Keeping the Ductus Arteriosus Patent: Current Strategy and Perspectives
Abstract
:1. Introduction
2. Anatomy and Physiology of Ductal-Dependent Congenital Heart Disease
3. Embryology, Histology, and Biochemical Regulation of the Ductus Arteriosus
4. Diagnosis of Patent Ductus Arteriosus and Ductal-Dependent Congenital Heart Disease
5. Pharmacological Maintenance of DA Patency and Its Limitations
6. Patent Ductus Arteriosus Stenting
7. The Blalock–Taussig Shunt
8. Novel Pharmacological Approaches in Maintaining Ductal Patency in Animal Specimens
9. Future Perspectives
10. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gentile, R.; Stevenson, G.; Dooley, T.; Franklin, D.; Kawabori, I.; Pearlman, A. Pulsed Doppler echocardiographic determination of time of ductal closure in normal newborn infants. J. Pediatr. 1981, 98, 443–448. [Google Scholar] [CrossRef] [PubMed]
- Semberova, J.; Sirc, J.; Miletin, J.; Kucera, J.; Berka, I.; Sebkova, S.; O’Sullivan, S.; Franklin, O.; Stranak, Z. Spontaneous Closure of Patent Ductus Arteriosus in Infants ≤ 1500 g. Pediatrics 2017, 140, e20164258. [Google Scholar] [CrossRef]
- Koch, J.; Hensley, G.; Roy, L.; Brown, S.; Ramaciotti, C.; Rosenfeld, C.R. Prevalence of spontaneous closure of the ductus arteriosus in neonates at a birth weight of 1000 grams or less. Pediatrics 2006, 117, 1113–1121. [Google Scholar] [CrossRef] [PubMed]
- Schneider, D.J.; Moore, J.W. Patent ductus arteriosus. Circulation 2006, 114, 1873–1882. [Google Scholar] [CrossRef]
- Clyman, R.I.; Waleh, N.; Black, S.M.; Riemer, R.K.; Mauray, F.; Chen, Y.Q. Regulation of ductus arteriosus patency by nitric oxide in fetal lambs: The role of gestation, oxygen tension, and vasa vasorum. Pediatr. Res. 1998, 43, 633–644. [Google Scholar] [CrossRef] [PubMed]
- Hung, Y.-C.; Yeh, J.-L.; Hsu, J.-H. Molecular Mechanisms for Regulating Postnatal Ductus Arteriosus Closure. Int. J. Mol. Sci. 2018, 19, 1861. [Google Scholar] [CrossRef] [PubMed]
- Hsu, J.-H.; Yang, S.-N.; Chen, H.-L.; Tseng, H.-I.; Dai, Z.-K.; Wu, J.-R. B-type natriuretic peptide predicts responses to indomethacin in premature neonates with patent ductus arteriosus. J. Pediatr. 2010, 157, 79–84. [Google Scholar] [CrossRef]
- Coceani, F.; Kelsey, L.; Seidlitz, E.; Marks, G.S.; McLaughlin, B.E.; Vreman, H.J.; Stevenson, D.K.; Rabinovitch, M.; Ackerley, C. Carbon monoxide formation in the ductus arteriosus in the lamb: Implications for the regulation of muscle tone. Br. J. Pharmacol. 1997, 120, 599–608. [Google Scholar] [CrossRef]
- Coceani, F.; Kelsey, L.; Seidlitz, E. Carbon monoxide-induced relaxation of the ductus arteriosus in the lamb: Evidence against the prime role of guanylyl cyclase. Br. J. Pharmacol. 1996, 118, 1689–1696. [Google Scholar] [CrossRef]
- Baragatti, B.; Brizzi, F.; Barogi, S.; Laubach, V.E.; Sodini, D.; Shesely, E.G.; Regan, R.F.; Coceani, F. Interactions between NO, CO and an endothelium-derived hyperpolarizing factor (EDHF) in maintaining patency of the ductus arteriosus in the mouse. Br. J. Pharmacol. 2007, 151, 54–62. [Google Scholar] [CrossRef]
- Liu, Y.-H.; Yan, C.-D.; Bian, J.-S. Hydrogen sulfide: A novel signaling molecule in the vascular system. J. Cardiovasc. Pharmacol. 2011, 58, 560–569. [Google Scholar] [CrossRef] [PubMed]
- van der Sterren, S.; Kleikers, P.; Zimmermann, L.J.I.; Villamor, E. Vasoactivity of the gasotransmitters hydrogen sulfide and carbon monoxide in the chicken ductus arteriosus. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2011, 301, R1186–R1198. [Google Scholar] [CrossRef] [PubMed]
- Leonhardt, A.; Glaser, A.; Wegmann, M.; Schranz, D.; Seyberth, H.; Nüsing, R. Expression of prostanoid receptors in human ductus arteriosus. Br. J. Pharmacol. 2003, 138, 655–659. [Google Scholar] [CrossRef]
- Smith, G.C.; Coleman, R.A.; McGrath, J.C. Characterization of dilator prostanoid receptors in the fetal rabbit ductus arteriosus. J. Pharmacol. Exp. Ther. 1994, 271, 390–396. [Google Scholar]
- Patent Ductus Arteriosus: A Contemporary Perspective for the Pediatric and Adult Cardiac Care Provider. Available online: https://www.ahajournals.org/doi/epub/10.1161/JAHA.122.025784 (accessed on 2 December 2024).
- Michelakis, E.; Rebeyka, I.; Bateson, J.; Olley, P.; Puttagunta, L.; Archer, S. Voltage-gated potassium channels in human ductus arteriosus. Lancet 2000, 356, 134–137. [Google Scholar] [CrossRef]
- Shelton, E.L.; Ector, G.; Galindo, C.L.; Hooper, C.W.; Brown, N.; Wilkerson, I.; Pfaltzgraff, E.R.; Paria, B.C.; Cotton, R.B.; Stoller, J.Z.; et al. Transcriptional profiling reveals ductus arteriosus-specific genes that regulate vascular tone. Physiol Genom. 2014, 46, 457–466. [Google Scholar] [CrossRef]
- Dunham-Snary, K.J.; Hong, Z.G.; Xiong, P.Y.; Del Paggio, J.C.; Herr, J.E.; Johri, A.M.; Archer, S.L. A mitochondrial redox oxygen sensor in the pulmonary vasculature and ductus arteriosus. Pflug. Arch. 2016, 468, 43–58. [Google Scholar] [CrossRef]
- Kajimoto, H.; Hashimoto, K.; Bonnet, S.N.; Haromy, A.; Harry, G.; Moudgil, R.; Nakanishi, T.; Rebeyka, I.; Thébaud, B.; Michelakis, E.D.; et al. Oxygen activates the Rho/Rho-kinase pathway and induces RhoB and ROCK-1 expression in human and rabbit ductus arteriosus by increasing mitochondria-derived reactive oxygen species: A newly recognized mechanism for sustaining ductal constriction. Circulation 2007, 115, 1777–1788. [Google Scholar] [CrossRef]
- Tristani-Firouzi, M.; Reeve, H.L.; Tolarova, S.; Weir, E.K.; Archer, S.L. Oxygen-induced constriction of rabbit ductus arteriosus occurs via inhibition of a 4-aminopyridine-, voltage-sensitive potassium channel. J. Clin. Investig. 1996, 98, 1959–1965. [Google Scholar] [CrossRef]
- Michelakis, E.D.; Rebeyka, I.; Wu, X.; Nsair, A.; Thébaud, B.; Hashimoto, K.; Dyck, J.R.B.; Haromy, A.; Harry, G.; Barr, A.; et al. O2 sensing in the human ductus arteriosus: Regulation of voltage-gated K+ channels in smooth muscle cells by a mitochondrial redox sensor. Circ. Res. 2002, 91, 478–486. [Google Scholar] [CrossRef]
- Fujita, S.; Yokoyama, U.; Ishiwata, R.; Aoki, R.; Nagao, K.; Masukawa, D.; Umemura, M.; Fujita, T.; Iwasaki, S.; Nishimaki, S.; et al. Glutamate Promotes Contraction of the Rat Ductus Arteriosus. Circ. J. 2016, 80, 2388–2396. [Google Scholar] [CrossRef]
- Momma, K.; Takao, A. Increased constriction of the ductus arteriosus with combined administration of indomethacin and betamethasone in fetal rats. Pediatr. Res. 1989, 25, 69–75. [Google Scholar] [CrossRef] [PubMed]
- Lezoualc’h, F.; Fazal, L.; Laudette, M.; Conte, C. Cyclic AMP Sensor EPAC Proteins and Their Role in Cardiovascular Function and Disease. Circ. Res. 2016, 118, 881–897. [Google Scholar] [CrossRef] [PubMed]
- Yokoyama, U.; Minamisawa, S.; Quan, H.; Akaike, T.; Suzuki, S.; Jin, M.; Jiao, Q.; Watanabe, M.; Otsu, K.; Iwasaki, S.; et al. Prostaglandin E2-activated Epac promotes neointimal formation of the rat ductus arteriosus by a process distinct from that of cAMP-dependent protein kinase A. J. Biol. Chem. 2008, 283, 28702–28709. [Google Scholar] [CrossRef] [PubMed]
- Tannenbaum, J.E.; Waleh, N.S.; Mauray, F.; Breuss, J.; Pytela, R.; Kramer, R.H.; Clyman, R.I. Transforming growth factor beta 1 inhibits fetal lamb ductus arteriosus smooth muscle cell migration. Pediatr. Res. 1995, 37, 561–570. [Google Scholar] [CrossRef]
- Tannenbaum, J.E.; Waleh, N.S.; Mauray, F.; Gold, L.; Perkett, E.A.; Clyman, R.I. Transforming growth factor-beta protein and messenger RNA expression is increased in the closing ductus arteriosus. Pediatr. Res. 1996, 39, 427–434. [Google Scholar] [CrossRef]
- Wu, L.; Xu, S.; Teng, J.; Wu, W.; Ye, D.; Wu, X. Differential response of human fetal smooth muscle cells from arterial duct to retinoid acid. Acta Pharmacol. Sin. 2008, 29, 413–420. [Google Scholar] [CrossRef]
- Yokoyama, U.; Sato, Y.; Akaike, T.; Ishida, S.; Sawada, J.; Nagao, T.; Quan, H.; Jin, M.; Iwamoto, M.; Yokota, S.; et al. Maternal vitamin A alters gene profiles and structural maturation of the rat ductus arteriosus. Physiol Genom. 2007, 31, 139–157. [Google Scholar] [CrossRef]
- Wu, Y.; Ferguson, J.E.; Wang, H.; Kelley, R.; Ren, R.; McDonough, H.; Meeker, J.; Charles, P.C.; Wang, H.; Patterson, C. PRDM6 is enriched in vascular precursors during development and inhibits endothelial cell proliferation, survival, and differentiation. J. Mol. Cell. Cardiol. 2008, 44, 47–58. [Google Scholar] [CrossRef]
- Davis, C.A.; Haberland, M.; Arnold, M.A.; Sutherland, L.B.; McDonald, O.G.; Richardson, J.A.; Childs, G.; Harris, S.; Owens, G.K.; Olson, E.N. PRISM/PRDM6, a transcriptional repressor that promotes the proliferative gene program in smooth muscle cells. Mol. Cell. Biol. 2006, 26, 2626–2636. [Google Scholar] [CrossRef]
- Li, N.; Subrahmanyan, L.; Smith, E.; Yu, X.; Zaidi, S.; Choi, M.; Mane, S.; Nelson-Williams, C.; Behjati, M.; Kazemi, M.; et al. Mutations in the Histone Modifier PRDM6 Are Associated with Isolated Nonsyndromic Patent Ductus Arteriosus. Am. J. Hum. Genet. 2016, 98, 1082–1091. [Google Scholar] [CrossRef] [PubMed]
- Baeten, J.T.; Jackson, A.R.; McHugh, K.M.; Lilly, B. Loss of Notch2 and Notch3 in vascular smooth muscle causes patent ductus arteriosus. Genesis 2015, 53, 738–748. [Google Scholar] [CrossRef] [PubMed]
- Krebs, L.T.; Norton, C.R.; Gridley, T. Notch signal reception is required in vascular smooth muscle cells for ductus arteriosus closure. Genesis 2016, 54, 86–90. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.-R.; Yeh, J.-L.; Liou, S.-F.; Dai, Z.-K.; Wu, B.-N.; Hsu, J.-H. Gamma-secretase Inhibitor Prevents Proliferation and Migration of Ductus Arteriosus Smooth Muscle Cells through the Notch3-HES1/2/5 Pathway. Int. J. Biol. Sci. 2016, 12, 1063–1073. [Google Scholar] [CrossRef] [PubMed]
- Clyman, R.I.; Seidner, S.R.; Kajino, H.; Roman, C.; Koch, C.J.; Ferrara, N.; Waleh, N.; Mauray, F.; Chen, Y.Q.; Perkett, E.A.; et al. VEGF regulates remodeling during permanent anatomic closure of the ductus arteriosus. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2002, 282, R199–R206. [Google Scholar] [CrossRef]
- Clyman, R.I.; Chan, C.Y.; Mauray, F.; Chen, Y.Q.; Cox, W.; Seidner, S.R.; Lord, E.M.; Weiss, H.; Waleh, N.; Evans, S.M.; et al. Permanent anatomic closure of the ductus arteriosus in newborn baboons: The roles of postnatal constriction, hypoxia, and gestation. Pediatr. Res. 1999, 45, 19–29. [Google Scholar] [CrossRef]
- Waleh, N.; Seidner, S.; McCurnin, D.; Giavedoni, L.; Hodara, V.; Goelz, S.; Liu, B.M.; Roman, C.; Clyman, R.I. Anatomic closure of the premature patent ductus arteriosus: The role of CD14+/CD163+ mononuclear cells and VEGF in neointimal mound formation. Pediatr. Res. 2011, 70, 332–338. [Google Scholar] [CrossRef]
- Voelkel, N.F.; Gomez-Arroyo, J. The role of vascular endothelial growth factor in pulmonary arterial hypertension. The angiogenesis paradox. Am. J. Respir. Cell. Mol. Biol. 2014, 51, 474–484. [Google Scholar] [CrossRef]
- Zhou, W.; Liu, K.; Zeng, L.; He, J.; Gao, X.; Gu, X.; Chen, X.; Jing Li, J.; Wang, M.; Wu, D.; et al. Targeting VEGF-A/VEGFR2 Y949 Signaling-Mediated Vascular Permeability Alleviates Hypoxic Pulmonary Hypertension. Circulation 2022, 146, 1855–1881. [Google Scholar] [CrossRef]
- Bonnet, D. Impacts of prenatal diagnosis of congenital heart diseases on outcomes. Transl. Pediatr. 2021, 10, 2241249. [Google Scholar] [CrossRef]
- Quartermain, M.D.; Hill, K.D.; Goldberg, D.J.; Jacobs, J.P.; Jacobs, M.L.; Pasquali, S.K.; Verghese, G.R.; Wallace, A.S.; Ungerleider, R.M. Prenatal Diagnosis Influences Preoperative Status in Neonates with Congenital Heart Disease: An Analysis of the Society of Thoracic Surgeons Congenital Heart Surgery Database. Pediatr. Cardiol. 2019, 40, 489–496. [Google Scholar] [CrossRef] [PubMed]
- Sun, H.Y. Prenatal diagnosis of congenital heart defects: Echocardiography. Transl. Pediatr. 2021, 10, 2210–2224. [Google Scholar] [CrossRef] [PubMed]
- Donofrio, M.T.; Moon-Grady, A.J.; Hornberger, L.K.; Copel, J.A.; Sklansky, M.S.; Abuhamad, A.; Cuneo, B.F.; Huhta, J.C.; Jonas, R.A.; Krishnan, A.; et al. Diagnosis and treatment of fetal cardiac disease: A scientific statement from the American Heart Association. Circulation 2014, 129, 2183–2242. [Google Scholar] [CrossRef]
- Jiang, H.; Tang, Q.; Jiang, Y.; Li, N.; Tang, X.; Xia, H. Echocardiographic and pathomorphological features in fetuses with ductal-dependent congenital heart diseases. Echocardiography 2019, 36, 1736–1743. [Google Scholar] [CrossRef]
- Tang, J.; Liang, Y.; Jiang, Y.; Liu, J.; Zhang, R.; Huang, D.; Pang, C.; Huang, C.; Luo, D.; Zhou, X.; et al. A multicenter study on two-stage transfer learning model for duct-dependent CHDs screening in fetal echocardiography. NPJ Digit. Med. 2023, 6, 143. [Google Scholar] [CrossRef]
- Garcia-Canadilla, P.; Sanchez-Martinez, S.; Crispi, F.; Bijnens, B. Machine Learning in Fetal Cardiology: What to Expect. Fetal Diagn. Ther. 2020, 47, 363–372. [Google Scholar] [CrossRef]
- Gad, S.A.; Shaban, E.A.; Dawoud, M.M.; Youssef, M.A. Diagnostic performance of 320 cardiac MDCT angiography in assessment of PDA either isolated or associated with duct dependent congenital heart disease. Egypt. J. Radiol. Nucl. Med. 2021, 52, 255. [Google Scholar] [CrossRef]
- Heymann, M.A.; Rudolph, A.M. Ductus arteriosus dilatation by prostaglandin E1 in infants with pulmonary atresia. Pediatrics 1977, 59, 325–329. [Google Scholar] [CrossRef]
- Momma, K.; Uemura, S.; Nishihara, S.; Ota, Y. Dilatation of the ductus arteriosus by prostaglandins and prostaglandin’s precursors. Pediatr. Res. 1980, 14, 1074–1077. [Google Scholar] [CrossRef]
- Benson, L.N.; Olley, P.M.; Patel, R.G.; Coceani, F.; Rowe, R.D. Role of prostaglandin E1 infusion in the management of transposition of the great arteries. Am. J. Cardiol. 1979, 44, 691–696. [Google Scholar] [CrossRef]
- Akkinapally, S.; Hundalani, S.G.; Kulkarni, M.; Fernandes, C.J.; Cabrera, A.G.; Shivanna, B.; Pammi, M. Prostaglandin E1 for maintaining ductal patency in neonates with ductal-dependent cardiac lesions. Cochrane Database Syst. Rev. 2018, 2, CD011417. [Google Scholar] [CrossRef] [PubMed]
- Dolbec, K.; Mick, N.W. Congenital heart disease. Emerg. Med. Clin. N. Am. 2011, 29, 811–827. [Google Scholar] [CrossRef] [PubMed]
- Chamberlin, M.; Lozynski, J. To Go Against Nature: Manipulating the Neonatal Ductus Arteriosus with Prostaglandin. Newborn Infant Nurs. Rev. 2006, 6, 158–162. [Google Scholar] [CrossRef]
- Yaffe, S.J.; Aranda, J.V. Neonatal and Pediatric Pharmacology: Therapeutic Principles in Practice; Lippincott Williams & Wilkins: Philadelphia, PA, USA, 2011; ISBN 978-0-7817-9538-8. [Google Scholar]
- Togănel, R. Critical Congenital Heart Diseases as Life-threatening Conditions in the Emergency Room. J. Cardiovasc. Emergencies 2016, 2, 7–10. [Google Scholar] [CrossRef]
- Olley, P.M.; Coceani, F.; Bodach, E. E-type prostaglandins: A new emergency therapy for certain cyanotic congenital heart malformations. Circulation 1976, 53, 728–731. [Google Scholar] [CrossRef]
- Elliott, R.B.; Starling, M.B.; Neutze, J.M. Medical manipulation of the ductus arteriosus. Lancet 1975, 1, 140–142. [Google Scholar] [CrossRef]
- Cucerea, M.; Simon, M.; Moldovan, E.; Ungureanu, M.; Marian, R.; Suciu, L. Congenital Heart Disease Requiring Maintenance of Ductus Arteriosus in Critically Ill Newborns Admitted at a Tertiary Neonatal Intensive Care Unit. J. Crit. Care Med. 2016, 2, 185–191. [Google Scholar] [CrossRef]
- Gibbs, J.L.; Rothman, M.T.; Rees, M.R.; Parsons, J.M.; Blackburn, M.E.; Ruiz, C.E. Stenting of the arterial duct: A new approach to palliation for pulmonary atresia. Br. Heart J. 1992, 67, 240–245. [Google Scholar] [CrossRef]
- Tseng, S.Y.; Truong, V.T.; Peck, D.; Kandi, S.; Brayer, S.; Jason, D.P.; Mazur, W.; Hill, G.D.; Ashfaq, A.; Goldstein, B.H.; et al. Patent Ductus Arteriosus Stent Versus Surgical Aortopulmonary Shunt for Initial Palliation of Cyanotic Congenital Heart Disease with Ductal-Dependent Pulmonary Blood Flow: A Systematic Review and Meta-Analysis. J. Am. Heart Assoc. 2022, 11, e024721. [Google Scholar] [CrossRef]
- Ratnayaka, K.; Nageotte, S.J.; Moore, J.W.; Guyon, P.W.; Bhandari, K.; Weber, R.L.; Lee, J.W.; You, H.; Griffin, D.A.; Rao, R.P.; et al. Patent Ductus Arteriosus Stenting for All Ductal-Dependent Cyanotic Infants. Circ. Cardiovasc. Interv. 2021, 14, e009520. [Google Scholar] [CrossRef]
- Valdeomillos, E.; Jalal, Z.; Boudjemline, Y.; Thambo, J.-B. Transcatheter ductus arteriosus stenting in paediatric cardiology: Indications, results and perspectives. Arch. Cardiovasc. Dis. 2020, 113, 129–141. [Google Scholar] [CrossRef] [PubMed]
- Gibbs, J.L.; Wren, C.; Watterson, K.G.; Hunter, S.; Hamilton, J.R. Stenting of the arterial duct combined with banding of the pulmonary arteries and atrial septectomy or septostomy: A new approach to palliation for the hypoplastic left heart syndrome. Br. Heart J. 1993, 69, 551–555. [Google Scholar] [CrossRef] [PubMed]
- Galantowicz, M.; Cheatham, J.P. Lessons Learned from the Development of a New Hybrid Strategy for the Management of Hypoplastic Left Heart Syndrome. Pediatr. Cardiol. 2005, 26, 190–199. [Google Scholar] [CrossRef] [PubMed]
- Galantowicz, M.; Cheatham, J.P.; Phillips, A.; Cua, C.L.; Hoffman, T.M.; Hill, S.L.; Rodeman, R. Hybrid Approach for Hypoplastic Left Heart Syndrome: Intermediate Results After the Learning Curve. Ann. Thorac. Surg. 2008, 85, 2063–2071. [Google Scholar] [CrossRef]
- Blalock, A.; Taussig, H.B. Landmark article May 19, 1945: The surgical treatment of malformations of the heart in which there is pulmonary stenosis or pulmonary atresia. By Alfred Blalock and Helen B. Taussig. JAMA 1984, 251, 2123–2138. [Google Scholar] [CrossRef]
- de Leval, M.R.; McKay, R.; Jones, M.; Stark, J.; Macartney, F.J. Modified Blalock-Taussig shunt. Use of subclavian artery orifice as flow regulator in prosthetic systemic-pulmonary artery shunts. J. Thorac. Cardiovasc. Surg. 1981, 81, 112–119. [Google Scholar] [CrossRef]
- Petrucci, O.; O’Brien, S.M.; Jacobs, M.L.; Jacobs, J.P.; Manning, P.B.; Eghtesady, P. Risk factors for mortality and morbidity after the neonatal Blalock-Taussig shunt procedure. Ann. Thorac. Surg. 2011, 92, 642–651; discussion 651–652. [Google Scholar] [CrossRef]
- Ichikawa, Y.; Yokoyama, U.; Iwamoto, M.; Oshikawa, J.; Okumura, S.; Sato, M.; Yokota, S.; Masuda, M.; Asou, T.; Ishikawa, Y. Inhibition of phosphodiesterase type 3 dilates the rat ductus arteriosus without inducing intimal thickening. Circ. J. 2012, 76, 2456–2464. [Google Scholar] [CrossRef]
- Yeh, J.-L.; Wu, J.-R.; Wu, B.-N.; Yang, S.-F.; Dai, Z.-K.; Liou, S.-F.; Hsu, J.-H. B-type natriuretic peptide prevents postnatal closure of ductus arteriosus by both vasodilation and anti-remodeling in neonatal rats. Clin. Sci. 2018, 132, 2045–2058. [Google Scholar] [CrossRef]
- Hung, Y.-C.; Liu, Y.-C.; Wu, B.-N.; Yeh, J.-L.; Hsu, J.-H. Cinaciguat Prevents Postnatal Closure of Ductus Arteriosus by Vasodilation and Anti-remodeling in Neonatal Rats. Front. Physiol. 2021, 12, 661171. [Google Scholar] [CrossRef]
- Liu, Y.-C.; Tseng, Y.-H.; Wu, Y.-H.; Tong, L.; Tsai, S.-P.; Huang, S.-E.; Wu, B.-N.; Lo, S.-H.; Chen, I.-C.; Dai, Z.-K.; et al. Exendin-4, a glucagon-like peptide-1 receptor agonist, regulates ductus arteriosus by vasodilation and anti-remodeling through the PKA pathway. Eur. J. Pharmacol. 2024, 985, 177106. [Google Scholar] [CrossRef] [PubMed]
Duct-Dependent Pulmonary Circulation | Duct-Dependent Systemic Circulation | Duct-Dependent Systemic and Pulmonary Circulations | |
---|---|---|---|
Most common conditions |
|
|
|
Symptoms upon closure | Hypoxemia, cyanosis, desaturation | Systemic hypoperfusion, acidosis, circulatory deterioration | Both of the aforementioned |
Therapeutic Factor | Biochemical Pathway | Main Mechanism of Action |
---|---|---|
Milrinone [70] | Phosphodiesterase 3 inhibitor Increases cAMP levels | DA relaxation without increasing intimal thickening |
TAK-044 [70] | Endothelin receptor antagonist | DA constriction prevention |
γ-secretase inhibitor DAPT [35] | Notch pathway signaling inhibition | DA anti-remodeling effects |
BNP * [71] | cGMP pathway | DA smooth muscle cell anti-proliferation and anti-remodeling effects DA vasodilation |
Cinaciguat * [72] | cGMP/PKG pathway | DA anti-remodeling effects DA vasodilation (dose dependent) |
Exendin-4 * [73] | GLP-1RA antagonist/ cAMP-PKA pathway | DA anti-remodeling effects DA vasodilation |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chatziantoniou, A.; Rorris, F.-P.; Samanidis, G.; Kanakis, M. Keeping the Ductus Arteriosus Patent: Current Strategy and Perspectives. Diagnostics 2025, 15, 241. https://doi.org/10.3390/diagnostics15030241
Chatziantoniou A, Rorris F-P, Samanidis G, Kanakis M. Keeping the Ductus Arteriosus Patent: Current Strategy and Perspectives. Diagnostics. 2025; 15(3):241. https://doi.org/10.3390/diagnostics15030241
Chicago/Turabian StyleChatziantoniou, Anastasios, Filippos-Paschalis Rorris, George Samanidis, and Meletios Kanakis. 2025. "Keeping the Ductus Arteriosus Patent: Current Strategy and Perspectives" Diagnostics 15, no. 3: 241. https://doi.org/10.3390/diagnostics15030241
APA StyleChatziantoniou, A., Rorris, F.-P., Samanidis, G., & Kanakis, M. (2025). Keeping the Ductus Arteriosus Patent: Current Strategy and Perspectives. Diagnostics, 15(3), 241. https://doi.org/10.3390/diagnostics15030241