The Rise of AI-Assisted Diagnosis: Will Pathologists Be Partners or Bystanders?
Abstract
1. A Brief Journey from Early Microscopes to Modern Anatomic Pathology: Foundations of a Digital Revolution
2. Current Landscape of Digital Pathology and Key Advancements in AI
2.1. Technologies Driving Digital Pathology
2.2. Artificial Intelligence: A New Frontier in Pathology
- Task-specific AI models
- General-purpose AI models
- AI model limitations and challenges
3. The Role of the Pathologist: Today and Tomorrow
3.1. The Current Role of Pathologists and the Impact of AI on Pathology Workflow
3.2. An Alternative Pathologist-Free AI-Assisted Diagnostic Workflow: Pathologist as Bystanders?
- Specimen collection
- 2.
- Grossing and tissue processing
- 3.
- Slide scanning and digital conversion
- 4.
- AI-based analysis and interpretation
- 5.
- Final diagnosis and treatment plan
4. Future Directions
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Carpenter, W.B.; Dallinger, W.H. The Microscope and Its Revelations; J & A. Churchill: London, UK, 1901. [Google Scholar]
- Kalderon, A.E. The Evolution of Microscope Design from Its Invention to the Present Days. Am. J. Surg. Pathol. 1983, 7, 95–102. [Google Scholar] [CrossRef] [PubMed]
- Wollman, A.J.M.; Nudd, R.; Hedlund, E.G.; Leake, M.C. From Animaculum to Single Molecules: 300 Years of the Light Microscope. Open Biol. 2015, 5, 150019. [Google Scholar] [CrossRef] [PubMed]
- Purtle, H.R. History of the Microscope. In The Billings Microscope Collection; Armed Forces Institute of Pathology: Washington, DC, USA, 1974; pp. x–xviii. [Google Scholar]
- Turner, G.L. Micrographia Historica: Study of the History of the Microscope, 1st ed.; Proceeding of the Royal Microscopical Society: Oxford, UK, 1972. [Google Scholar]
- Whipple, R. The History of the Microscope: Compiled from Original Instruments and Documents, up to the Introduction of the Achromatic Microscope. Nature 1933, 131, 219–221. [Google Scholar] [CrossRef]
- Liczbik, O.; Goertz, S.; Wiśniewski, J.; Kurlandt, P.; Libionka, W.; Adamski, S.; Kloc, W. From Magnifying Glass to Operative Microscopy—The Historical and Modern Role of the Microscope in Microsurgery. PJP 2019, 70, 14–20. [Google Scholar] [CrossRef]
- Noble, C.A.; Biesemier, A.P.; McClees, S.F.; Alhussain, A.M.; Helms, S.E.; Brodell, R.T. The History of the Microscope Reflects Advances in Science and Medicine. Semin. Diagn. Pathol. 2025, 42, 150831. [Google Scholar] [CrossRef]
- Bracegirdle, B. A History of Microtechnique: The Evolution of the Microtome and the Development of Tissue Preparation; Heinemann: London, UK, 1978; ISBN 978-0-435-54120-0. [Google Scholar]
- Gal, A.A. In Search of the Origins of Modern Surgical Pathology. Adv. Anat. Pathol. 2001, 8, 1–13. [Google Scholar] [CrossRef]
- Norton, S.A. The Useful Plants of Dermatology. II. Haematoxylum and Hematoxylin. J. Am. Acad. Dermatol. 1996, 34, 149–151. [Google Scholar] [CrossRef]
- Titford, M. The Long History of Hematoxylin. Biotech. Histochem. 2005, 80, 73–78. [Google Scholar] [CrossRef]
- Coons, A.H.; Creech, H.J.; Jones, R.N. Immunological Properties of an Antibody Containing a Fluorescent Group. Exp. Biol. Med. 1941, 47, 200–202. [Google Scholar] [CrossRef]
- Ortiz Hidalgo, C. Immunohistochemistry in Historical Perspective: Knowing the Past to Understand the Present. In Immunohistochemistry and Immunocytochemistry; Del Valle, L., Ed.; Methods in Molecular Biology; Springer: New York, NY, USA, 2022; Volume 2422, pp. 17–31. ISBN 978-1-07-161947-6. [Google Scholar]
- Nakane, P.K.; Pierce, G.B. Enzyme-Labeled Antibodies for the Light and Electron Microscopic Localization of Tissue Antigens. J. Cell Biol. 1967, 33, 307–318. [Google Scholar] [CrossRef]
- Jaffer, S.; Bleiweiss, I.J. Beyond Hematoxylin and Eosin—The Role of Immunohistochemistry in Surgical Pathology. Cancer Investig. 2004, 22, 445–465. [Google Scholar] [CrossRef]
- Childs, G.V. History of Immunohistochemistry. In Pathobiology of Human Disease; Elsevier: Amsterdam, The Netherlands, 2014; pp. 3775–3796. ISBN 978-0-12-386457-4. [Google Scholar]
- Grehn, J. Leitz-Microscopes for 125 Years; Leitz: Hong Kong, China, 1977. [Google Scholar]
- Burns, S.B. Early Medical Photography in America (1839–1883). N. Y State J. Med. 1979, 79, 788–795. [Google Scholar]
- Van Den Tweel, J.G.; Taylor, C.R. A Brief History of Pathology: Preface to a Forthcoming Series That Highlights Milestones in the Evolution of Pathology as a Discipline. Virchows Arch. 2010, 457, 3–10. [Google Scholar] [CrossRef] [PubMed]
- Nezelof, C.; Seemayer, T. The History of Pathology: An Overview. In Anderson’s Pathology; Mosby: St Louis, MO, USA, 1996; pp. 1–11. ISBN 0-8016-7236-8. [Google Scholar]
- McManus, B.; Babul, S. The Autopsy. In Anderson’s Pathology; Mosby: St Louis, MO, USA, 1996; pp. 15–32. ISBN 0-8016-7236-8. [Google Scholar]
- Hill, R.B.; Anderson, R.E. The Recent History of the Autopsy. Arch. Pathol. Lab. Med. 1996, 120, 702–712. [Google Scholar] [PubMed]
- Jay, V. The Legacy of Karl Rokitansky. Arch. Pathol. Lab. Med. 2000, 124, 345–346. [Google Scholar] [CrossRef] [PubMed]
- Lin, J.I. Rudolf Virchow: Creator of Cellular Pathology. Lab. Med. 1983, 14, 791–794. [Google Scholar] [CrossRef]
- Byers, J.M. Rudolf Virchow--Father of Cellular Pathology. Am. J. Clin. Pathol. 1989, 92, S2–S8. [Google Scholar]
- Wheeler, T.M. Origin and Development of American Surgical Pathology. Trans. Am. Clin. Clim. Assoc. 2020, 131, 326–334. [Google Scholar]
- Pantanowitz, L. Digital Images and the Future of Digital Pathology. J. Pathol. Inform. 2010, 1, 15. [Google Scholar] [CrossRef]
- Patel, A.; Balis, U.G.J.; Cheng, J.; Li, Z.; Lujan, G.; McClintock, D.S.; Pantanowitz, L.; Parwani, A. Contemporary Whole Slide Imaging Devices and Their Applications within the Modern Pathology Department: A Selected Hardware Review. J. Pathol. Inform. 2021, 12, 50. [Google Scholar] [CrossRef]
- Escobar Díaz Guerrero, R.; Carvalho, L.; Bocklitz, T.; Popp, J.; Oliveira, J.L. Software Tools and Platforms in Digital Pathology: A Review for Clinicians and Computer Scientists. J. Pathol. Inform. 2022, 13, 100103. [Google Scholar] [CrossRef]
- Humphries, M.P.; Kaye, D.; Stankeviciute, G.; Halliwell, J.; Wright, A.I.; Bansal, D.; Brettle, D.; Treanor, D. Development of a Multi-scanner Facility for Data Acquisition for Digital Pathology Artificial Intelligence. J. Pathol. 2024, 264, 80–89. [Google Scholar] [CrossRef] [PubMed]
- Ardon, O.; Manzo, A.; Spencer, J.; Reuter, V.E.; Hameed, M.; Hanna, M.G. Digital Slide Scanning at Scale: Comparison of Whole Slide Imaging Devices in a Clinical Setting. J. Pathol. Inform. 2025, 100446. [Google Scholar] [CrossRef]
- Baxi, V.; Edwards, R.; Montalto, M.; Saha, S. Digital Pathology and Artificial Intelligence in Translational Medicine and Clinical Practice. Mod. Pathol. 2022, 35, 23–32. [Google Scholar] [CrossRef] [PubMed]
- Kiran, N.; Sapna, F.; Kiran, F.; Kumar, D.; Raja, F.; Shiwlani, S.; Paladini, A.; Sonam, F.; Bendari, A.; Perkash, R.S.; et al. Digital Pathology: Transforming Diagnosis in the Digital Age. Cureus 2023, 15, e44620. [Google Scholar] [CrossRef]
- Pantanowitz, L.; Sharma, A.; Carter, A.B.; Kurc, T.; Sussman, A.; Saltz, J. Twenty Years of Digital Pathology: An Overview of the Road Travelled, What Is on the Horizon, and the Emergence of Vendor-Neutral Archives. J. Pathol. Inform. 2018, 9, 40. [Google Scholar] [CrossRef]
- Brodsky, V.; Ullah, E.; Bychkov, A.; Song, A.H.; Walk, E.E.; Louis, P.; Rasool, G.; Singh, R.S.; Mahmood, F.; Bui, M.M.; et al. Generative Artificial Intelligence in Anatomic Pathology. Arch. Pathol. Lab. Med. 2025, 149, 298–318. [Google Scholar] [CrossRef]
- Fraggetta, F.; L’Imperio, V.; Ameisen, D.; Carvalho, R.; Leh, S.; Kiehl, T.-R.; Serbanescu, M.; Racoceanu, D.; Della Mea, V.; Polonia, A.; et al. Best Practice Recommendations for the Implementation of a Digital Pathology Workflow in the Anatomic Pathology Laboratory by the European Society of Digital and Integrative Pathology (ESDIP). Diagnostics 2021, 11, 2167. [Google Scholar] [CrossRef]
- Pinto, D.G.; Bychkov, A.; Tsuyama, N.; Fukuoka, J.; Eloy, C. Real-World Implementation of Digital Pathology: Results From an Intercontinental Survey. Lab. Investig. 2023, 103, 100261. [Google Scholar] [CrossRef]
- Evaluation of Automatic Class III Designation for Paige Prostate (DEN200080); Food and Drug Administration (FDA): Silver Spring, MD, USA, 2021.
- Marra, A.; Morganti, S.; Pareja, F.; Campanella, G.; Bibeau, F.; Fuchs, T.; Loda, M.; Parwani, A.; Scarpa, A.; Reis-Filho, J.S.; et al. Artificial Intelligence Entering the Pathology Arena in Oncology: Current Applications and Future Perspectives. Ann. Oncol. 2025, 36, 712–725. [Google Scholar] [CrossRef]
- U.S. FDA. Grants Paige Breakthrough Device Designation for AI Application That Detects Cancer Across Different Anatomic Sites; FDA: Silver Spring, MD, USA, 2025. [Google Scholar]
- The ARTICULATE PRO Project Artificial Intelligence for Cellular Pathology Transformation in Prostate Practice 2021. Available online: https://www.nds.ox.ac.uk/research/verrill-pathology-group/articulate-pro (accessed on 5 August 2025).
- Saillard, C.; Dubois, R.; Tchita, O.; Loiseau, N.; Garcia, T.; Adriansen, A.; Carpentier, S.; Reyre, J.; Enea, D.; Von Loga, K.; et al. Validation of MSIntuit as an AI-Based Pre-Screening Tool for MSI Detection from Colorectal Cancer Histology Slides. Nat. Commun. 2023, 14, 6695. [Google Scholar] [CrossRef]
- Nagpal, K.; Foote, D.; Liu, Y.; Chen, P.-H.C.; Wulczyn, E.; Tan, F.; Olson, N.; Smith, J.L.; Mohtashamian, A.; Wren, J.H.; et al. Development and Validation of a Deep Learning Algorithm for Improving Gleason Scoring of Prostate Cancer. npj Digit. Med. 2019, 2, 48. [Google Scholar] [CrossRef] [PubMed]
- Litjens, G.; Sánchez, C.I.; Timofeeva, N.; Hermsen, M.; Nagtegaal, I.; Kovacs, I.; Hulsbergen-Van De Kaa, C.; Bult, P.; Van Ginneken, B.; Van Der Laak, J. Deep Learning as a Tool for Increased Accuracy and Efficiency of Histopathological Diagnosis. Sci. Rep. 2016, 6, 26286. [Google Scholar] [CrossRef] [PubMed]
- Bulten, W.; Pinckaers, H.; Van Boven, H.; Vink, R.; De Bel, T.; Van Ginneken, B.; Van Der Laak, J.; Hulsbergen-van De Kaa, C.; Litjens, G. Automated Deep-Learning System for Gleason Grading of Prostate Cancer Using Biopsies: A Diagnostic Study. Lancet Oncol. 2020, 21, 233–241. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Janowczyk, A.; Zhou, Y.; Thawani, R.; Fu, P.; Schalper, K.; Velcheti, V.; Madabhushi, A. Prediction of Recurrence in Early Stage Non-Small Cell Lung Cancer Using Computer Extracted Nuclear Features from Digital H&E Images. Sci. Rep. 2017, 7, 13543. [Google Scholar] [CrossRef]
- Kulkarni, P.M.; Robinson, E.J.; Sarin Pradhan, J.; Gartrell-Corrado, R.D.; Rohr, B.R.; Trager, M.H.; Geskin, L.J.; Kluger, H.M.; Wong, P.F.; Acs, B.; et al. Deep Learning Based on Standard H&E Images of Primary Melanoma Tumors Identifies Patients at Risk for Visceral Recurrence and Death. Clin. Cancer Res. 2020, 26, 1126–1134. [Google Scholar] [CrossRef]
- Ehteshami Bejnordi, B.; Veta, M.; Johannes Van Diest, P.; Van Ginneken, B.; Karssemeijer, N.; Litjens, G.; Van Der Laak, J.A.W.M.; CAMELYON16 Consortium; Hermsen, M.; Manson, Q.F.; et al. Diagnostic Assessment of Deep Learning Algorithms for Detection of Lymph Node Metastases in Women With Breast Cancer. JAMA 2017, 318, 2199. [Google Scholar] [CrossRef]
- Lu, L.; Dercle, L.; Zhao, B.; Schwartz, L.H. Deep Learning for the Prediction of Early On-Treatment Response in Metastatic Colorectal Cancer from Serial Medical Imaging. Nat. Commun. 2021, 12, 6654. [Google Scholar] [CrossRef]
- Saltz, J.; Gupta, R.; Hou, L.; Kurc, T.; Singh, P.; Nguyen, V.; Samaras, D.; Shroyer, K.R.; Zhao, T.; Batiste, R.; et al. Spatial Organization and Molecular Correlation of Tumor-Infiltrating Lymphocytes Using Deep Learning on Pathology Images. Cell Rep. 2018, 23, 181–193.e7. [Google Scholar] [CrossRef]
- Coudray, N.; Ocampo, P.S.; Sakellaropoulos, T.; Narula, N.; Snuderl, M.; Fenyö, D.; Moreira, A.L.; Razavian, N.; Tsirigos, A. Classification and Mutation Prediction from Non–Small Cell Lung Cancer Histopathology Images Using Deep Learning. Nat. Med. 2018, 24, 1559–1567. [Google Scholar] [CrossRef]
- Kather, J.N.; Pearson, A.T.; Halama, N.; Jäger, D.; Krause, J.; Loosen, S.H.; Marx, A.; Boor, P.; Tacke, F.; Neumann, U.P.; et al. Deep Learning Can Predict Microsatellite Instability Directly from Histology in Gastrointestinal Cancer. Nat. Med. 2019, 25, 1054–1056. [Google Scholar] [CrossRef]
- Bera, K.; Schalper, K.A.; Rimm, D.L.; Velcheti, V.; Madabhushi, A. Artificial Intelligence in Digital Pathology—New Tools for Diagnosis and Precision Oncology. Nat. Rev. Clin. Oncol. 2019, 16, 703–715. [Google Scholar] [CrossRef] [PubMed]
- Jose, L.; Liu, S.; Russo, C.; Cong, C.; Song, Y.; Rodriguez, M.; Di Ieva, A. Artificial Intelligence–Assisted Classification of Gliomas Using Whole Slide Images. Arch. Pathol. Lab. Med. 2023, 147, 916–924. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.; Chen, L.; Cheng, Z.; Yang, M.; Wang, J.; Lin, C.; Wang, Y.; Huang, L.; Chen, Y.; Peng, S.; et al. Deep Learning-Based Six-Type Classifier for Lung Cancer and Mimics from Histopathological Whole Slide Images: A Retrospective Study. BMC Med. 2021, 19, 80. [Google Scholar] [CrossRef] [PubMed]
- Chandramohan, D.; Garapati, H.N.; Nangia, U.; Simhadri, P.K.; Lapsiwala, B.; Jena, N.K.; Singh, P. Diagnostic Accuracy of Deep Learning in Detection and Prognostication of Renal Cell Carcinoma: A Systematic Review and Meta-Analysis. Front. Med. 2024, 11, 1447057. [Google Scholar] [CrossRef]
- Dy, A.; Nguyen, N.-N.J.; Meyer, J.; Dawe, M.; Shi, W.; Androutsos, D.; Fyles, A.; Liu, F.-F.; Done, S.; Khademi, A. AI Improves Accuracy, Agreement and Efficiency of Pathologists for Ki67 Assessments in Breast Cancer. Sci. Rep. 2024, 14, 1283. [Google Scholar] [CrossRef]
- Pantanowitz, L.; Quiroga-Garza, G.M.; Bien, L.; Heled, R.; Laifenfeld, D.; Linhart, C.; Sandbank, J.; Albrecht Shach, A.; Shalev, V.; Vecsler, M.; et al. An Artificial Intelligence Algorithm for Prostate Cancer Diagnosis in Whole Slide Images of Core Needle Biopsies: A Blinded Clinical Validation and Deployment Study. Lancet Digit. Health 2020, 2, e407–e416. [Google Scholar] [CrossRef]
- Da Silva, L.M.; Pereira, E.M.; Salles, P.G.; Godrich, R.; Ceballos, R.; Kunz, J.D.; Casson, A.; Viret, J.; Chandarlapaty, S.; Ferreira, C.G.; et al. Independent Real-world Application of a Clinical-grade Automated Prostate Cancer Detection System. J. Pathol. 2021, 254, 147–158. [Google Scholar] [CrossRef]
- Raciti, P.; Sue, J.; Retamero, J.A.; Ceballos, R.; Godrich, R.; Kunz, J.D.; Casson, A.; Thiagarajan, D.; Ebrahimzadeh, Z.; Viret, J.; et al. Clinical Validation of Artificial Intelligence–Augmented Pathology Diagnosis Demonstrates Significant Gains in Diagnostic Accuracy in Prostate Cancer Detection. Arch. Pathol. Lab. Med. 2023, 147, 1178–1185. [Google Scholar] [CrossRef]
- Retamero, J.A.; Gulturk, E.; Bozkurt, A.; Liu, S.; Gorgan, M.; Moral, L.; Horton, M.; Parke, A.; Malfroid, K.; Sue, J.; et al. Artificial Intelligence Helps Pathologists Increase Diagnostic Accuracy and Efficiency in the Detection of Breast Cancer Lymph Node Metastases. Am. J. Surg. Pathol. 2024, 48, 846–854. [Google Scholar] [CrossRef]
- Paige and NHS Wales Launch PanCancer Pilot to Triage Cases with AI at Betsi Cadwaladr University Health Board. 2025. Available online: https://www.businesswire.com/news/home/20250424073749/en/Paige-and-NHS-Wales-Launch-PanCancer-Pilot-to-Triage-Cases-with-AI-at-Betsi-Cadwaladr-University-Health-Board (accessed on 5 August 2025).
- Wei, J.W.; Wei, J.W.; Jackson, C.R.; Ren, B.; Suriawinata, A.A.; Hassanpour, S. Automated Detection of Celiac Disease on Duodenal Biopsy Slides: A Deep Learning Approach. J. Pathol. Inform. 2019, 10, 7. [Google Scholar] [CrossRef] [PubMed]
- Nirschl, J.J.; Janowczyk, A.; Peyster, E.G.; Frank, R.; Margulies, K.B.; Feldman, M.D.; Madabhushi, A. A Deep-Learning Classifier Identifies Patients with Clinical Heart Failure Using Whole-Slide Images of H&E Tissue. PLoS ONE 2018, 13, e0192726. [Google Scholar] [CrossRef]
- Jacq, A.; Tarris, G.; Jaugey, A.; Paindavoine, M.; Maréchal, E.; Bard, P.; Rebibou, J.-M.; Ansart, M.; Calmo, D.; Bamoulid, J.; et al. Automated Evaluation with Deep Learning of Total Interstitial Inflammation and Peritubular Capillaritis on Kidney Biopsies. Nephrol. Dial. Transplant. 2023, 38, 2786–2798. [Google Scholar] [CrossRef] [PubMed]
- Handelman, G.S.; Kok, H.K.; Chandra, R.V.; Razavi, A.H.; Huang, S.; Brooks, M.; Lee, M.J.; Asadi, H. Peering Into the Black Box of Artificial Intelligence: Evaluation Metrics of Machine Learning Methods. Am. J. Roentgenol. 2019, 212, 38–43. [Google Scholar] [CrossRef]
- Rainio, O.; Teuho, J.; Klén, R. Evaluation Metrics and Statistical Tests for Machine Learning. Sci. Rep. 2024, 14, 6086. [Google Scholar] [CrossRef]
- Bommasani, R.; Hudson, D.A.; Adeli, E.; Altman, R.; Arora, S.; von Arx, S.; Bernstein, M.S.; Bohg, J.; Bosselut, A.; Brunskill, E.; et al. On the Opportunities and Risks of Foundation Models. arXiv 2022, arXiv:2108.07258. [Google Scholar]
- Ochi, M.; Komura, D.; Ishikawa, S. Pathology Foundation Models. JMA J. 2025, 8, 121–130. [Google Scholar] [CrossRef]
- Huang, Z.; Bianchi, F.; Yuksekgonul, M.; Montine, T.J.; Zou, J. A Visual–Language Foundation Model for Pathology Image Analysis Using Medical Twitter. Nat. Med. 2023, 29, 2307–2316. [Google Scholar] [CrossRef]
- Chen, R.J.; Ding, T.; Lu, M.Y.; Williamson, D.F.K.; Jaume, G.; Song, A.H.; Chen, B.; Zhang, A.; Shao, D.; Shaban, M.; et al. Towards a General-Purpose Foundation Model for Computational Pathology. Nat. Med. 2024, 30, 850–862. [Google Scholar] [CrossRef]
- Wang, X.; Yang, S.; Zhang, J.; Wang, M.; Zhang, J.; Yang, W.; Huang, J.; Han, X. Transformer-Based Unsupervised Contrastive Learning for Histopathological Image Classification. Med. Image Anal. 2022, 81, 102559. [Google Scholar] [CrossRef]
- Vorontsov, E.; Bozkurt, A.; Casson, A.; Shaikovski, G.; Zelechowski, M.; Severson, K.; Zimmermann, E.; Hall, J.; Tenenholtz, N.; Fusi, N.; et al. A Foundation Model for Clinical-Grade Computational Pathology and Rare Cancers Detection. Nat. Med. 2024, 30, 2924–2935. [Google Scholar] [CrossRef]
- Xu, H.; Usuyama, N.; Bagga, J.; Zhang, S.; Rao, R.; Naumann, T.; Wong, C.; Gero, Z.; González, J.; Gu, Y.; et al. A Whole-Slide Foundation Model for Digital Pathology from Real-World Data. Nature 2024, 630, 181–188. [Google Scholar] [CrossRef]
- Lu, M.Y.; Chen, B.; Williamson, D.F.K.; Chen, R.J.; Liang, I.; Ding, T.; Jaume, G.; Odintsov, I.; Le, L.P.; Gerber, G.; et al. A Visual-Language Foundation Model for Computational Pathology. Nat. Med. 2024, 30, 863–874. [Google Scholar] [CrossRef] [PubMed]
- Vaidya, A.; Zhang, A.; Jaume, G.; Song, A.H.; Ding, T.; Wagner, S.J.; Lu, M.Y.; Doucet, P.; Robertson, H.; Almagro-Perez, C.; et al. Molecular-Driven Foundation Model for Oncologic Pathology. arXiv 2025, arXiv:2501.16652. [Google Scholar]
- Lu, M.Y.; Chen, B.; Williamson, D.F.K.; Chen, R.J.; Zhao, M.; Chow, A.K.; Ikemura, K.; Kim, A.; Pouli, D.; Patel, A.; et al. A Multimodal Generative AI Copilot for Human Pathology. Nature 2024, 634, 466–473. [Google Scholar] [CrossRef] [PubMed]
- Jarkman, S.; Karlberg, M.; Pocevičiūtė, M.; Bodén, A.; Bándi, P.; Litjens, G.; Lundström, C.; Treanor, D.; Van Der Laak, J. Generalization of Deep Learning in Digital Pathology: Experience in Breast Cancer Metastasis Detection. Cancers 2022, 14, 5424. [Google Scholar] [CrossRef]
- Vaidya, A.; Chen, R.J.; Williamson, D.F.K.; Song, A.H.; Jaume, G.; Yang, Y.; Hartvigsen, T.; Dyer, E.C.; Lu, M.Y.; Lipkova, J.; et al. Demographic Bias in Misdiagnosis by Computational Pathology Models. Nat. Med. 2024, 30, 1174–1190. [Google Scholar] [CrossRef]
- McGenity, C.; Clarke, E.L.; Jennings, C.; Matthews, G.; Cartlidge, C.; Freduah-Agyemang, H.; Stocken, D.D.; Treanor, D. Artificial Intelligence in Digital Pathology: A Systematic Review and Meta-Analysis of Diagnostic Test Accuracy. npj Digit. Med. 2024, 7, 114. [Google Scholar] [CrossRef]
- Daneshjou, R.; Vodrahalli, K.; Liang, W.; Novoa, R.A.; Jenkins, M.; Rotemberg, V.; Ko, J.; Swetter, S.M.; Bailey, E.E.; Gevaert, O.; et al. Disparities in Dermatology AI: Assessments Using Diverse Clinical Images. Sci. Adv. 2022, 8, eabq6147. [Google Scholar] [CrossRef]
- Guo, B.; Lu, D.; Szumel, G.; Gui, R.; Wang, T.; Konz, N.; Mazurowski, M.A. The Impact of Scanner Domain Shift on Deep Learning Performance in Medical Imaging: An Experimental Study 2024. arXiv 2024, arXiv:2409.04368. [Google Scholar]
- Cross, J.L.; Choma, M.A.; Onofrey, J.A. Bias in Medical AI: Implications for Clinical Decision-Making. PLoS Digit. Health 2024, 3, e0000651. [Google Scholar] [CrossRef]
- Zarella, M.D.; McClintock, D.S.; Batra, H.; Gullapalli, R.R.; Valante, M.; Tan, V.O.; Dayal, S.; Oh, K.S.; Lara, H.; Garcia, C.A.; et al. Artificial Intelligence and Digital Pathology: Clinical Promise and Deployment Considerations. J. Med. Imaging 2023, 10, 051802. [Google Scholar] [CrossRef] [PubMed]
- Parwani, A.V. Next Generation Diagnostic Pathology: Use of Digital Pathology and Artificial Intelligence Tools to Augment a Pathological Diagnosis. Diagn. Pathol. 2019, 14, 138. [Google Scholar] [CrossRef] [PubMed]
- Shafi, S.; Parwani, A.V. Artificial Intelligence in Diagnostic Pathology. Diagn. Pathol. 2023, 18, 109. [Google Scholar] [CrossRef] [PubMed]
- Pesapane, F.; Volonté, C.; Codari, M.; Sardanelli, F. Artificial Intelligence as a Medical Device in Radiology: Ethical and Regulatory Issues in Europe and the United States. Insights Imaging 2018, 9, 745–753. [Google Scholar] [CrossRef]
- Rudin, C. Stop Explaining Black Box Machine Learning Models for High Stakes Decisions and Use Interpretable Models Instead. Nat. Mach. Intell. 2019, 1, 206–215. [Google Scholar] [CrossRef]
- Dobson, J.E. On Reading and Interpreting Black Box Deep Neural Networks. Int. J. Digit. Humanit. 2023, 5, 431–449. [Google Scholar] [CrossRef]
- Char, D.S.; Shah, N.H.; Magnus, D. Implementing Machine Learning in Health Care—Addressing Ethical Challenges. N. Engl. J. Med. 2018, 378, 981–983. [Google Scholar] [CrossRef]
- Cestonaro, C.; Delicati, A.; Marcante, B.; Caenazzo, L.; Tozzo, P. Defining Medical Liability When Artificial Intelligence Is Applied on Diagnostic Algorithms: A Systematic Review. Front. Med. 2023, 10, 1305756. [Google Scholar] [CrossRef]
- Vos, S.; Hebeda, K.; Milota, M.; Sand, M.; Drogt, J.; Grünberg, K.; Jongsma, K. Making Pathologists Ready for the New Artificial Intelligence Era: Changes in Required Competencies. Mod. Pathol. 2025, 38, 100657. [Google Scholar] [CrossRef]
- Gaffney, H.; Mirza, K.M. Pathology in the Artificial Intelligence Era: Guiding Innovation and Implementation to Preserve Human Insight. Acad. Pathol. 2025, 12, 100166. [Google Scholar] [CrossRef]
- Hanna, M.G.; Pantanowitz, L.; Dash, R.; Harrison, J.H.; Deebajah, M.; Pantanowitz, J.; Rashidi, H.H. Future of Artificial Intelligence—Machine Learning Trends in Pathology and Medicine. Mod. Pathol. 2025, 38, 100705. [Google Scholar] [CrossRef]
- Barbareschi, M.; Demichelis, F.; Forti, S.; Palma, P.D. Digital Pathology: Science Fiction? Int. J. Surg. Pathol. 2000, 8, 261–263. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
El-Khoury, R.; Zaatari, G. The Rise of AI-Assisted Diagnosis: Will Pathologists Be Partners or Bystanders? Diagnostics 2025, 15, 2308. https://doi.org/10.3390/diagnostics15182308
El-Khoury R, Zaatari G. The Rise of AI-Assisted Diagnosis: Will Pathologists Be Partners or Bystanders? Diagnostics. 2025; 15(18):2308. https://doi.org/10.3390/diagnostics15182308
Chicago/Turabian StyleEl-Khoury, Riyad, and Ghazi Zaatari. 2025. "The Rise of AI-Assisted Diagnosis: Will Pathologists Be Partners or Bystanders?" Diagnostics 15, no. 18: 2308. https://doi.org/10.3390/diagnostics15182308
APA StyleEl-Khoury, R., & Zaatari, G. (2025). The Rise of AI-Assisted Diagnosis: Will Pathologists Be Partners or Bystanders? Diagnostics, 15(18), 2308. https://doi.org/10.3390/diagnostics15182308