Possible Use of Body Surface Area Value for Estimating Skeletal Muscle Mass in Chronic Liver Disease
Abstract
:1. Introduction
2. Patients and Methods
2.1. Patients
2.2. Diagnosis of Low SMI and Sarcopenia
2.3. Statistical Analyses
3. Results
3.1. Characteristics of the Training Cohort
3.2. Determination of the Cutoff Values of BSA to Predict Low SMI, and Their Diagnostic Performance
3.3. Characteristics of the Validation Cohort and Diagnostic Performance of BSA for Low SMI
3.4. Usefulness of the Cutoff Values of BSA for the Diagnosis of Sarcopenia
3.5. Sub-Analyses of the Diagnostic Performance of BSA for Low SMI and Sarcopenia
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rosenberg, I. Epidemiologic and methodologic problems in determining nutritional status of older persons. Proceedings of a conference. Albuquerque, New Mexico, October 19–21, 1988. Am. J. Clin. Nutr. 1989, 50, 1121–1235. [Google Scholar]
- Bunchorntavakul, C.; Reddy, K.R. Review article: Malnutrition/sarcopenia and frailty in patients with cirrhosis. Aliment. Pharmacol. Ther. 2020, 51, 64–77. [Google Scholar] [CrossRef] [PubMed]
- Aby, E.S.; Saab, S. Frailty, Sarcopenia, and Malnutrition in Cirrhotic Patients. Clin. Liver Dis. 2019, 23, 589–605. [Google Scholar] [CrossRef] [PubMed]
- Nishikawa, H.; Enomoto, H.; Ishii, A.; Iwata, Y.; Miyamoto, Y.; Ishii, N.; Yuri, Y.; Hasegawa, K.; Nakano, C.; Nishimura, T.; et al. Elevated serum myostatin level is associated with worse survival in patients with liver cirrhosis. J. Cachexia Sarcopenia Muscle 2017, 8, 915–925. [Google Scholar] [CrossRef] [PubMed]
- Zhu, X.; Huang, Q.; Ma, S.; Chen, L.; Wu, Q.; Wu, L.; Ma, H.; Li, X.; Li, Q.; Aleteng, Q.; et al. Presence of sarcopenia identifies a special group of lean NAFLD in middle-aged and older people. Hepatol. Int. 2023, 17, 313–325. [Google Scholar] [CrossRef]
- Meyer, F.; Valentini, L. Disease-Related Malnutrition and Sarcopenia as Determinants of Clinical Outcome. Visc. Med. 2019, 35, 282–291. [Google Scholar] [CrossRef] [PubMed]
- Chang, K.V.; Chen, J.D.; Wu, W.T.; Huang, K.C.; Lin, H.Y.; Han, D.S. Is sarcopenia associated with hepatic encephalopathy in liver cirrhosis? A systematic review and meta-analysis. J. Formos. Med. Assoc. 2019, 118, 833–842. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.K.; Woo, J.; Assantachai, P.; Auyeung, T.W.; Chou, M.Y.; Iijima, K.; Jang, H.C.; Kang, L.; Kim, M.; Kim, S.; et al. Asian Working Group for Sarcopenia: 2019 Consensus Update on Sarcopenia Diagnosis and Treatment. J. Am. Med. Dir. Assoc. 2020, 21, 300–307.e2. [Google Scholar] [CrossRef] [PubMed]
- Japan Society of Hepatology Guidelines for Sarcopenia in Liver Disease. Available online: https://www.jsh.or.jp/lib/files/english/guidelines_en/sarcopenia.pdf, (accessed on 12 December 2024).
- Nishikawa, H.; Shiraki, M.; Hiramatsu, A.; Hara, N.; Moriya, K.; Hino, K.; Koike, K. Reduced handgrip strength predicts poorer survival in chronic liver diseases: A large multicenter study in Japan. Hepatol. Res. 2021, 51, 957–967. [Google Scholar] [CrossRef] [PubMed]
- Braat, E.; Hoste, L.; De Waele, L.; Gheysens, O.; Vermeersch, P.; Goffin, K.; Pottel, H.; Goemans, N.; Levtchenko, E. Renal function in children and adolescents with Duchenne muscular dystrophy. Neuromuscul. Disord. 2015, 25, 381–387. [Google Scholar] [CrossRef] [PubMed]
- Titan, S.; Miao, S.; Tighiouart, H.; Chen, N.; Shi, H.; Zhang, L.; Li, Z.; Froissart, M.; Rossing, P.; Grubb, A.; et al. Performance of Indexed and Nonindexed Estimated GFR. Am. J. Kidney Dis. 2020, 76, 446–449. [Google Scholar] [CrossRef]
- Yoshizumi, T.; Shirabe, K.; Nakagawara, H.; Ikegami, T.; Harimoto, N.; Toshima, T.; Yamashita, Y.; Ikeda, T.; Soejima, Y.; Maehara, Y. Skeletal muscle area correlates with body surface area in healthy adults. Hepatol. Res. 2014, 44, 313–318. [Google Scholar] [CrossRef] [PubMed]
- Moore, K.P.; Wong, F.; Gines, P.; Bernardi, M.; Ochs, A.; Salerno, F.; Angeli, P.; Porayko, M.; Moreau, R.; Garcia-Tsao, G.; et al. The management of ascites in cirrhosis: Report on the consensus conference of the International Ascites Club. Hepatology 2003, 38, 258–266. [Google Scholar] [CrossRef] [PubMed]
- Liyanage, T.; Toyama, T.; Hockham, C.; Ninomiya, T.; Perkovic, V.; Woodward, M.; Fukagawa, M.; Matsushita, K.; Praditpornsilpa, K.; Hooi, L.S.; et al. Prevalence of chronic kidney disease in Asia: A systematic review and analysis. BMJ Glob. Health 2022, 7, e007525. [Google Scholar] [CrossRef] [PubMed]
- Yoshiji, H.; Nagoshi, S.; Akahane, T.; Asaoka, Y.; Ueno, Y.; Ogawa, K.; Kawaguchi, T.; Kurosaki, M.; Sakaida, I.; Shimizu, M.; et al. Evidence-based clinical practice guidelines for liver cirrhosis 2020. Hepatol. Res. 2021, 51, 725–749. [Google Scholar] [CrossRef]
- Verbraecken, J.; Van de Heyning, P.; De Backer, W.; Van Gaal, L. Body surface area in normal-weight, overweight, and obese adults. A comparison study. Metabolism 2006, 55, 515–524. [Google Scholar] [CrossRef] [PubMed]
- Bouillanne, O.; Morineau, G.; Dupont, C.; Coulombel, I.; Vincent, J.P.; Nicolis, I.; Benazeth, S.; Cynober, L.; Aussel, C. Geriatric Nutritional Risk Index: A new index for evaluating at-risk elderly medical patients. Am. J. Clin. Nutr. 2005, 82, 777–783. [Google Scholar] [CrossRef]
- Muraoka, Y.; Miura, T.; Miyagi, M.; Okazaki, T.; Katsumata, T.; Obata, K.; Ebihara, S. Geriatric Nutritional Risk Index Predicts High Activities of Daily Living at Discharge in Older Patients with Heart Failure after Cardiac Rehabilitation. J. Clin. Med. 2023, 12, 7662. [Google Scholar] [CrossRef] [PubMed]
- Enomoto, H.; Yuri, Y.; Nishimura, T.; Ikeda, N.; Takashima, T.; Aizawa, N.; Okamoto, M.; Yoshihara, K.; Yoshioka, R.; Kawata, S.; et al. A Low Geriatric Nutritional Risk Index Is Associated with Low Muscle Volume and a Poor Prognosis among Cirrhotic Patients. Medicina 2023, 59, 2099. [Google Scholar] [CrossRef]
- Yang, C.K.; Huang, K.T.; Qin, W.; Wu, Q.Y.; Huang, X.L.; Peng, K.; Lao, Q.; Ye, X.P.; Zhu, G.Z.; Li, T.M.; et al. Prognostic value of geriatric nutritional risk index and prognostic nutritional index in hepatocellular carcinoma. Clin. Nutr. ESPEN 2024, 59, 355–364. [Google Scholar] [CrossRef]
- Ganapathy, A.; Nieves, J.W. Nutrition and Sarcopenia-What Do We Know? Nutrients 2020, 12, 1755. [Google Scholar] [CrossRef]
- Sieber, C.C. Malnutrition and sarcopenia. Aging Clin. Exp. Res. 2019, 31, 793–798. [Google Scholar] [CrossRef] [PubMed]
- Dunne, R.F.; Loh, K.P.; Williams, G.R.; Jatoi, A.; Mustian, K.M.; Mohile, S.G. Cachexia and Sarcopenia in Older Adults with Cancer: A Comprehensive Review. Cancers 2019, 11, 1861. [Google Scholar] [CrossRef]
- Chhetri, J.K.; de Souto Barreto, P.; Fougère, B.; Rolland, Y.; Vellas, B.; Cesari, M. Chronic inflammation and sarcopenia: A regenerative cell therapy perspective. Exp. Gerontol. 2018, 103, 115–123. [Google Scholar] [CrossRef] [PubMed]
- Balestrieri, P.; Ribolsi, M.; Guarino, M.P.L.; Emerenziani, S.; Altomare, A.; Cicala, M. Nutritional Aspects in Inflammatory Bowel Diseases. Nutrients 2020, 12, 372. [Google Scholar] [CrossRef]
- Enomoto, H.; Akuta, N.; Hikita, H.; Suda, G.; Inoue, J.; Tamaki, N.; Ito, K.; Akahane, T.; Kawaoka, T.; Morishita, A.; et al. Etiological changes of liver cirrhosis and hepatocellular carcinoma-complicated liver cirrhosis in Japan: Updated nationwide survey from 2018 to 2021. Hepatol. Res. 2024, 54, 763–772. [Google Scholar] [CrossRef] [PubMed]
- Hiraoka, A.; Izumoto, H.; Ueki, H.; Yoshino, T.; Aibiki, T.; Okudaira, T.; Yamago, H.; Suga, Y.; Iwasaki, R.; Tomida, H.; et al. Easy surveillance of muscle volume decline in chronic liver disease patients using finger-circle (yubi-wakka) test. J. Cachexia Sarcopenia Muscle 2019, 10, 347–354. [Google Scholar] [CrossRef] [PubMed]
- Evans, W.J. What is sarcopenia? J. Gerontol. A Biol. Sci. Med. Sci. 1995, 50, 5–8. [Google Scholar] [CrossRef] [PubMed]
- Adamo, M.L.; Farrar, R.P. Resistance training, and IGF involvement in the maintenance of muscle mass during the aging process. Ageing Res. Rev. 2006, 5, 310–331. [Google Scholar] [CrossRef] [PubMed]
- Beaudart, C.; Demonceau, C.; Reginster, J.Y.; Locquet, M.; Cesari, M.; Cruz Jentoft, A.J.; Bruyère, O. Sarcopenia and health-related quality of life: A systematic review and meta-analysis. J. Cachexia Sarcopenia Muscle 2023, 14, 1228–1243. [Google Scholar] [CrossRef] [PubMed]
- Yoh, K.; Nishikawa, H.; Enomoto, H.; Iwata, Y.; Ikeda, N.; Aizawa, N.; Nishimura, T.; Iijima, H.; Nishiguchi, S. Grip Strength: A Useful Marker for Composite Hepatic Events in Patients with Chronic Liver Diseases. Diagnostics 2020, 10, 238. [Google Scholar] [CrossRef] [PubMed]
- Hanai, T.; Shiraki, M.; Imai, K.; Suetsugu, A.; Takai, K.; Moriwaki, H.; Shimizu, M. Reduced handgrip strength is predictive of poor survival among patients with liver cirrhosis: A sex-stratified analysis. Hepatol. Res. 2019, 49, 1414–1426. [Google Scholar] [CrossRef]
- Goodpaster, B.H.; Park, S.W.; Harris, T.B.; Kritchevsky, S.B.; Nevitt, M.; Schwartz, A.V.; Simonsick, E.M.; Tylavsky, F.A.; Visser, M.; Newman, A.B. The loss of skeletal muscle strength, mass, and quality in older adults: The health, aging and body composition study. J. Gerontol. A Biol. Sci. Med. Sci. 2006, 61, 1059–1064. [Google Scholar] [CrossRef] [PubMed]
Variables | All Cases (n = 1889) | Training Cohort (n = 983) | Validation Cohort (n = 906) | p-Value |
---|---|---|---|---|
Age (years) | 61 (51.5–69) | 62 (53–69) | 61 (51–69) | 0.1945 |
Gender, male/female | 976/913 | 497/486 | 416/490 | 0.0436 |
Etiology of the liver diseases; HCV/HBV/others | 1025/189/675 | 654/81/248 | 371/108/427 | <0.0001 |
Presence of liver cirrhosis, yes/no | 424/1465 | 257/726 | 167/739 | <0.0001 |
Body mass index (kg/m2) | 22.9 (20.5–25.7) | 22.1 (20.2–25.0) | 23.7 (21.2–26.5) | <0.0001 |
Nutrition-related risk (GNRI): | <0.0001 | |||
Major (<82) | 52 (2.8%) | 27 (2.7%) | 25 (2.8%) | |
Moderate (82 to <92) | 182 (9.6%) | 145 (14.8%) | 37 (4.1%) | |
Low (92 to <98) | 229 (12.1%) | 156 (15.9%) | 73 (8.1%) | |
Absent (≥98) | 1426 (75.5%) | 655 (66.6%) | 771 (85.1%) | |
AST (U/L) | 26 (20–38) | 28 (22–43) | 24 (19–32.3) | <0.0001 |
ALT (U/L) | 23 (15–37) | 24 (16–42) | 21 (15–33) | 0.0001 |
γ-GTP (U/L) | 28 (18–49) | 30 (19–50) | 25 (17–47) | 0.001 |
Serum albumin (g/dL) | 4.2 (3.8–4.4) | 4.0 (3.7–4.4) | 4.3 (4.0–4.5) | <0.0001 |
Total bilirubin (mg/dL) | 0.8 (0.6–1.1) | 0.9 (0.7–1.2) | 0.8 (0.6–1.0) | <0.0001 |
eGFR (ml/min/1.73m2) | 85.3 (74.1–99.6) | 86.6 (75.7–100.8) | 83.6 (72.7–98.3) | 0.0004 |
Hb (g/dL) | 13.3 (12.1–14.5) | 13.0 (11.6–14.2) | 13.6 (12.6–14.7) | <0.0001 |
PT (%) | 90.1 (78.2–99.6) | 84.7 (72.1–94.7) | 95.0 (86.0–103.5) | <0.0001 |
Platelet count (×103/mm3) | 168 (112–221) | 141 (93–196) | 194 (144–242) | <0.0001 |
ALBI score | −2.79 (−3.04 to −2.45) | −2.70 (−2.94 to −2.28) | −2.91 (−3.10 to −2.65) | <0.0001 |
ALBI grade, 1/2/3 | 1294/542/53 | 578/369/36 | 716/173/17 | <0.0001 |
SMI (kg/m2), male | 7.63 (6.97–8.14) | 7.50 (6.86–7.99) | 7.70 (7.08–8.27) | <0.0001 |
SMI (kg/m2), female | 5.95 (5.52–6.47) | 5.83 (5.45–6.33) | 6.06 (5.65–6.62) | <0.0001 |
Presence of low SMI, n (%), male | 239 (26.2%) | 153 (30.8%) | 86 (20.7%) | 0.0005 |
Presence of low SMI, n (%), female | 336 (34.4%) | 195 (40.1%) | 141 (28.8%) | 0.0002 |
Body surface area (m2), male | 1.75 (1.65–1.87) | 1.74 (1.63–1.85) | 1.78 (1.68–1.88) | <0.0001 |
Body surface area (m2), female | 1.51 (1.42–1.60) | 1.48 (1.40–1.56) | 1.53 (1.44–1.63) | 0.0003 |
Training Cohort | Sensitivity | Specificity | PPV | NPV | Diagnostic Accuracy | |
---|---|---|---|---|---|---|
All cases (N = 983, 100%) | 280/348 (80.5%) | 496/635 (78.1%) | 280/419 (66.8%) | 496/564 (87.9%) | 776/983 (78.9%) | |
Gender | Male (N = 497, 50.6%) | 123/153 (80.4%) | 287/344 (83.4%) | 123/180 (68.3%) | 287/317 (90.5%) | 410/497 (82.5%) |
Female (N = 486, 49.4%) | 157/195 (80.5%) | 209/291 (71.8%) | 157/239 (65.7%) | 209/247 (84.6%) | 366/486 (75.3%) | |
Age (-years old) | ≥65 (N = 407, 41.4%) | 173/201 (86.1%) | 134/206 (65.0%) | 173/245 (70.6%) | 134/162 (82.7%) | 307/407 (75.4%) |
<65 (N = 576, 58.6%) | 107/147 (72.8%) | 362/429 (84.4%) | 107/174 (61.5%) | 362/402 (90.0%) | 469/576 (81.4%) | |
Etiology | Viral (N = 735, 74.8%) | 207/262 (79.0%) | 356/473 (75.3%) | 207/324 (63.9%) | 356/411 (86.6%) | 563/735 (76.6%) |
Nonviral (N = 248, 25.2%) | 73/86 (84.9%) | 140/162 (86.4%) | 73/95 (76.8%) | 140/153 (91.5%) | 213/248 (85.9%) | |
BMI (kg/m2) | ≥23 (N = 418, 42.5%) | 23/44 (52.3%) | 344/374 (92.0%) | 23/53 (43.4%) | 344/365 (94.2%) | 367/418 (87.8%) |
<23 (N = 565, 57.5%) | 257/304 (84.5%) | 152/261 (58.2%) | 257/366 (70.2%) | 152/199 (76.4%) | 409/565 (72.4%) |
Validation Cohort | Sensitivity | Specificity | PPV | NPV | Diagnostic Accuracy | |
---|---|---|---|---|---|---|
All cases (N = 906, 100%) | 160/227 (70.5%) | 570/679 (83.9%) | 160/269 (59.5%) | 570/637 (89.5%) | 730/906 (80.5%) | |
Gender | Male (N = 416, 45.9%) | 65/86 (75.6%) | 289/330 (87.6%) | 65/106 (61.3%) | 289/310 (93.2%) | 354/416 (85.0%) |
Female (N = 490, 54.1%) | 95/141 (67.4%) | 281/349 (80.5%) | 95/163 (58.3%) | 281/327 (85.9%) | 376/490 (76.7%) | |
Age (-years old) | ≥65 (N = 376, 41.5%) | 117/152 (77.0%) | 175/224 (78.1%) | 117/166 (70.5%) | 175/210 (83.3%) | 292/376 (77.7%) |
<65 (N = 530, 58.5%) | 107/147 (72.8%) | 362/429 (84.4%) | 107/174 (61.5%) | 362/402 (90.0%) | 469/576 (81.4%) | |
Etiology | Viral (N = 479, 52.9%) | 103/145 (71.0%) | 283/334 (84.7%) | 103/154 (66.9%) | 283/325 (87.1%) | 386/479 (80.6%) |
Nonviral (N = 427, 47.1%) | 57/82 (69.5%) | 287/345 (83.2%) | 57/115 (49.6%) | 287/312 (92.0%) | 344/427 (80.6%) | |
BMI (kg/m2) | ≥23 (N = 512, 56.5%) | 16/45 (35.6%) | 437/467 (93.6%) | 16/46 (34.8%) | 437/466 (93.8%) | 453/512 (88.5%) |
<23 (N = 394, 43.5%) | 144/182 (79.1%) | 133/212 (62.7%) | 144/223 (64.6%) | 133/171 (77.8%) | 277/394 (70.3%) |
Variables | All Cases (n = 1229) | Cases 2011–2015 (n = 479) | Cases 2016–2020 (n = 750) | p-Value |
---|---|---|---|---|
Age (years) | 62 (52–70) | 64 (55–70) | 61 (51–69) | 0.1078 |
Gender, male/female | 578/651 | 230/249 | 348/402 | 0.5798 |
Etiology of the liver diseases: HCV/HBV/others | 764/116/349 | 426/24/29 | 338/92/320 | <0.0001 |
Presence of liver cirrhosis, yes/no | 260/969 | 110/369 | 150/600 | 0.2162 |
Body mass index (kg/m2) | 22.6 (20.4–25.5) | 21.6 (19.8–24.0) | 23.5 (21.0–26.1) | <0.0001 |
Nutrition-related risk (GNRI): | <0.0001 | |||
Major (<82) | 28 (2.3%) | 7 (1.5%) | 21 (2.8%) | |
Moderate (82 to <92) | 77 (6.3%) | 44 (9.2%) | 33 (4.4%) | |
Low (92 to <98) | 141 (11.5%) | 75 (15.7%) | 66 (8.8%) | |
Absent (≥98) | 983 (80.0%) | 353 (73.7%) | 630 (84.0%) | |
AST (U/L) | 24 (19–34) | 26 (21–37) | 23 (19–32) | <0.0001 |
ALT (U/L) | 20 (14–33) | 20 (14–36) | 20 (14–32) | 0.8822 |
γ-GTP (U/L) | 25 (17–44) | 25 (17–43) | 24 (17–46) | 0.9600 |
Serum albumin (g/dL) | 4.2 (3.9–4.5) | 4.1 (3.9–4.4) | 4.3 (4.0–4.5) | <0.0001 |
Total bilirubin (mg/dL) | 0.8 (0.6–1.0) | 0.8 (0.6–1.1) | 0.8 (0.6–1.0) | 0.0649 |
eGFR (ml/min/1.73m2) | 83.7 (73.1–98.0) | 86.1 (75.6–99.7) | 82.1 (71.8–96.2) | <0.0001 |
Hb (g/dL) | 13.3 (12.1–14.5) | 13.0 (11.6–14.2) | 13.5 (12.6–14.7) | <0.0001 |
PT (%) | 91.6 (82.4–100.9) | 87.8 (80.2–95.2) | 94.4 (85.6–103.1) | <0.0001 |
Platelet count (×103/mm3) | 172 (124–219) | 14.4 (10.9–19.3) | 18.8 (13.8–23.2) | <0.0001 |
ALBI score | −2.84 (−3.07 to −2.59) | −2.76 (−2.98 to −2.53) | −2.91 (−3.10 to −2.65) | <0.0001 |
ALBI grade, 1/2/3 | 920/291/18 | 335/139/5 | 585/152/13 | 0.0017 |
SMI (kg/m2), male | 7.64 (6.99–8.15) | 7.41 (6.82–7.97) | 7.70 (7.08–8.25) | 0.0002 |
SMI (kg/m2), female | 5.90 (5.53–6.41) | 5.77 (5.42–6.06) | 6.04 (5.60–6.62) | <0.0001 |
Presence of low SMI, n (%), male | 145 (25.1%) | 72 (31.3%) | 73 (21.0%) | 0.0053 |
Presence of low SMI, n (%), female | 220 (33.8%) | 102 (41.0%) | 118 (29.4%) | 0.0024 |
Body surface area (m2), male | 1.75 (1.65–1.86) | 1.74 (1.63–1.83) | 1.78 (1.67–1.87) | 0.0002 |
Body surface area (m2), female | 1.51 (1.41–1.59) | 1.47 (1.39–1.55) | 1.53 (1.44–1.62) | <0.0001 |
Grip strength (kg), male | 35.5 (29.9–41.6) | 34.5 (29.0–41.3) | 36.1 (30.5–41.6) | 0.1250 |
Grip strength (kg), female | 21.1 (18.3–23.8) | 20.4 (17.2–23.3) | 21.3 (18.8–24.3) | 0.0002 |
Presence of sarcopenia (%), male | 51 (8.8%) | 28 (12.2%) | 23 (6.6%) | 0.0225 |
Presence of sarcopenia (%), female | 76 (11.7%) | 39 (15.7%) | 37 (9.2%) | 0.0138 |
Validation Cohort | Sensitivity | Specificity | PPV | NPV | Diagnostic Accuracy | |
---|---|---|---|---|---|---|
All cases from 2011 to 2020 (N = 1229, 100%) | 105/127 (82.7%) | 1070/1102 (97.1%) | 105/137 (76.6%) | 1070/1092 (98.0%) | 1175/1229 (95.6%) | |
Gender | Male (N = 578, 47.0%) | 41/51 (80.4%) | 514/527 (97.5%) | 41/54 (75.9%) | 514/524 (98.1%) | 555/578 (96.0%) |
Female (N = 651, 53.0%) | 64/76 (84.2%) | 556/575 (96.7%) | 64/83 (77.1%) | 556/568 (97.9%) | 620/651 (95.2%) | |
Age (-years old) | ≥65 (N = 544, 44.3%) | 86/95 (90.5%) | 422/449 (94.0%) | 86/113 (76.1%) | 422/431 (97.9%) | 508/544 (93.4%) |
<65 (N = 685, 55.7%) | 19/32 (59.4%) | 648/653 (99.2%) | 19/24 (79.2%) | 648/661 (98.0%) | 667/685 (97.4%) | |
Etiology | Viral (N = 880, 71.6%) | 81/100 (81.0%) | 759/780 (97.3%) | 81/102 (79.4%) | 579/778 (97.6%) | 840/880 (95.5%) |
Nonviral (N = 349, 28.4%) | 24/27 (88.9%) | 311/322 (96.6%) | 24/35 (68.6%) | 311/314 (99.0%) | 335/349 (96.0%) | |
BMI (kg/m2) | ≥23 (N = 570, 46.4%) | 7/16 (43.8%) | 541/554 (97.7%) | 7/20 (35.0%) | 541/550 (98.4%) | 548/570 (96.1%) |
<23 (N = 659, 53.6%) | 98/111 (88.3%) | 529548 (96.5%) | 98/117 (83.8%) | 529/542 (97.6%) | 627/659 (95.1%) |
Validation Cohort | Sensitivity | Specificity | PPV | NPV | Diagnostic Accuracy | |
---|---|---|---|---|---|---|
All cases from 2011 to 2015 (N = 479, 100%) | 56/67 (83.6%) | 397/412 (96.4%) | 56/71 (83.6%) | 397/408 (97.3%) | 453/479 (94.6%) | |
Gender | Male cases (N = 230, 48.0%) | 22/28 (78.6%) | 196/202 (97.0%) | 22/28 (78.6%) | 196/202 (97.0%) | 218/230 (94.8%) |
Female cases (N = 249, 52.0%) | 34/39 (87.2%) | 201/210 (95.7%) | 34/43 (79.0%) | 201/206 (97.6%) | 235/249 (94.4%) | |
Age (-years old) | ≥65 (N = 219, 45.7%) | 41/44 (93.2%) | 163/175 (93.1%) | 41/53 (77.4%) | 163/166 (98.2%) | 204/219 (93.2%) |
<65 (N = 260, 54.3%) | 15/23 (65.2%) | 234/237 (98.7%) | 15/18 (83.3%) | 234/242 (96.7%) | 249/260 (95.8%) | |
Etiology | Viral (N = 450, 93.9%) | 52/63 (82.5%) | 373/387 (96.4%) | 52/66 (78.8%) | 373/384 (97.1%) | 425/450 (94.4%) |
Nonviral (N = 29, 6.1%) | 4/4 (100%) | 24/25 (96.0%) | 4/5 (80.0%) | 24/24 (100%) | 28/29 (96.6%) | |
BMI (kg/m2) | ≥23 (N = 162, 33.8%) | 2/6 (33.3%) | 149/156 (95.5%) | 2/9 (22.2%) | 149/153 (97.4%) | 151/162 (93.2%) |
<23 (N = 317, 66.2%) | 54/61 (88.5%) | 248/256 (96.9%) | 54/62 (87.1%) | 248/255 (97.3%) | 302/317 (95.3%) |
Validation Cohort | Sensitivity | Specificity | PPV | NPV | Diagnostic Accuracy | |
---|---|---|---|---|---|---|
All cases from 2016 to 2020 (N = 750, 100%) | 49/60 (81.7%) | 673/690 (97.5%) | 49/66 (74.2%) | 673/684 (98.4%) | 722/750 (96.3%) | |
Gender | Male cases (N = 348, 46.4%) | 19/23 (82.6%) | 318/325 (97.9%) | 19/26 (73.1%) | 318/322 (98.8%) | 337/348 (96.8%) |
Female cases (N = 402, 53.6%) | 30/37 (81.1%) | 355/365 (97.3%) | 30/40 (75.0%) | 355/362 (98.1%) | 385/402 (95.8%) | |
Age (-years old) | ≥65 (N = 325, 43.3%) | 45/51 (88.2%) | 259/274 (94.5%) | 45/60 (75.0%) | 259/265 (97.7%) | 304/325 (93.5%) |
<65 (N = 425, 56.7%) | 4/9 (44.4%) | 414/416 (99.5%) | 4/6 (66.7%) | 414/419 (98.8%) | 418/425 (98.4%) | |
Etiology | Viral (N = 430, 57.3%) | 29/37 (78.4%) | 386/393 (98.2%) | 29/36 (80.6%) | 386/394 (98.0%) | 415/430 (96.5%) |
Nonviral (N = 320, 42.7%) | 20/23 (87.0%) | 287/297 (96.6%) | 20/30 (66.7%) | 287/290 (99.0%) | 307/320 (95.9%) | |
BMI (kg/m2) | ≥23 (N = 408, 54.4%) | 5/10 (50.0%) | 392/398 (98.5%) | 5/11 (45.5%) | 392/397 (98.7%) | 397/408 (97.3%) |
<23 (N = 342, 54.6%) | 44/50 (88.0%) | 281/292 (96.2%) | 44/55 (80.0%) | 281/287 (97.9%) | 325/342 (95.0%) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yoh, K.; Nishimura, T.; Ikeda, N.; Takashima, T.; Aizawa, N.; Yuri, Y.; Kimura, T.; Yoshihara, K.; Yoshioka, R.; Kawata, S.; et al. Possible Use of Body Surface Area Value for Estimating Skeletal Muscle Mass in Chronic Liver Disease. Diagnostics 2025, 15, 263. https://doi.org/10.3390/diagnostics15030263
Yoh K, Nishimura T, Ikeda N, Takashima T, Aizawa N, Yuri Y, Kimura T, Yoshihara K, Yoshioka R, Kawata S, et al. Possible Use of Body Surface Area Value for Estimating Skeletal Muscle Mass in Chronic Liver Disease. Diagnostics. 2025; 15(3):263. https://doi.org/10.3390/diagnostics15030263
Chicago/Turabian StyleYoh, Kazunori, Takashi Nishimura, Naoto Ikeda, Tomoyuki Takashima, Nobuhiro Aizawa, Yukihisa Yuri, Taro Kimura, Kohei Yoshihara, Ryota Yoshioka, Shoki Kawata, and et al. 2025. "Possible Use of Body Surface Area Value for Estimating Skeletal Muscle Mass in Chronic Liver Disease" Diagnostics 15, no. 3: 263. https://doi.org/10.3390/diagnostics15030263
APA StyleYoh, K., Nishimura, T., Ikeda, N., Takashima, T., Aizawa, N., Yuri, Y., Kimura, T., Yoshihara, K., Yoshioka, R., Kawata, S., Kawase, Y., Nakano, R., Shiomi, H., Fukunishi, S., Shinzaki, S., Nishiguchi, S., & Enomoto, H. (2025). Possible Use of Body Surface Area Value for Estimating Skeletal Muscle Mass in Chronic Liver Disease. Diagnostics, 15(3), 263. https://doi.org/10.3390/diagnostics15030263