |
Neonatal asphyxia, n (%) | 15 (8.0) | 5 (10.9) | 17 (13.7) | 7 (13.0) | 2.947 | 0.400 |
Paternal Pre-Pregnancy BMI Category | ||||||
---|---|---|---|---|---|---|
Variable | Normal Weight (n = 188) | Underweight (n = 46) | Overweight (n = 124) | Obese (n = 54) | H/χ2 | p Values |
Follow-up months | 30.4 ± 3.9 | 29.4 ± 3.8 | 30.9 ± 4.3 | 30.9 ± 4.1 | 0.176 | 0.913 |
Weight Z-score | 0.15 ± 0.67 | 0.22 ± 0.54 | 0.24 ± 0.76 | 0.42 ± 0.63 | 2.279 | 0.079 |
Height Z-score | 0.14 ± 0.64 | 0.20 ± 0.61 | 0.15 ± 0.64 | 0.11 ± 0.60 | 0.187 | 0.905 |
BMI Z-score | −0.07 ± 1.02 d | 0.06 ± 0.99 | 0.21 ± 0.96 | 0.33 ± 1.01 a | 3.165 | 0.024 |
Emaciation, n (%) | 20 (10.6) | 4 (8.7) | 8 (6.5) | 3 (5.6) | 2.436 | 0.487 |
Overweight, n (%) | 15 (8.0) | 3 (6.5) | 18 (14.5) | 6 (11.1) | 4.164 | 0.244 |
Obesity, n (%) | 2 (1.1) d | 1 (2.2) | 4 (3.2) | 5 (9.3) a | 8.068 | 0.045 * |
ASQ-3 (Z-score) | ||||||
Communication | 0.21 ± 0.46 | 0.27 ± 0.40 | 0.11 ± 0.38 | 0.20 ± 0.38 | 1.806 | 0.145 |
Gross motor | −0.34 ± 0.62 b,d | −0.56 ± 0.59 a,c | −0.33 ± 0.64 b,d | −0.59 ± 0.53 a,c | 6.845 | <0.001 * |
Fine motor | 0.08 ± 0.49 | 0.07 ± 0.53 | 0.12 ± 0.43 | 0.13 ± 0.34 | 0.317 | 0.813 |
Problem-solving | 0.20 ± 0.41 d | 0.06 ± 0.42 | 0.06 ± 0.34 | 0.01 ± 0.40 a | 3.734 | 0.011 * |
Personal–social | −0.10 ± 0.61 | −0.04 ± 0.52 | −0.12 ± 0.63 | −0.19 ± 0.65 | 0.637 | 0.592 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.; Shao, S.; Qin, J.; Liu, J.; Liu, G.; Liu, Z.; Zhang, X. Associations Between Paternal Body Mass Index and Neurodevelopmental–Physical Outcomes in Small-for-Gestational-Age Children. Diagnostics 2025, 15, 2133. https://doi.org/10.3390/diagnostics15172133
Zhang Y, Shao S, Qin J, Liu J, Liu G, Liu Z, Zhang X. Associations Between Paternal Body Mass Index and Neurodevelopmental–Physical Outcomes in Small-for-Gestational-Age Children. Diagnostics. 2025; 15(17):2133. https://doi.org/10.3390/diagnostics15172133
Chicago/Turabian StyleZhang, Yimin, Shuming Shao, Jiong Qin, Jie Liu, Guoli Liu, Zheng Liu, and Xiaorui Zhang. 2025. "Associations Between Paternal Body Mass Index and Neurodevelopmental–Physical Outcomes in Small-for-Gestational-Age Children" Diagnostics 15, no. 17: 2133. https://doi.org/10.3390/diagnostics15172133
APA StyleZhang, Y., Shao, S., Qin, J., Liu, J., Liu, G., Liu, Z., & Zhang, X. (2025). Associations Between Paternal Body Mass Index and Neurodevelopmental–Physical Outcomes in Small-for-Gestational-Age Children. Diagnostics, 15(17), 2133. https://doi.org/10.3390/diagnostics15172133