Automated Cervical Nuclei Segmentation in Pap Smear Images Using Enhanced Morphological Thresholding Techniques
Abstract
1. Introduction
2. Materials and Methods
2.1. Algorithm Workflow
2.2. Data Acquisition
2.3. Image Preprocessing
- If
- If
- If
- If
- If
- If
2.4. Segmentation
- Class 1: [0, t1]
- Class 2: [t1 + 1, t2]
- Class 3: [t2 + 1, L−1]
2.5. Post-Processing
3. Results
3.1. Output Comparison
3.2. Image Quality Assessment and Statistical Validation
- Precision:
- Recall (Sensitivity):
- F1-score:
- Accuracy:
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Guimarães, Y.M.; Godoy, L.R.; Longatto-Filho, A.; Dos Reis, R. Management of Early-Stage Cervical Cancer: A Literature Review. Cancers 2022, 14, 575. [Google Scholar] [CrossRef]
- Sausen, D.G.; Shechter, O.; Gallo, E.S.; Dahari, H.; Borenstein, R. Herpes Simplex Virus, Human Papillomavirus, and Cervical Cancer: Overview, Relationship, and Treatment Implications. Cancers 2023, 15, 3692. [Google Scholar] [CrossRef] [PubMed]
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef]
- Shi, J.; Wang, R.; Zheng, Y.; Jiang, Z.; Zhang, H.; Yu, L. Cervical Cell Classification with Graph Convolutional Network. Comput. Methods Programs Biomed. 2021, 198, 105807. [Google Scholar] [CrossRef] [PubMed]
- Mustafa, W.A.; Halim, A.; Jamlos, M.A.; Idrus, S.Z.S. A Review: Pap Smear Analysis Based on Image Processing Approach. J. Phys. Conf. Ser. 2020, 1529, 022080. [Google Scholar] [CrossRef]
- Macios, A.; Nowakowski, A. False Negative Results in Cervical Cancer Screening—Risks, Reasons and Implications for Clinical Practice and Public Health. Diagnostics 2022, 12, 1508. [Google Scholar] [CrossRef]
- Schiffman, M.; de Sanjose, S. False Positive Cervical HPV Screening Test Results. Papillomavirus Res. 2019, 7, 184–187. [Google Scholar] [CrossRef]
- Selby, K.; Sedki, M.; Levine, E.; Kamineni, A.; Green, B.B.; Vachani, A.; Haas, J.S.; Ritzwoller, D.P.; Croswell, J.M.; Ohikere, K.; et al. Test Performance Metrics for Breast, Cervical, Colon, and Lung Cancer Screening: A Systematic Review. J. Natl. Cancer Inst. 2023, 115, 375–384. [Google Scholar] [CrossRef]
- Rasheed, A.; Shirazi, S.H.; Umar, A.I.; Shahzad, M.; Yousaf, W.; Khan, Z. Cervical Cell’s Nucleus Segmentation through an Improved UNet Architecture. PLoS ONE 2023, 18, e0283568. [Google Scholar] [CrossRef]
- Wang, P.; Wang, L.; Li, Y.; Song, Q.; Lv, S.; Hu, X. Automatic Cell Nuclei Segmentation and Classification of Cervical Pap Smear Images. Biomed. Signal Process. Control 2019, 48, 93–103. [Google Scholar] [CrossRef]
- Fujita, H. AI-Based Computer-Aided Diagnosis (AI-CAD): The Latest Review to Read First. Radiol. Phys. Technol. 2020, 13, 6–19. [Google Scholar] [CrossRef] [PubMed]
- Nahrawi, N.; Mustafa, W.A.; Kanafiah, S.N.A.M.; Ahmad, W.K.W.; Rohani, M.N.K.H.; Rahim, H.A. A Novel Nucleus Detection on Pap Smear Image Using Mathematical Morphology Approach. J. Biomim. Biomater. Biomed. Eng. 2021, 49, 53–61. [Google Scholar] [CrossRef]
- Plissiti, M.E.; Nikou, C.; Charchanti, A. Automated Detection of Cell Nuclei in Pap Smear Images Using Morphological Reconstruction and Clustering. IEEE Trans. Inf. Technol. Biomed. 2011, 15, 233–241. [Google Scholar] [CrossRef]
- Bataineh, B. Brightness and Contrast Enhancement Method for Color Images via Pairing Adaptive Gamma Correction and Histogram Equalization. Int. J. Adv. Comput. Sci. Appl. 2023, 14, 124–134. [Google Scholar] [CrossRef]
- Tan, D.S.; Mahmood, D.; Nisar, H.; Yeap, K.H.; Dakulagi, V.; Elaraby, A. Comparison of Segmentation Performance of Activated Sludge Flocs Using Bright-Field and Phase-Contrast Microscopy at Different Magnifications. IOP Conf. Ser. Earth Environ. Sci. 2021, 945, 012024. [Google Scholar] [CrossRef]
- Mustafa, W.A.; Abdul-Nasir, A.S.; Mohamed, Z. Malaria Parasites Segmentation Based on Sauvola Algorithm Modification. Malays. Appl. Biol. 2018, 47, 71–76. [Google Scholar]
- Ding, Y.; Yue, W.; Li, Q. Automated Segmentation of Cervical Cell Images Using IMBMDCR-Net. Int. J. Mach. Learn. 2023, 13, 163–172. [Google Scholar] [CrossRef]
- Mahyari, T.L.; Dansereau, R.M. Multi-Layer Random Walker Image Segmentation for Overlapped Cervical Cells Using Probabilistic Deep Learning Methods. IET Image Process. 2022, 16, 2959–2972. [Google Scholar] [CrossRef]
- Liu, J.; Fan, H.; Wang, Q.; Li, W.; Tang, Y.; Wang, D.; Zhou, M.; Chen, L. Local Label Point Correction for Edge Detection of Overlapping Cervical Cells. Front. Neuroinform. 2022, 16, 895290. [Google Scholar] [CrossRef]
- Li, X.; Du, M.; Zuo, S.; Zhou, M.; Peng, Q.; Chen, Z.; Zhou, J.; He, Q. Deep Convolutional Neural Networks Using an Active Learning Strategy for Cervical Cancer Screening and Diagnosis. Front. Bioinform. 2023, 3, 1101667. [Google Scholar] [CrossRef]
- Ramakrishnan, V.; Artinger, A.; Barragan, L.A.D.; Daza, J.; Winter, L.; Niedermair, T.; Itzel, T.; Arbelaez, P.; Teufel, A.; Cotarelo, C.L.; et al. Nuclei Detection and Segmentation of Histopathological Images Using a Feature Pyramidal Network Variant of a Mask R-CNN. Bioengineering 2024, 11, 994. [Google Scholar] [CrossRef]
- Zhao, K.; Niyogisubizo, J.; Xiao, L.; Pan, Y.; Wei, D.; Rosiyadi, D.; Wei, Y. A Novel Deep Learning Approach Featuring Graph-Based Algorithm for Cell Segmentation and Tracking. In Proceedings of the 2023 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), Istanbul, Turkey, 5–8 December 2023; pp. 1752–1757. [Google Scholar] [CrossRef]
- Ren, J.; Che, J.; Gong, P.; Wang, X.; Li, X.; Li, A.; Xiao, C. Cross Comparison Representation Learning for Semi-Supervised Segmentation of Cellular Nuclei in Immunofluorescence Staining. Comput. Biol. Med. 2024, 171, 108102. [Google Scholar] [CrossRef]
- Khiruddin, K.D.N.; Mustafa, W.A.; Jamaludin, K.R.; Ab Rahman, K.S.; Alquran, H.; Junaini, S. Automated Cervical Cell Nuclei Segmentation Based on Multilayer Unsupervised Clustering Algorithm and Morphological Approach. Mitt. Klost. 2025, 43, 46–65. [Google Scholar]
- Alias, N.A.; Mustafa, W.A.; Jamlos, M.A.; Ismail, S.; Alquran, H.; Rohani, M.N.K.H. Pap Smear Image Analysis Based on Nucleus Segmentation and Deep Learning—A Recent Review. J. Adv. Res. Appl. Sci. Eng. Technol. 2023, 29, 37–47. [Google Scholar] [CrossRef]
- Alias, N.A.; Mustafa, W.A.; Jamlos, M.A.; Nasrudin, M.W.; Mansor, M.A.S.; Alquran, H. Edge Enhancement and Detection Approach on Cervical Cytology Images. J. Adv. Res. Appl. Sci. Eng. Technol. 2022, 28, 44–55. [Google Scholar] [CrossRef]
- Fang, M.; Fu, M.; Liao, B.; Lei, X.; Wu, F.X. Deep Integrated Fusion of Local and Global Features for Cervical Cell Classification. Comput. Biol. Med. 2024, 171, 108153. [Google Scholar] [CrossRef] [PubMed]
- Anandavally, P.S.N.; Bai, V.M.A. Deep Neural Network for the Detection and Classification of Spontaneous Abortion Associated with Cervical Cancer. J. Adv. Res. Appl. Sci. Eng. Technol. 2024, 39, 19–36. [Google Scholar] [CrossRef]
- Wubineh, B.Z.; Rusiecki, A.; Halawa, K. Classification of Cervical Cells from the Pap Smear Image Using the RES_DCGAN Data Augmentation and ResNet50V2 with Self-Attention Architecture. Neural Comput. Appl. 2024, 36, 21801–21815. [Google Scholar] [CrossRef]
- Chowdary, G.J.; Suganya, G.; Premalatha, M.; Yogarajah, P. Nucleus Segmentation and Classification Using Residual SE-UNet and Feature Concatenation Approach in Cervical Cytopathology Cell Images. Technol. Cancer Res. Treat. 2023, 22, 15330338221134833. [Google Scholar] [CrossRef]
- Jantzen, J.; Dounias, G. The Pap Smear Benchmark: Intelligent and Nature-Inspired Approaches in Pap Smear Diagnosis. In Proceedings of the Special Session Proceedings of the NISIS 2006 Symposium, Puerto de la Cruz, Tenerife, Spain, 29 November–1 December 2006. [Google Scholar]
- Liu, W.; Li, C.; Xu, N.; Jiang, T.; Rahaman, M.M.; Sun, H.; Wu, X.; Hu, W.; Chen, H.; Sun, C.; et al. CVM-Cervix: A Hybrid Cervical Pap-Smear Image Classification Framework Using CNN, Visual Transformer and Multilayer Perceptron. Pattern Recognit. 2022, 130, 108829. [Google Scholar] [CrossRef]
- Lu, Z.; Carneiro, G.; Bradley, A.P. An Improved Joint Optimization of Multiple Level Set Functions for the Segmentation of Overlapping Cervical Cells. IEEE Trans. Image Process. 2015, 24, 1261–1272. [Google Scholar] [CrossRef] [PubMed]
- Hoi, S.C.H.; Jin, R.; Zhu, J.; Lyu, M.R. Batch Mode Active Learning and Its Application to Medical Image Classification. In Proceedings of the 23rd International Conference on Machine Learning, Pittsburgh, PA, USA, 25–29 June 2006; Volume 148, pp. 417–424. [Google Scholar] [CrossRef]
- Braga, A.M.; Marques, R.C.P.; Medeiros, F.N.S.; Neto, J.F.S.R.; Bianchi, A.G.C.; Carneiro, C.M.; Ushizima, D.M. Hierarchical Median Narrow Band for Level Set Segmentation of Cervical Cell Nuclei. Measurement 2021, 176, 109232. [Google Scholar] [CrossRef]
Method | Key Principles | Mathematical Formulation | Limitation |
---|---|---|---|
Bradley | Adaptive thresholding compares each pixel intensity to the average of its surrounding neighborhood to handle uneven illumination. It uses an integral image for fast, constant-time computation of local averages across rectangular regions. The method involves two passes: first to build the integral image, and second to classify each pixel as dark or light based on whether its intensity falls below a set percentage of the local average. | m = mean value and k = 12 [17]. | Not capable of solving extreme illumination problems. |
Feng | Local adaptive thresholding technique that enhances segmentation accuracy by computing both the local mean and standard deviation within a sliding window around each pixel. This dual-statistic approach allows the threshold to dynamically adjust based on local brightness and contrast. | Rs = dynamic range of gray value standard deviation, m = mean value, s = standard deviation, α = coefficient, M = minimum value of the gray levels [17]. | Sensitive to gradient noise, which may lead to errors in highly textured or low-contrast areas. |
Niblack | Local adaptive thresholding algorithm that computes a pixel-wise threshold by analyzing the statistical properties of its surrounding neighborhood. It slides a window across the image to calculate the local mean and standard deviation, which are combined with a sensitivity constant to produce a dynamic threshold responsive to local brightness and contrast. This approach effectively handles non-uniform backgrounds and enhances the detection of dark features on lighter regions. The window size and sensitivity constant significantly affect its responsiveness to fine details and noise, making careful parameter tuning crucial for optimal results. | m = mean value, s = standard, k = constant parameter that determines the weight of the standard deviation. | Produces noisy results in regions with high texture or uneven backgrounds. |
Nick | The Nick method is a refined local adaptive thresholding algorithm that builds on Niblack by introducing a logarithmic adjustment to the standard deviation term, improving stability and reducing sensitivity to noise. It calculates the threshold for each pixel using local mean and standard deviation within a sliding window, but dampens the influence of high-variance regions to prevent over-segmentation. This contrast-aware adaptation allows smoother transitions between foreground and background, making it effective in images with uneven illumination and subtle features. | m = mean value, k = −0.13, I = pixel intensity and N = image size [17]. | Can introduce errors in very small or highly contrasted regions, leading to suboptimal results. |
Sauvola | Local adaptive thresholding algorithm that improves upon Niblack by introducing a normalization factor to the standard deviation, making the threshold more stable in noisy or low-contrast regions. It calculates the threshold for each pixel using the local mean and standard deviation within a sliding window, but scales the influence of the standard deviation relative to a predefined maximum value. This dynamic adjustment ensures that the threshold remains responsive to local contrast while preventing excessive sensitivity in homogeneous areas. | R = gray-level (128), m = mean value, s = standard deviation and k = 0.1 [17]. | Struggles with extremely uneven backgrounds or excessively low contrast in specific image areas. |
Class/Method | Bradley | Feng | Niblack | Nick | Sauvola | Proposed Method |
---|---|---|---|---|---|---|
Moderate Dysplasia | ||||||
Severe Dysplasia | ||||||
Superficial Squamous Epithelia |
Method | Precision (%) | F-Measure (%) | Sensitivity (%) | Accuracy (%) |
---|---|---|---|---|
Bradley | 95.00 | 95.96 | 97.41 | 94.02 |
Feng | 98.28 | 92.40 | 88.10 | 89.11 |
Niblack | 84.66 | 90.14 | 97.91 | 84.20 |
Nick | 86.66 | 91.99 | 99.59 | 87.22 |
Sauvola | 98.34 | 93.86 | 90.50 | 91.33 |
Proposed Method | 99.65 | 97.29 | 95.16 | 98.39 |
Metric | Proposed Method (Mean ± Std) | Sauvola Method (Mean ± Std) | Mean Difference | p-Value |
---|---|---|---|---|
Precision | 98.98 ± 0.57 | 97.58 ± 1.63 | 1.4 | 0.0272 |
F1-Score | 96.61 ± 0.83 | 93.50 ± 2.33 | 3.11 | 0.0023 |
Sensitivity | 95.61 ± 0.67 | 91.09 ± 3.10 | 4.52 | 0.0024 |
Accuracy | 96.58 ± 1.20 | 93.57 ± 3.13 | 3.01 | 0.0306 |
Metric | Proposed Method (Mean ± Std) | Bradley Method (Mean ± Std) | Mean Difference | p-Value |
---|---|---|---|---|
Precision | 98.98 ± 0.57 | 94.36 ± 2.53 | 4.62 | 0.0003 |
F1-Score | 96.61 ± 0.83 | 94.34 ± 2.53 | 2.27 | 0.039 |
Sensitivity | 95.61 ± 0.67 | 89.53 ± 6.82 | 6.08 | 0.0191 |
Accuracy | 96.58 ± 1.20 | 85.06 ± 6.39 | 11.53 | 0.0003 |
Class | Precision (%) | F-Measure (%) | Sensitivity (%) | Accuracy (%) |
---|---|---|---|---|
Normal (n = 30) | 98.14 ± 1.08 | 96.77 ± 1.18 | 92.99 ± 1.69 | 97.16 ± 1.00 |
Abnormal (n = 40) | 98.34 ± 1.20 | 95.91 ± 1.19 | 95.15 ± 1.17 | 95.98 ± 2.06 |
Macro Average | 98.24 | 96.34 | 94.07 | 96.57 |
Overall Average | 99.65 | 97.29 | 95.16 | 98.39 |
Method | Precision (%) | Sensitivity (%) | Accuracy (%) |
---|---|---|---|
DeepCervix [30] | - | 91.10 | 90.30 |
Jantzen et al. [31] | - | 97.50 | 93.60 |
Liu et al. [32] | - | 93.50 | 92.35 |
MSERLS [33] | 94.23 | 91.82 | - |
DeepCNN1 [34] | 94.61 | 95.59 | - |
HMLS [35] | 93.81 | 92.34 | - |
U-Net | 45.76 | 89.77 | 78.41 |
U-Net + Proposed Preprocessing | 85.24 | 87.91 | 90.32 |
Proposed Method | 99.65 | 95.16 | 98.39 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mustafa, W.A.; Khiruddin, K.; Saidi, S.A.; Jamaludin, K.R.; Hakimi, H.; Jamlos, M.A. Automated Cervical Nuclei Segmentation in Pap Smear Images Using Enhanced Morphological Thresholding Techniques. Diagnostics 2025, 15, 2328. https://doi.org/10.3390/diagnostics15182328
Mustafa WA, Khiruddin K, Saidi SA, Jamaludin KR, Hakimi H, Jamlos MA. Automated Cervical Nuclei Segmentation in Pap Smear Images Using Enhanced Morphological Thresholding Techniques. Diagnostics. 2025; 15(18):2328. https://doi.org/10.3390/diagnostics15182328
Chicago/Turabian StyleMustafa, Wan Azani, Khalis Khiruddin, Syahrul Affandi Saidi, Khairur Rijal Jamaludin, Halimaton Hakimi, and Mohd Aminudin Jamlos. 2025. "Automated Cervical Nuclei Segmentation in Pap Smear Images Using Enhanced Morphological Thresholding Techniques" Diagnostics 15, no. 18: 2328. https://doi.org/10.3390/diagnostics15182328
APA StyleMustafa, W. A., Khiruddin, K., Saidi, S. A., Jamaludin, K. R., Hakimi, H., & Jamlos, M. A. (2025). Automated Cervical Nuclei Segmentation in Pap Smear Images Using Enhanced Morphological Thresholding Techniques. Diagnostics, 15(18), 2328. https://doi.org/10.3390/diagnostics15182328