Predicting Axillary Metastasis of Breast Cancer Patients with MRI Relaxometry
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Patient Demographics and Tumor Characteristics
3.2. Relaxometry Imaging Findings
3.3. Correlation Between Tumor Type and Axillary Status
3.4. Multivariate Analysis of Imaging and Clinical Parameters
3.5. Nomogram and Comparative Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Carter, C.L.; Allen, C.; Henson, D.E. Relation of tumor size, lymph node status, and survival in 24,740 breast cancer cases. Cancer 1989, 63, 181–187. [Google Scholar] [CrossRef]
- Beenken, S.W.; Urist, M.M.; Zhang, Y.; Desmond, R.; Krontiras, H.; Medina, H.; Bland, K.I. Axillary lymph node status, but not tumor size, predicts locoregional recurrence and overall survival after mastectomy for breast cancer. Ann. Surg. 2003, 237, 732–738. [Google Scholar] [CrossRef]
- Surveillance, Epidemiology, and End Results Program (SEER). Table 4.13: Cancer of the Female Breast (Invasive)—5-Year Relative and Period Survival by Race, Diagnosis Year, Age and Stage at Diagnosis. In: SEER Cancer Statistics Review (CSR) 1975–2016. SEER Website. Available online: https://seer.cancer.gov/csr/1975_2016/browse_csr.php?sectionSEL=4&pageSEL=sect_04_table.13 (accessed on 30 October 2024).
- National Comprehensive Cancer Network (NCCN). Axillary Evaluation in Breast Cancer Patients at Diagnosis. Available online: https://www.nccn.org/patients/guidelines/content/PDF/breast-invasive-patient.pdf (accessed on 23 December 2024).
- European Society for Medical Oncology (ESMO). Axillary Evaluation in Breast Cancer Patients at Diagnosis. Available online: https://www.annalsofoncology.org/article/S0923-7534%2823%2905104-9/fulltext (accessed on 23 December 2024).
- American Society of Clinical Oncology (ASCO). Axillary Evaluation in Breast Cancer Patients at Diagnosis. Available online: https://ascopubs.org/doi/10.1200/JCO.21.00934 (accessed on 23 December 2024).
- Teng, L.; Du, J.; Yan, S.; Xu, P.; Liu, J.; Zhao, X.; Tao, W. A novel nomogram and survival analysis for different lymph node status in breast cancer based on the SEER database. Breast Cancer 2024, 31, 769–786. [Google Scholar] [CrossRef] [PubMed]
- Narod, S.A. Tumour size predicts long-term survival among women with lymph node-positive breast cancer. Curr. Oncol. 2012, 19, 249–253. [Google Scholar] [CrossRef] [PubMed]
- Johnson, S.; Brown, S.; Porter, G.; Steel, J.; Paisley, K.; Watkins, R.; Holgate, C. Staging primary breast cancer. Are there tumour pathologic features that correlate with a false-negative axillary ultrasound? Clin. Radiol. 2011, 66, 497–499. [Google Scholar] [CrossRef] [PubMed]
- Le Boulc’h, M.; Gilhodes, J.; Steinmeyer, Z.; Molière, S.; Mathelin, C. Pretherapeutic Imaging for Axillary Staging in Breast Cancer: A Systematic Review and Meta-Analysis of Ultrasound, MRI and FDG PET. J. Clin. Med. 2021, 10, 1543. [Google Scholar] [CrossRef] [PubMed]
- Xu, Q.; Wang, J.L.; Wang, J.C.; Guo, R.Z.; Qian, Y.; Liu, F. The effectiveness of ultrasound-guided core needle biopsy in detecting lymph node metastases in the axilla in patients with breast cancer: Systematic review and meta-analysis. Clinics 2023, 78, 100123. [Google Scholar] [CrossRef]
- Abe, H.; Schacht, D.; Kulkarni, K.; Shimauchi, A.; Yamaguchi, K.; Sennett, C.A.; Jiang, Y. Accuracy of axillary lymph node staging in breast cancer patients: An observer-performance study comparison of MRI and ultrasound. Acad. Radiol. 2013, 20, 1399–1404. [Google Scholar] [CrossRef]
- Chung, J.; Youk, J.H.; Kim, J.A.; Gweon, H.M.; Kim, E.K.; Ryu, Y.H.; Son, E.J. Role of diffusion-weighted MRI: Predicting axillary lymph node metastases in breast cancer. Acta Radiol. 2014, 55, 909–916. [Google Scholar] [CrossRef] [PubMed]
- Pintican, R.; Fechete, R.; Boca, B.; Cambrea, M.; Leonte, T.; Camuescu, O.; Gherman, D.; Bene, I.; Ciule, L.D.; Ciortea, C.A.; et al. Predicting the Early Response to Neoadjuvant Therapy with Breast MR Morphological, Functional and Relaxometry Features-A Pilot Study. Cancers 2022, 14, 5866. [Google Scholar] [CrossRef]
- Gao, W.; Zhang, S.; Guo, J.; Wei, X.; Li, X.; Diao, Y.; Huang, W.; Yao, Y.; Shang, A.; Zhang, Y.; et al. Investigation of Synthetic Relaxometry and Diffusion Measures in the Differentiation of Benign and Malignant Breast Lesions as Compared to BI-RADS. J. Magn. Reson. Imaging 2021, 53, 1118–1127. [Google Scholar] [CrossRef] [PubMed]
- Pintican, R.; Duma, M.M.; Szep, M.; Feier, D.; Eniu, D.; Goidescu, I.; Chiorean, A. The Role of US in Depicting Axillary Metastasis in High-Risk Breast Cancer Patients. J. Pers. Med. 2021, 11, 1379. [Google Scholar] [CrossRef] [PubMed]
- Alvarez, S.; Añorbe, E.; Alcorta, P.; López, F.; Alonso, I.; Cortés, J. Role of Sonography in the Diagnosis of Axillary Lymph Node Metastases in Breast Cancer: A Systematic Review. Am. J. Roentgenol. 2006, 186, 1342–1348. [Google Scholar] [CrossRef] [PubMed]
- Deurloo, E.E. Reduction in the number of sentinel lymph node procedures by preoperative ultrasonography of the axilla in breast cancer. Eur. J. Cancer 2003, 39, 1068–1073. [Google Scholar] [CrossRef]
- Esen, G.; Gurses, B.; Yilmaz, M.H.; Ilvan, S.; Ulus, S.; Celik, V.; Farahmand, M.; Calay, O.O. Gray scale and power Doppler US in the preoperative evaluation of axillary metastases in breast cancer patients with no palpable lymph nodes. Eur. Radiol. 2005, 15, 1215–1223. [Google Scholar] [CrossRef]
- Lee, B.; Lim, A.K.; Krell, J.; Satchithananda, K.; Coombes, R.C.; Lewis, J.S.; Stebbing, J. The Efficacy of Axillary Ultrasound in the Detection of Nodal Metastasis in Breast Cancer. Am. J. Roentgenol. 2013, 200, W314–W320. [Google Scholar] [CrossRef]
- Marino, M.A.; Avendano, D.; Zapata, P.; Riedl, C.C.; Pinker, K. Lymph Node Imaging in Patients with Primary Breast Cancer: Concurrent Diagnostic Tools. Oncologist 2020, 25, e231–e242. [Google Scholar] [CrossRef] [PubMed]
- Ecanow, J.S.; Abe, H.; Newstead, G.M.; Ecanow, D.B.; Jeske, J.M. Axillary staging of breast cancer: What the radiologist should know. Radiographics 2013, 33, 1589–1612. [Google Scholar] [CrossRef]
- Lee, S.C.; Jain, P.A.; Jethwa, S.C.; Tripathy, D.; Yamashita, M.W. Radiologist’s role in breast cancer staging: Providing key information for clinicians. Radiographics 2014, 34, 330–342. [Google Scholar] [CrossRef]
- Mortellaro, V.E.; Marshall, J.; Singer, L.; Hochwald, S.N.; Chang, M.; Copeland, E.M.; Grobmyer, S.R. Magnetic resonance imaging for axillary staging in patients with breast cancer. J. Magn. Reson. Imaging 2009, 30, 309–312. [Google Scholar] [CrossRef] [PubMed]
- Baltzer, P.A.T.; Dietzel, M.; Burmeister, H.P.; Zoubi, R.; Gajda, M.; Camara, O.; Kaiser, W.A. Application of MR mammography beyond local staging: Is there a potential to accurately assess axillary lymph nodes? Evaluation of an extended protocol in an initial prospective study. AJR Am. J. Roentgenol. 2011, 196, W641–W647. [Google Scholar] [CrossRef] [PubMed]
- Marino, M.A.; Helbich, T.H.; Blandino, A.; Pinker, K. The role of positron emission tomography in breast cancer: A short review. MEMO 2015, 2, 130–135. [Google Scholar] [CrossRef]
- Fuster, D.; Duch, J.; Paredes, P.; Velasco, M.; Muñoz, M.; Santamaría, G.; Fontanillas, M.; Pons, F. Preoperative staging of large primary breast cancer with [18F]fluorodeoxyglucose positron emission tomography/computed tomography compared with conventional imaging procedures. J. Clin. Oncol. 2008, 26, 4746–4751. [Google Scholar] [CrossRef]
- Koolen, B.B.; Olmos, R.A.V.; Elkhuizen, P.H.M.; Vogel, W.V.; Peeters, M.-J.T.F.D.V.; Rodenhuis, S.; Rutgers, E.J.T. Locoregional lymph node involvement on 18F-FDG PET/CT in breast cancer patients scheduled for neoadjuvant chemotherapy. Breast Cancer Res. Treat. 2012, 135, 231–240. [Google Scholar] [CrossRef] [PubMed]
- Dong, Y.; Feng, Q.; Yang, W.; Lu, Z.; Deng, C.; Zhang, L.; Lian, Z.; Liu, J.; Luo, X.; Pei, S.; et al. Preoperative prediction of sentinel lymph node metastasis in breast cancer based on radiomics of T2-weighted fat-suppression diffusion-weighted MRI. Eur. Radiol. 2018, 28, 582–591. [Google Scholar] [CrossRef]
- Han, L.; Zhu, Y.; Liu, Z.; Yu, T.; He, C.; Jiang, W.; Kan, Y.; Dong, D.; Tian, J.; Luo, Y. Radiomic nomogram for prediction of axillary lymph node metastasis in breast cancer. Eur. Radiol. 2019, 29, 3820–3829. [Google Scholar] [CrossRef] [PubMed]
- Reimer, T.; Stachs, A.; Veselinovic, K.; Kühn, T.; Heil, J.; Polata, S.; Marmé, F.; Müller, T.; Hildebrandt, G.; Krug, D.; et al. Axillary Surgery in Breast Cancer—Primary Results of the INSEMA (Intergroup-Sentinel-Mamma) Trial. N. Engl. J. Med. 2024, 390, 456–467. [Google Scholar]
- Gentilini, O.D.; Botteri, E.; Sangalli, C.; Galimberti, V.; Porpiglia, M.; Agresti, R.; Luini, A.; Viale, G.; Cassano, E.; Peradze, N.; et al. Sentinel Lymph Node Biopsy vs No Axillary Surgery in Patients With Small Breast Cancer and Negative Results on Ultrasonography of Axillary Lymph Nodes: The SOUND Randomized Clinical Trial. JAMA Oncol. 2023, 9, 1557–1564. [Google Scholar] [CrossRef]
Patients with Axillary Metastasis | Patients without Axillary Metastasis | p-Value | |
---|---|---|---|
Age | 55.4 ± 11.58 | 57.1 ± 10.17 | 0.481 |
Histology IDC * ILC | 26 3 | 37 0 | |
Nottingham grade 1 2 3 | 4 13 12 | 16 12 10 | 0.042 |
ER + − | 18 11 | 33 5 | 0.019 |
PR + − | 11 9 | 28 16 | 0.165 |
Ki67% ≥20% <20% | 9 20 | 19 19 | 0.121 |
HER2 + − | 9 20 | 5 33 | 0.076 |
Total | 29 | 38 | 67 |
Patients with Axillary Metastasis | Patients without Axillary Metastasis | p-Value | |
---|---|---|---|
(n = 38) | (n = 29) | ||
Nr.pixel-ipsilateral (pixeli) | 1684.44 ± 1352.99 a | 2130.00 ± 2441.03 | 0.381 |
T2MAX-ipsilateral (ms) | 2995.05 ± 1390.52 | 3229.27 ± 1243.53 | 0.470 |
T2MIN-ipsilateral (ms) | 41.99 ± 53.30 | 73.94 ± 53.32 | 0.018 |
T2AV-ipsilateral (ms) | 612.87 ± 271.33 | 605.82 ± 376.22 | 0.932 |
1hMAX-ipsilateral (AH) | 484.98 224.46 | 438.41 250.68 | 0.434 |
1hMIN-ipsilateral (AH) | 57.08 44.04 | 59.66 | 0.775 |
1Hav-ipsilateral (AH) | 186.79 | 148.28 | 0.003 |
Nr.pixel-contralateral (pixeli) | 2895.94 ± 1868.23 | 2577.44 ± 2073.80 | 0.518 |
T2MAX-contralateral (ms) | 3690.83722.18 | 3699.13 | 0.963 |
T2MIN-contralateral (ms) | 31.55 | 29.13 | 0.850 |
T2AV-contralateral (ms) | 631.81209.51 | 0.980 | |
1hMAX-contralateral (AH) | 538.71 | 0.205 | |
1hMIN-contralateral (AH) | 34.0723.86 | 42.2818.42 | 0.116 |
1Hav-contralateral (AH) | 172.65 | 153.37 | 0.007 |
a standard deviation; ms = milliseconds; AH = signal units. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pintican, R.; Fechete, R.; Radutiu, D.I.; Lenghel, M.; Bene, I.; Solomon, C.; Ciortea, C.; Ciurea, A. Predicting Axillary Metastasis of Breast Cancer Patients with MRI Relaxometry. Diagnostics 2025, 15, 188. https://doi.org/10.3390/diagnostics15020188
Pintican R, Fechete R, Radutiu DI, Lenghel M, Bene I, Solomon C, Ciortea C, Ciurea A. Predicting Axillary Metastasis of Breast Cancer Patients with MRI Relaxometry. Diagnostics. 2025; 15(2):188. https://doi.org/10.3390/diagnostics15020188
Chicago/Turabian StylePintican, Roxana, Radu Fechete, Delia Ioana Radutiu, Manuela Lenghel, Ioana Bene, Carolina Solomon, Cristiana Ciortea, and Anca Ciurea. 2025. "Predicting Axillary Metastasis of Breast Cancer Patients with MRI Relaxometry" Diagnostics 15, no. 2: 188. https://doi.org/10.3390/diagnostics15020188
APA StylePintican, R., Fechete, R., Radutiu, D. I., Lenghel, M., Bene, I., Solomon, C., Ciortea, C., & Ciurea, A. (2025). Predicting Axillary Metastasis of Breast Cancer Patients with MRI Relaxometry. Diagnostics, 15(2), 188. https://doi.org/10.3390/diagnostics15020188